
Li et al. BMC Genomics          (2022) 23:661  
https://doi.org/10.1186/s12864-022-08890-1

RESEARCH

A robust and transformation‑free joint 
model with matching and regularization 
for metagenomic trajectory and disease onset
Qian Li1*, Kendra Vehik2, Cai Li1, Eric Triplett3, Luiz Roesch3, Yi‑Juan Hu4 and Jeffrey Krischer2 

Abstract 

Background:  To identify operational taxonomy units (OTUs) signaling disease onset in an observational study, a 
powerful strategy was selecting participants by matched sets and profiling temporal metagenomes, followed by 
trajectory analysis. Existing trajectory analyses modeled individual OTU or microbial community without adjusting for 
the within-community correlation and matched-set-specific latent factors.

Results:  We proposed a joint model with matching and regularization (JMR) to detect OTU-specific trajectory predic‑
tive of host disease status. The between- and within-matched-sets heterogeneity in OTU relative abundance and 
disease risk were modeled by nested random effects. The inherent negative correlation in microbiota composition 
was adjusted by incorporating and regularizing the top-correlated taxa as longitudinal covariate, pre-selected by Bray-
Curtis distance and elastic net regression. We designed a simulation pipeline to generate true biomarkers for disease 
onset and the pseudo biomarkers caused by compositionality. We demonstrated that JMR effectively controlled the 
false discovery and pseudo biomarkers in a simulation study generating temporal high-dimensional metagenomic 
counts with random intercept or slope. Application of the competing methods in the simulated data and the TEDDY 
cohort showed that JMR outperformed the other methods and identified important taxa in infants’ fecal samples with 
dynamics preceding host disease status.

Conclusion:  Our method JMR is a robust framework that models taxon-specific trajectory and host disease status 
for matched participants without transformation of relative abundance, improving the power of detecting disease-
associated microbial features in certain scenarios. JMR is available in R package mtradeR at https://​github.​com/​qianl​
i10000/​mtrad​eR.
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Background
Gut microbiota profiled by 16s rRNA gene sequencing or 
metagenomic (i.e., whole-genome shotgun) sequencing 
has been frequently used in observational studies of envi-
ronmental exposures, immune biomarkers, and disease 

onset [1–5]. One of the challenges in analyzing microbi-
ota in an observational study is to incorporate the match-
ing between participants based on certain confounding 
risk factors (e.g. gender, clinical site, etc.) and/or disease 
status (case-control), such as the DIABIMMUNE and 
TEDDY cohorts [1, 2, 5]. A matching design effectively 
eliminates the noise effect of sample collection, stor-
age, shipment, sequencing batch, and environmental 
exposures confounding with disease outcomes, as well 
as reduces the sequencing costs. Statistical analyses of 
microbiota in matched sets included, but are not limited 
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to, conditional logistic regression [1], non-parametric 
comparison PERMANOVA [6] and LDM [7] with exten-
sion to compare cases and controls within a matched set 
[8], which aimed to model and analyze microbiome data 
at independent time points.

Longitudinal profiling is a powerful strategy for the 
microbiome studies that aim to identify differential 
microbial trajectories between exposure groups or phe-
notypes [9, 10] or detect the time intervals of differential 
abundance [11]. However, most of these studies failed 
to test if the compositional trajectory of an operational 
taxonomic unit (OTU) signaled host disease status. To 
detect microbial trajectories predictive of disease out-
come in matched sets, an intuitive method is the gen-
eralized linear mixed effect model with or without the 
zero-inflation component [9, 10, 12], in which a taxon’s 
abundance and/or presence is the outcome variable and 
the disease status is the covariate of interest. The Zero-
Inflated Beta Regression (ZIBR) model [9] tests the 
association between OTU and a covariate factor using 
a two-part model for the non-zero relative abundance 
and presence of each OTU, assuming the non-zero 
relative abundance and presence being independent. 
A similar framework [10] was proposed to analyze 
the longitudinal zero-inflated counts per OTU using a 
Negative Binomial distribution, without converting the 
raw counts to relative abundance. A semi-parametric 
approach for longitudinal taxon-specific relative abun-
dance is the linear mixed effect model (LMM) with 
asin-square-root transformation, which has been imple-
mented in MaAsLin 2 [12].

One concern about using generalized linear mixed 
model to test the association between 16S rRNA or 
metagenomic trajectory and disease onset is that the 
covariates in this model may contribute to disease risk. 
For example, the HLA haplogenotypes and early use of 
probiotics may affect infants’ gut microbiota and should 
be included as covariates. These factors were also found 
associated with islet autoimmunity among children 
enrolled in TEDDY [13]. One usually added interaction 
terms between each covariate and the disease outcome 
[3, 12] to adjust for the association. However, a linear 
model with many interaction terms may lead to over-
fitting and reduce the detection power [14]. A sensible 
choice is the joint modeling of longitudinal biomarker 
and survival outcomes [15, 16], but there are limitations 
in applying this model to microbiome data in observa-
tional studies. First, the cost of metagenomic sequenc-
ing and the availability of fecal samples in a multi-center 
study may restrict the metagenome profiling to a sub-
group of participants selected by certain criteria [1–3], 
whose survival outcome may deviate from common sta-
tistical assumptions. Second, the classic joint modeling 

approach aims to address repeated measurements of bio-
markers in a time-to-event analysis rather than test if a 
biomarker’s intercept or slope is predictive of host health 
condition. Third, in an observational study that selects 
and matches participants by certain factors, their risk of 
developing disease is also matched. Thus, a survival sub-
model may not be capable of characterizing the disease 
risk between matched participants.

