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Abstract 

Introduction: Infectious diseases are common causes of morbidity and mortality worldwide. Susceptibility to 
infection is highly heritable; however, little has been done to identify the genetic determinants underlying common 
infectious diseases. One GWAS was performed using 23andMe information about self‑reported infections; we set out 
to confirm previous loci and identify new ones using medically diagnosed infections.

Methods: We used the electronic health record (EHR)‑based biobank at Vanderbilt and diagnosis codes to identify 
cases of 12 infectious diseases in white patients: urinary tract infection, pneumonia, chronic sinus infections, otitis 
media, candidiasis, streptococcal pharyngitis, herpes zoster, herpes labialis, hepatitis B, infectious mononucleosis, 
tuberculosis (TB) or a positive TB test, and hepatitis C. We selected controls from patients with no diagnosis code for 
the candidate disease and matched by year of birth, sex, and calendar year at first and last EHR visits. We conducted 
GWAS using SAIGE and transcriptome‑wide analysis (TWAS) using S‑PrediXcan. We also conducted phenome‑wide 
association study to understand associations between identified genetic variants and clinical phenotypes.

Results: We replicated three 23andMe loci (p ≤ 0.05): herpes zoster and rs7047299‑A (p = 2.6 ×  10–3) and rs2808290‑
C (p = 9.6 ×  10–3;); otitis media and rs114947103‑C (p = 0.04). We also identified 2 novel regions (p ≤ 5 ×  10–8): 
rs113235453‑G for otitis media (p = 3.04 ×  10–8), and rs10422015‑T for candidiasis (p = 3.11 ×  10–8). In TWAS, four 
gene‑disease associations were significant: SLC30A9 for otitis media (p = 8.06 ×  10–7); LRP3 and WDR88 for candidiasis 
(p = 3.91 ×  10–7 and p = 1.95 ×  10–6); and AAMDC for hepatitis B (p = 1.51 ×  10–6).

Conclusion: We conducted GWAS and TWAS for 12 infectious diseases and identified novel genetic contributors to 
the susceptibility of infectious diseases.
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Introduction
Infections are among the most common causes of mor-
bidity and mortality worldwide, resulting in millions of 

deaths [1, 2]. Complications of serious infection in the 
U.S. contribute to 1 in 3 hospital deaths and ~ 250,000 
deaths annually [3]. Susceptibility to infection is highly 
heritable, likely due to major selection pressure over mil-
lennia, when infection was the leading cause of death and 
no effective antimicrobials existed [4]. More than 300 rare 
Mendelian disorders resulting from mutations predomi-
nantly in genes regulating immune response predispose 
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individuals to infection [4, 5] and provide extreme proof 
of the critical importance of host genetic variation in 
susceptibility to infection. However, such variants do 
not account for the high heritability of susceptibility to 
infection seen in other studies. In a landmark twin study, 
adults who had been adopted as children had a 5.8-fold 
increased risk of dying from infection if one of their bio-
logical parents had died from infection before the age of 
50  years [6]. Other twin studies have shown high herit-
ability for traits such as infection  (h2 = 0.43) [7], staphylo-
coccal infection  (h2 = 0.7) [8], and death due to infection 
 (h2 = 0.4) [9].

Despite high heritability, the genetics of susceptibil-
ity to infection is poorly defined and is recognized as a 
neglected area of research: only 4% of the catalog of 
genome wide association studies (GWAS) relates to the 
broad area of infectious disease [10]. Many attempts to 
identify the genetic determinants underlying common 
infections have major limitations. First, associations have 
been sought in small candidate gene studies; second, few 
GWAS studies have been broadly relevant to patients in 
the U.S. One of the largest GWAS was performed using 
23andMe data with self-reported health history for 23 
infections [11]. In that study, Tian et al. identified genes 
that play key roles in immune response and inflammatory 
processes associated with susceptibility to infections. 
However, the identified associations have not been tested 
in a real-world setting with infections diagnosed by phy-
sicians, and relatively few loci have been identified.