Many of the existing methods for microbiome data 
are built on the transformed relative abundance, such as 
centered log-ratio or inter-quartile log-ratio. In our new 
method, transformation of compositional data is not 
considered, since transformation strategy may have pro-
found impact on analysis result and interpretation [17]. 
The compositional change in true biomarkers (e.g., causal 
OTUs contributing to disease onset) always leads to 
simultaneous change in some other OTUs’ composition 
because of sum-to-one constraint. In an observational 
study with matching design, it is common to collect and 
profile microbiota at many time points. The sum-to-one 
constraint and latent noise effect may yield pseudo bio-
markers with relative abundance associated with host 
disease status but not contributing to disease develop-
ment. Hence, a taxon-level model is built for relative 
abundance trajectory that adjusts for the dynamic inter-
dependence between taxa and reduces pseudo biomarker 
rate. In addition, we illustrate the performance of our 
method by a simulation pipeline that mimics the negative 
correlation in microbial community.

The latent technical noise in microbiome was removed 
by converting raw counts to relative abundance, and 
Zero-Inflated Beta density [9] was adopted to model 
an OTU’s non-zero relative abundance and presence, 
respectively. We employed a subject-level random effect 
to link the logistic regression model of disease to a two-
part longitudinal submodel. The latent effect of expo-
sures related to matched set indicator was modeled by 
another random effect nested with the subject-level ran-
dom effect. The OTU-disease association was assessed 
by jointly testing the scaling parameters for the sub-
ject-level random effect in the two-part submodel. We 
benchmarked the robustness and power of our method 
by a comprehensive simulation study and an application 
in the TEDDY cohort. The results illustrated that our 
method controlled the rates of false discovery and pseudo 
biomarkers, as well as improved the efficacy of detecting 
microbial trajectories signaling disease outcome.

Results
For simplicity, the aim of present research is to link the 
matched longitudinal microbiome samples to hosts’ 
matched disease risk and incorporate the unknown 
dependence between taxa in an univariate trajectory 
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framework, without modeling the compositionality. 
Briefly, we develop a Joint model with Matching and Reg-
ularization (JMR) to detect taxon-specific compositional 
trajectory associated with disease onset, adjusting for 
the linear correlation with other taxa and matched-set-
specific latent noises. According to the characteristics of 
disease risk and infant-age gut microbiota in the TEDDY 
cohort, we designed a simulation pipeline similar to [8], 
generated the observed counts of temporal microbiota 
and compared our method to LMM and ZIBR using the 
simulated data. We also applied these methods to the 
shotgun metagenomic sequencing data profiled from the 
4-9 months stool samples of infants enrolled in TEDDY 
cohort.

Overview of TEDDY microbiome study
TEDDY is an observational prospective study of children 
at increased genetic risk of type 1 diabetes (T1D) con-
ducted in six clinical centers in the U.S. and Europe (Fin-
land, Germany, and Sweden). A total of 8,676 children 
were enrolled from birth and followed every 3 months for 
blood sample collection and islet autoantibody measure-
ment up to 4 years of age, then every 3-6 months based 
on autoantibody status until the age of 15 years or diabe-
tes onset [18]. A primary disease endpoint in TEDDY is 
islet autoimmunity (IA), defined as persistently positive 
for insulin autoantibodies (IAA), glutamic acid decar-
boxylase autoantibodies (GADA), or insulinoma-associ-
ated-2 autoantibodies (IA-2A) at two consecutive visits 
confirmed by the two TEDDY laboratories [18]. The par-
ticipants’ monthly stool samples were collected from 
3-month age until the onset of IA or censoring with ran-
dom missing samples [1, 2]. Based on the sample availa-
bility and metagenomic sequencing cost, the microbiome 
study in TEDDY selected all the participants (cases) who 
developed IA by the design cutoff date May 31, 2012 and 
the controls at 1:1 case-control ratio matched by clinical 
center, gender, family history of T1D to profile the tem-
poral gut microbiota, resulting in S = 418 matched sets 
(or pairs [19]). These matching factors are known risk 
factors for type 1 diabetes. Some of the matched sets are 
at higher risk of IA than the others due to higher risk 
human leukocyte antigen (HLA) genotypes, geography 
or having family history of T1D. Hence, the matched par-
ticipants have comparable risk of IA, but heterogeneity 
still exists between them according to the case-control 
status by the design freeze date. The observed metagen-
omic counts table in TEDDY was generated by the stand-
ard procedure of DNA extraction, PCR amplification, 
shotgun metagenomic sequencing, assembly, annotation 
and quantification, as described in [1]. We visualized the 
top abundant species in the metagenomes of TEDDY 

participants who had matched IA endpoint no later than 
2 years of age (Fig. 1).