The COVID-19 pandemic resulted in urgent work to 
expand our understanding of the genetic mechanisms 
underlying severe respiratory viral infection and its com-
plications. A recent meta-analysis of 46 independent 
GWASs identified loci that contribute to susceptibility 
or severity of COVID-19 infection [12] — supporting 
the critical role of host genetics in infectious diseases. 
However, whether the identified COVID-19 loci are also 
involved in susceptibility to other respiratory infections 
is unclear.

Biobanks linked to patients’ electronic health records 
(EHRs) provide an unprecedented opportunity to per-
form genetic studies and understand infectious disease. 
The biobank at Vanderbilt (BioVU) is one of the largest 
practice-based biobanks in the U.S. We set out to repli-
cate the observations from the previous 23andMe GWAS 
and test the associations between the identified variants 
and clinical phenotypes using phenome-wide association 
studies (PheWAS) to identify additional associated infec-
tions as well as co-morbidities that could predispose to 
infection. One of our primary objectives was to replicate 
the earlier findings from a GWAS study that used self-
reported history of various infections as the phenotypes 
of interest with those of a GWAS study that used the 

more objective outcomes of medically diagnosed infec-
tions. Then, we conducted GWAS and transcriptome-
wide association study (TWAS) to further define the role 
of host genetics in common infections. Last, we tested if 
previously identified COVID-19 loci also associated with 
susceptibility to pneumonia in our BioVU cohort [12].

Methods
Data sources
Data were obtained from the Synthetic Derivative (SD) 
and BioVU at Vanderbilt University Medical Center 
(VUMC) that contains a de-identified copy of the EHR 
for every patient and has genome-wide genotyping avail-
able for > 100,000 patients [13–15]. The BioVU follows 
the declaration of Helsinki. The study followed the decla-
ration of Helsinki. The study was exempted by Vanderbilt 
University Medical Center Institutional Review Board.

Study cohort
We included individuals whose race was identified as 
white in the de-identified EHR and who had genome-
wide genotyping available. We identified patients with 
the infectious diseases of interest using the International 
Classification of Disease Clinical Modification, Ninth 
Revision (ICD9CM) and Tenth Revision (ICD10CM) 
codes (Supplement Table 1).

We set out to replicate associations with common 
infections in Tian’s 23andMe GWAS study [11] which 
included 23 phenotypes; of those, we studied pheno-
types which could be defined by ICD codes and for 
which we had more than 100 cases (Supplementary 
Table  2). These were urinary tract infection (UTI), 
pneumonia, chronic sinus infections, otitis media, 
candidiasis, streptococcal pharyngitis, herpes zoster, 
herpes labialis, hepatitis B, infectious mononucleosis, 
and tuberculosis (TB) or a positive TB test. We also 
included hepatitis C, a common infection that was 
not included in Tian’s report. The ICD diagnosis codes 
included in each phenotype are shown in Supplemen-
tary Table  1. For each candidate infectious disease, 
individuals with 2 or more codes for the phenotype 
on different days were considered as cases for the dis-
ease [16]. Individuals with only 1 mention of ICD code 
related to the disease were excluded from the analysis 
of that candidate infectious disease. We selected con-
trols from individuals with no ICD codes for the can-
didate disease and matched these with cases of the 
infectious disease using year of birth, sex, and years 
of first and most recent EHR. We chose the match-
ing factors to minimize important imbalances that 
could occur between case and control groups and thus 
reduce potential confounding; for example, we matched 
cases and controls for age and length of EHR because 
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younger individuals and those with shorter EHRs have 
less time in which to accumulate clinical diagnoses, and 
we matched for sex because for some illnesses (.e.g., 
UTI) there are marked differences in prevalence among 
men and women. We matched controls to cases 5:1 
for UTI, pneumonia, candidiasis, chronic sinus infec-
tion, otitis media, and hepatitis C. For infections with 
less than 1000 cases (streptococcal pharyngitis, herpes 
zoster, hepatitis B, infectious mononucleosis, TB or a 
positive TB test, and herpes labialis), we matched con-
trols to cases 10:1(Table 1). For phenotypes with more 
than 1000 cases, we chose 1:5 case–control ratios based 
on statistical power calculations. For phenotypes with 
fewer than 1000 cases, we chose a 1:10 case–control 
ratio to take advantage of the additional small increase 
in power this provided for less frequent phenotypes 
[17].

In preliminary analyses, and as reported by others 
[18], we found that patients with cystic fibrosis (CF) 
contributed a strong genetic signal to pneumonia and 
chronic sinus infection; thus, to limit confounding by 
a CF genetic signal, we removed individuals with CF 

diagnosis codes (Supplementary Table 1) from the anal-
yses of pneumonia and chronic sinus infection.

Genotyping and SNP imputation
Genotyping was performed on the Infinium Multi-
Ethnic Genotyping Array (MEGAchip). We took neces-
sary technical measure to control genotyping quality 
and excluded DNA samples with (1) per-individual call 
rate < 95%; (2) mismatch between reported gender and 
X-chromosome zygosity; or (3) unexpected duplica-
tion. We performed whole genome imputation using the 
Michigan Imputation Server [19] with the Haplotype 
Reference Consortium, version r1.1 [20, 21] as reference. 
Principal components for ancestry (PCs) were calculated 
using common variants (MAF > 1%) with high variant call 
rate (> 98%); we excluded variants in linkage and regions 
known to affect PCs [HLA region on chromosome 6, 
inversion on chromosome 8 (8,135,000–12,000,000), and 
inversion on chromosome 17 (40,900,000–45,000,000); 
GRCh37 build]. Tian previously reported 28 genetic 
variants significantly associated with the infections we 
tested in BioVU; of these, 23 were directly available in 

Table 1 Demographic summary for 12 common infections

Phenotype Status N Female Male Age (years, 
mean ± SD)

EHR length 
(years, 
mean ± SD)

Streptococcal pharyngitis Control 9970 6290 3680 31.8 ± 20.8 14 ± 6.8

Case 997 617 380 30.7 ± 21 13.9 ± 5.8

Candidiasis Control 11,010 6911 4099 51.2 ± 22.6 13 ± 7.4

Case 2202 1385 817 52.9 ± 21.6 13.1 ± 7.4

Herpes zoster Control 7510 4669 2841 65.8 ± 15.8 15.4 ± 7.1

Case 751 455 296 66.4 ± 15.7 15.3 ± 6.7

Hepatitis B Control 2230 710 1520 57.3 ± 19.9 14.6 ± 7.4

Case 223 68 155 56 ± 14.7 14 ± 7.6

UTI Control 46,795 26,484 20,311 53.5 ± 21.1 10.8 ± 7.1

Case 9359 6889 2470 59.3 ± 21.2 13.8 ± 7.2

Pneumonia Control 31,925 15,125 16,800 58.5 ± 21.1 11.8 ± 7.4

Case 6385 3071 3314 58.8 ± 21.9 11.9 ± 7.5

Infectious mononucleosis Control 1160 740 420 28.8 ± 18.7 13.9 ± 7.2

Case 116 70 46 28.3 ± 16.3 13.7 ± 6.5

Tuberculosis or a positive TB test Control 1020 597 423 56.1 ± 19.1 14.3 ± 6.8

Case 102 56 46 56 ± 16.9 14.2 ± 6.5

Otitis media Control 12,170 6879 5291 35.3 ± 22.8 13.8 ± 7.1

Case 2434 1299 1135 32.3 ± 25.6 13.3 ± 6.3

Chronic sinus infection Control 12,860 7969 4891 58.4 ± 18.6 15.4 ± 6.7

Case 2572 1577 995 58.4 ± 17.6 15.5 ± 6.6

Hepatitis C Control 6300 2211 4089 54.9 ± 20.4 12.3 ± 7.7

Case 1260 456 804 55.5 ± 12.9 12.3 ± 7.8

Herpes labialis Control 3560 2142 1418 51.6 ± 21.4 15.2 ± 7.1

Case 356 223 133 51.3 ± 18.7 15.2 ± 6.9
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our dataset or had another variant (within 500 kb) in high 
linkage disequilibrium (LD) using information for Euro-
pean ancestry population in the 1000 genomes database 
(R2 > 0.9, except for rs73015965 which was in LD with 
rs73027818 with R2 = 0.7) [22, 23].

Statistical analysis
Genome‑wide association study
We used SAIGE [24] to test associations between geno-
types and risk of candidate infectious diseases using 
logistic regression assuming additive allelic effects and 
adjustment for sex, year of birth, year of first clinical visit, 
EHR length, and 10 PCs of ancestry to account for resid-
ual population structure [25]. Then, we conducted post-
analysis quality control using EASYQC [26] to exclude (1) 
poorly imputed variants with  r2 value of < 0.3, (2) variants 
with minor allele frequency (MAF) < 0.5%, (3) variants 
with MAF different from the HRC reference panel (MAF 
differences > 0.3), and (4) variants significantly derived 
from Hardy–Weinberg equilibrium (HWE, p < 1 ×  10–6). 
As we consider each infection an independent pheno-
type, we applied the standard GWAS Bonferroni correc-
tion cut-off and considered a P-value of less than 5 ×  10–8 
as significant.

Transcriptome wide association study (TWAS)
We conducted transcriptome analysis using PrediXcan 
(https:// github. com/ hakyi mlab/ Predi Xcan) [27] with 
summary statistics from GWAS analyses. We leveraged 
all 49 available reference tissues from GTEx version 8. 
One approach would be to use organ- or tissue-specific 
prediction models, such as lung for pneumonia. How-
ever, because of the strong correlations across tissues in 
the genetic architecture for the regulation of gene expres-
sion (largely a function of the cell types making up that 
tissue), it is statistically powerful and thus we chose to 
utilize information from the tissues with the highest 
quality prediction performance or construct cross-tissue 
model. We also conducted cross-tissue transcriptomic 
analyses using MultiXcan and meta-analyzed all available 
tissue-based tests [28]. P-values of less than 2.5 ×  10–6 
(0.05/20000 genes) were considered significant.

Phenome‑wide association studies (PheWAS)
PheWAS was conducted to identify clinical phenotypes 
that associate with infection-related genetic variants 
either reported by Tian et al. (variants in Table 2) or iden-
tified in current study [29, 30]. Specifically, we grouped 
each individual’s ICD codes into PheCodes following an 
established protocol [31, 32]. To be a case for each Phe-
Code, an individual needs to have relevant ICD codes 
on at least 2 different days. Controls were individuals 
with no relevant ICD codes. Individuals with only one 

occurrence of a relevant code were excluded from the 
analyses. In a cohort of 65,592 white individuals, we ana-
lyzed a total of 1739 PheCodes with more than 20 cases. 
P-values of less than 2.9 ×  10–5 (0.05/1739) were consid-
ered significant.

We conducted a post-analysis power calculation to 
evaluate our ability to detect the odds ratios detected in 
the case–control phenotypes from Tian et al.’s. report, 
including herpes zoster (OR 1.07–1.14), herpes labialis 
(OR 1.08), infectious mononucleosis (OR 1.08), hepatitis 
B (OR 1.32), pneumonia (OR 1.1), and otitis media (OR 
1.06 – 1.43). We could not run the power calculation for 
(1) continuous traits in Tian’s report, such as streptococ-
cal pharyngitis, candidiasis, and UTI (because we applied 
a case–control study design); and (2) associations with 
variants unavailable in our cohort, such as tuberculo-
sis (or a positive TB test). We used Genetic Association 
Study (GAS) power calculator [33].

Replication of top infection hits with other clinical 
phenotypes
We also searched GWAS hits from the current study in 
the PheWeb database (http:// pheweb. sph. umich. edu/) 
to test whether the identified top hits were associated 
with other clinical phenotypes from existing GWAS and 
PheWAS [34]. In addition, we investigated whether the 
identified GWAS hits for COVID-19 susceptibility or 
severity also contributed to susceptibility to pneumo-
nia by querying our analysis of patients with pneumonia 
(none of whom had COVID-19).

Results
Study cohort
We identified cases and matched controls for 12 common 
infections, including 11 infections included in the Tian 
paper [11]. The number of cases ranged from 102 (TB or 
positive TB test) to 9359 (UTI) Table 1.

Replication of previous GWAS of common infections
We replicated 3 associations with p <  = 0.05 and the same 
direction of effect as Tian’s report: herpes zoster with the 
A allele of rs7047299(IFNA21 gene, odds ratio [OR], 1.18; 
95% confidence interval [CI], [1.06–1.32]; p = 0.0026) and 
the C allele of rs2808290 (close to MKX gene, OR, 1.09; 
95% CI [1.02–1.16]; p = 0.0096); and otitis media with the 
C allele of rs114947103 (CDHR3 gene, OR, 1.09; 95% CI 
[1.00–1.18]; p = 0.0407) (Table 2).

Phenome‑wide association studies (PheWAS) of previous 
GWAS hits of common infections
We conducted PheWAS for the genetic variants in 
Tian et al.’s report and found 92 significant associa-
tions with clinical phenotypes (Supplementary Table  3, 

https://github.com/hakyimlab/PrediXcan
http://pheweb.sph.umich.edu/
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p < 2.9 ×  10–5). Relating to infections, rs3131623 in HLA 
gene region was associated with chronic hepatitis infec-
tion (p = 5.07 ×  10–7), and rs600038 in ABO gene region 
was associated with candidiasis (p = 2.35 ×  10–5). Fur-
thermore, 43 out of the 92 associations related to dia-
betes or diabetes related phenotypes and several in the 
HLA region associated with autoimmune diseases (Sup-
plementary Table 3, Supplementary Fig. 1).

New associations between genetic variants and the risk 
of common infections
We identified 3 new loci significantly associated with 
infections. (Table  3, Fig.  1, Supplementary Fig.  2) Two 
variants in nucleotide binding protein like (NUBPL) gene, 
the G allele of rs113235453 (OR, 1.50; 95% CI [1.30–1.73]; 
p = 3.04 ×  10–8) and the A allele of rs74633202 (OR, 1.50; 
95% CI [1.30–1.73]; p = 3.05 ×  10–8) were associated with 
increased risk of otitis media. The T allele of rs10422015 
in WD repeat-containing protein 88 (WDR88) was associ-
ated with the increased risk of candidiasis (OR, 1.31; 95% 
[1.19–1.44]; p = 3.11 ×  10–8) (Table 3).

Associations between the risk of common infections 
and the genetically predicted gene expression
In TWAS for the 12 infections studied, we found sig-
nificant associations between elevated risk of (1) otitis 
media and genetically predicted increased expression 
of solute carrier family 30 member 9 gene (SLC30A9, 
zscore = 4.93, p = 8.06 ×  10–7) in brain nucleus accum-
bens basal ganglia; (2) candidiasis and the geneti-
cally predicted increased expression of LDL receptor 
related protein 3 gene (LRP3, largest zscore 5.68, small-
est p-value = 1.34 ×  10–8) in tissues including esopha-
gus mucosa, brain spinal cord cervical, artery, spleen, 
prostate, adrenal gland, and minor salivary gland; (3) 
candidiasis and the genetically predicted increased 
expression of WDR88 (largest z-score 5.54, small-
est p-value = 3.11 ×  10–8) in liver and brain cortex; (4) 
hepatitis B and the genetically predicted decreased 
expression of adipogenesis associated Mth938 domain 
containing gene (AAMDC, smallest z-score -4.89, small-
est p-value = 1.02 ×  10–6) in heart atrial appendage and 

skin (not sun exposed, Table  4). Additionally, several 
of these four disease-transcriptome associations were 
nominally significant (p <  10–5) in several other tissues 
(Supplementary Table  4). In the cross-tissue analysis, 
only the association between increased risk of candidi-
asis and the genetically predicted increased expression 
of WDR88 was significant (p-value = 1.83 ×  10–6).

Associations between lead GWAS hits and other clinical 
phenotypes
We searched PheWeb and conducted PheWAS in 
BioVU for the lead GWAS hits in the current study 
(rs113235453 for otitis media and rs10422015 for can-
didiasis) for their associations with other clinical phe-
notypes. Both variants were significantly associated 
with non-infectious conditions: rs113235453 with non-
traumatic intracranial hemorrhage (p = 6.4 ×  10–7) and 
rs10422015 with heel bone mineral density T-score 
(p = 1.1 ×  10–15). For infection-related phenotypes there 
were a few suggestive associations: (1) rs113235453 
was associated with use of antibiotics for bacterial 
infections (co-Amoxiclav) (p = 2.4 ×  10–4), and (2) 
rs10422015 with cough (p = 4.2 ×  10–4) or postopera-
tive infection (p = 4.4 ×  10–4). In the PheWAS using 
BioVU samples, there were no significant associations 
with these two variants; however, leading associations 
included infection-related phenotypes such as hepati-
tis, candidiasis and abnormal findings on the examina-
tions of urine. (Supplementary Table 5).

Associations between top COVID‑19 hits and the risk 
of pneumonia
When we examined 13 loci associated with COVID-19 
[35] and susceptibility to pneumonia in our cohort we 
found an association between the C allele of rs13050728 
in IFNAR2 (Interferon Alpha and Beta Receptor Subu-
nit 2) gene and lower risk of developing pneumonia 
(OR 0.94, 95%CI [0.90–0.98], p = 0.0028, Table  5), an 
observation directionally similar to that for severity of 
COVID-19 [35].

Table 3 Significant associations between genetic variants and common infections

Those variants were not significant in Tian et al. report. (not among top 8000 associated variants)

Phenotype Cytoband Gene context rsNumber Effect allele Reference 
allele

Effect allele 
frequency

Odd Ratio 95% 
Confidence 
Interval

p‑value

Otitis media 14q12 NUBPL rs113235453 G A 0.05 1.50 [1.30, 1.73] 3.04E‑08

14q12 NUBPL rs74633202 A C 0.05 1.50 [1.30, 1.73] 3.05E‑08

Candidiasis 19q13.11 WDR88 rs10422015 T G 0.15 1.31 [1.19, 1.44] 3.11E‑08
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Discussion
The current study of the genetics of 12 common infec-
tions replicated 3 associations from previous 23andMe 
GWAS findings. Additionally, 2 new loci (from GWAS) 
and altered genetically predicted expression of 4 genes 
(from TWAS) were associated with altered susceptibil-
ity to infection. Last, one of the alleles identified with 
reduced severity risk of COVID-19 was associated with 
reduced risk of pneumonia.

The link between the innate immune response and 
infection is well established [36]. Thus the replicated 
association between a variant in IFNA21 and herpes 

zoster previously reported by Tian et  al., is of interest. 
IFNA21 encodes a type I interferon, which binds to 
interferon alpha receptor and activates innate immune 
responses. Further indication of the importance of this 
pathway is the association between an IFNAR2 vari-
ant and susceptibility to pneumonia. This variant was 
reported as one of the top hits associated with both 
COVID-19 susceptibility and severity [35]. By leverag-
ing summary statistics from a COVID-19 GWAS and a 
Mendelian randomization approach, a recent drug repur-
posing study prioritized IFNAR2 as one of top two can-
didate drug targets for early management of COVID-19 

Fig. 1 Regional plots for 2 loci that significantly associated with common infections. The color of the single nucleotide polymorphisms (SNPs) 
is based on the linkage disequilibrium with the lead SNP (purple). Reference sequence genes in the region are shown on the bottom. cM/Mb 
indicates centimorgan/mega base pair. (A) Regional plots for associations between NUBPL locus and otitis media. (B) Regional plots for associations 
between LRP3/WDR88 locus and candidiasis
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[37]. Indeed, interferon and drugs that target interferon 
receptors have been used to treat infectious diseases [38–
40]. Currently, there are phase II clinical trials testing 
interferons for COVID-19 infection, and the results of 
clinical trials are awaited [41–43]. In PheWAS analyses of 
the 23andMe variants reported to be significantly asso-
ciated with infection [11], we observed associations 92 
significant PheWAS associations with 6 SNPs (rs885950, 
rs2523591, rs2596465, rs3131623, rs9268652, rs9270656) 
associated with 43 clinical phenotypes related to diabetes. 
These SNPs are located in genes that associated with type 
1 or type 2 diabetes in previous GWAS (Supplementary 

Table  3). Impaired glucose regulation is associated with 
an elevated risk of many infections, including hepatitis 
[44, 45], and SARS-CoV-2.[46] Future studies will need 
to determine if variants predispose to infection directly 
or through associations with co-morbidities that increase 
risk of infection.

Additional to replicating variants from the 23andMe 
study, we identified several novel variants within NUBPL 
gene region associated with otitis media. The lead hit, 
rs113235453, has previously been associated with heart 
rate in patients with heart failure and reduced ejec-
tion fraction [47]. NUBPL encodes nucleotide binding 

Table 4 Significant associations between genetically‑determined gene expression and common infections

* var_g: variance of the gene expression
# n_snps_used: number of snps from GWAS that got used in S-PrediXcan analysis

Phenotype Tissue gene_name zscore Effect size P value var_g* n_
snps_
used#

Otitis media Brain_Nucleus_accumbens_basal_ganglia SLC30A9 4.93 1.03 8.06E‑07 0.014934 2

Candidiasis Esophagus_Mucosa LRP3 5.68 2.13 1.34E‑08 0.005041 2

Liver WDR88 5.54 0.55 3.11E‑08 0.060999 1

Brain_Spinal_cord_cervical_c‑1 LRP3 5.17 6.50 2.34E‑07 0.000383 2

Artery_Coronary LRP3 5.13 2.67 2.82E‑07 0.0029 2

Spleen LRP3 5.09 2.04 3.57E‑07 0.004629 2

Prostate LRP3 5.07 3.39 3.91E‑07 0.001917 1

Adrenal_Gland LRP3 5.07 2.33 3.91E‑07 0.003467 1

Minor_Salivary_Gland LRP3 5.07 2.36 3.91E‑07 0.003164 1

Brain_Cortex WDR88 4.76 0.39 1.95E‑06 0.087545 1

Hepatitis B Heart_Atrial_Appendage AAMDC ‑4.81 ‑2.59 1.51E‑06 0.019472 3

Skin_Not_Sun_Exposed_Suprapubic AAMDC ‑4.89 ‑3.35 1.02E‑06 0.015421 3

Table 5 Associations between loci associated with COVID‑19 susceptibility and  severity* hits and the risk of pneumonia (N = 38,310)

* COVID19 susceptibility and severity loci are from previous report [35]

chr RSID Reference allele Effect allele Effect allele 
frequency

P‑value Effect size (beta) Nearest gene

3 rs2271616 G T 0.138 0.0960 0.0482 SLC6A20

3 rs10490770 T C 0.070 0.8474 ‑0.0076 LZTFL1

3 rs11919389 T C 0.349 0.6783 ‑0.0086 RPL24

6 rs1886814 ‑ ‑ ‑ ‑ ‑

8 rs72711165 T C 0.010 0.1428 ‑0.1428 TMEM65

9 rs912805253 ‑ ‑ ‑ ‑ ‑

12 rs10774671 G A 0.646 0.6174 0.0103 OAS1

17 rs1819040 ‑ ‑ ‑ ‑ ‑

17 rs77534576 C T 0.028 0.2274 0.0718 TAC4

19 rs2109069 G A 0.315 0.9981 0.0001 DPP9

19 rs74956615 T A 0.023 0.9783 ‑0.0021 RAVER1

19 rs4801778 G T 0.186 0.1619 0.0353 PLEKHA4

21 rs13050728 T C 0.672 0.0028 ‑0.0631 IFNAR2
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protein-like on chromosome 14q12, and functional vari-
ants in the gene are associated with mitochondrial com-
plex I deficiency and linked to leukoencephalopathy and 
Parkinson’s disease [48, 49]. Infection is a common cause 
of morbidity in children with mitochondrial diseases; 
however, it is unclear if variation in NUBPL could influ-
ence the risk of infection through its role in mitochon-
drial complex I deficiency.

An additional new observation was an association 
between the WDR88/LRP3 region and the risk of can-
didiasis; further, TWAS also showed that the genetically 
determined expression of WDR88 and LRP3 in a vari-
ety of tissues associated with altered risk of candidiasis. 
The underlying mechanisms are not obvious. WDR88 
has previously been associated with schizophrenia [50]; 
however, the function of the gene remains unclear. The 
association of LRP3 expression with candida infec-
tion in esophageal mucosa was interesting because the 
esophagus is a well-described site of candida infection. 
LRP3 encodes LDL receptor related protein 3, which is 
involved in the internalization of lipophilic molecules 
[51], but whether LRP3 could affect the risk of candida 
infection through this mechanism is not known.

Another new observation was the association between 
genetically predicted expression of SLC30A9 and altered 
risk of otitis media. SLC30A9 encodes solute carrier 
family 30 member 9, which acts as a zinc transporter 
involved in intracellular zinc homeostasis [52]. In  vitro 
experiments suggested that SLC30A9 interacted with 
human influenza A virus [53]; therefore, SLC30A9 might 
alter the risk of infection through its role in recognition 
and binding to pathogens. Although many of the HLA/
infection associations reported by Tian et al., did not 
replicate, there was a close-to-significant association 
between HLA-DQB1 and the risk of infectious mono-
nucleosis (p = 2.59 ×  10–6, Supplementary Table  4). The 
HLA region is critical for host response to infection. 
Future studies using large cohorts are needed to better 
understand the role of the HLA region.

The study has many strengths: the use of diagnoses 
made by providers to identify cases of infection in a large 
EHR database; matching of cases and controls to limit 
confounding; performance of transcriptome analysis 
using GWAS summary statistics to further understand 
the associations between host genetics and common 
infections; and an ability to test the associations between 
known loci affecting COVID-19 and the risk of pneu-
monia. There are also limitations. First, while power was 
good for most infections, there was limited power to 
detect small odds ratios for low-frequency variants and 
less common phenotypes, such as TB/positive TB tests 
(N of cases, 102) and mononucleosis (N of cases, 116). 
Additional studies will be required for less common 

infections. Second, ICD codes serve primarily billing 
purposes and are not recorded by clinicians to facili-
tate research; misclassification or under or over coding 
of conditions may occur. Also, the study was conducted 
in White patients. For many infections the number of 
cases in Black patients was too small for GWAS and will 
require additional studies. Third, we matched controls to 
cases on age, sex, and year of first and last clinical visits. 
However, the potential for misclassification of controls 
remains. There is always a possibility that the control 
population was enriched for some co-segregating fac-
tors of infections. Future study is needed to validate our 
observations. Fourth, in TWAS analyses, the gene expres-
sion predicted by a single SNP may be less robust than 
those predicted by multiple variants. However, many 
examples show that a single SNP can contribute sig-
nificantly to gene expression (e.g., LPA and rs10455872, 
CETP and rs18000777 etc.). In Table  3, although LRP3 
gene and WDR88 gene expressions were both predicted 
using one SNP, it is worth noting that the same signifi-
cant association was observed in multiple tissues. The 
replication of this LRP3/candidiasis and WDR88/can-
didiasis association in various tissues suggests that there 
may be mechanisms common across tissues. Response 
to infection can affect multiple organs, thus we pre-
sented data from all available tissues for readers. Lastly, 
the novel loci we identified were not detected in Tian’s 
study; [11] several study design factors may account for 
these differences among studies. For example, we studied 
a population obtaining medical care in a large hospital 
whereas Tian studied a presumably healthier population 
who sought a genetic test; we matched controls to cases 
whereas Tian did not; and the studies employed differ-
ent disease phenotype definitions (diagnosis billing codes 
vs. self-report) that may vary in sensitivity and specific-
ity. Also, environmental, social, and economic factors 
vary among populations, and neither Tian’s report nor 
our study included these potentially important factors as 
covariates. As the All of Us (AoU) project develops and 
collects information about those factors and links them 
to EHR and genetic data, such studies will be possible.

In conclusion, we conducted GWAS and TWAS for 12 
common infectious diseases and identified novel genetic 
contributors to the susceptibility of infection diseases.
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