Simulation
Disease outcome for the matched participants are simu-
lated by the procedure below. The observed relative 
abundance per taxon were simulated by different sce-
narios. We first generated raw counts for a single OTU 
by Beta-Binomial distribution to assess the robustness 
and power of our method JMR without covariate taxa. 
We also designed a shifting procedure to mimic inherent 
negative correlation in the true composition of micro-
biota and generated the temporal high-dimensional raw 
counts table to evaluate the performance of compared 
methods.

Generate disease outcome in matched sets
We defined matched sets and subjects as ‘high-risk’ and 
‘low-risk’ to generate the temporal OTU counts prior to 
disease onset. Subjects are matched at 1:1 ratio. For partic-
ipant j = 1, 2 in matched set s (s = 1, . . . , S) , we first gen-
erated subject-level and set-level random effects from a 
standard Normal distribution asj ∼ N (0, 1) , bs ∼ N (0, 1) . 
Each random effect was converted to a binary variable 
by the median value. That is Asj = I(asj > median(asj )) , 
Bs = I(bs > median(bs)) , where Asj = 1 (or Bs = 1 ) rep-
resents a ‘high-risk’ subject (or set). Next, we simulated 
a host genotype Gsj as disease risk factor, and the host 
disease status by a Bernoulli distribution Osj ∼ B(psj ) , 
where logit(psj ) = α0 + α1Gsj + α2Asj + α3Bs . We fixed 
(α0,α1,α3) = (0.5,−2, 1) , which is the JMR estimate from 
real data, and set α2 ∈ {0.5, 0.75, 1, 1.25, 1.5} to generate 
different datasets.

Scenario A: single OTU counts.
We first simulated the observed counts of a single OTU 
by Beta-Binomial [14] distribution to compare the uni-
variate trajectory methods without adjusting for covariate 
taxa. The true relative abundance of an OTU at the earli-
est time point t = 1 was drawn from a Beta distribution 
µ1 ∼ Beta(µ0,φ0) , where parameters µ0,φ0 were esti-
mated by applying Beta-Binomial MLE to the metagen-
omic raw counts of an OTU selected at a given relative 
abundance level in the TEDDY data. To simplify the age-
dependent effect, the relative abundance of this OTU at 
later time points t > 1 was generated by linearly increas-
ing µ1 to µt . The baseline relative abundance at time t 
in a matched set s was generated by µst ∼ Beta(µ,φt) , 
and was increased or decreased by �µst if the set was 
labeled as ‘high-risk’. The true relative abundance of this 
OTU for subject j in set s at time point t was simulated 
by µsj t ∼ Beta(µst ,φst) , and was increased or decreased 
by �µsj t if the subject was ‘high-risk’. The total counts 
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per sample, i.e., library size was drawn from a Poisson 
distribution Nsjt ∼ PS(100000) , and the counts for this 
OTU is generated from a Binomial (BN) distribution 
Ysjt ∼ BN (Nsjt ,µsj t).

Scenario B1: counts table with random intercept and pseudo 
biomarkers
We also generated a high-dimensional counts table with 
P = 1030 OTUs to demonstrate the performance of each 
method, so that the covariate taxa can be used in JMR. 
The true composition of each microbiome sample η̄sj t was 
simulated by a shifting procedure combined with Dir-
ichlet distribution to account for the negative correlation 
within microbial community. The sample-wise library 

size was generated by a Poisson distribution, and the 
observed raw counts were sampled from a Multinomial 
distribution. Details of data generation process for this 
scenario is available in Methods, with a visualization for 
dimension of P = 4 in Fig. 2.

For a subject labeled as ‘high-risk’, we increased 15% 
OTUs (denoted by M+ ) in η̄sj t by �sj t , and reduced 
another 15% OTUs (denoted by M− ) by d�sj t 
( 0 < d < 1 ). The subsets M+ and M− are the true bio-
markers for disease status. We randomly selected a 
third subset (denoted by M0 ) from the remaining 70% 
OTUs in η̄sj t and reduced the composition of M0 by a 
total of (1− d)�sj t . There may exist OTUs never 
selected in M+ , M− , or M0 , which are the ‘null’ OTUs. 

Fig. 1  Mean compositional trajectory of top abundant species in infant-age metagenomes grouped by host islet autoimmunity status at 2 years of 
age
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The OTUs selected in M0 are the pseudo biomarkers 
due to random shift in frequency. We set the total shift 
�sj t = ��0

sj t
 at distinct effect size � ∈ {0.5, 0.6, 0.7, 0.8} , 

where �0
sj t

 is the maximum shift restricted by 
sum-to-one.

Scenario B2: counts table with random slope and pseudo 
biomarkers
Data generation process for this scenario is similar to 
Scenario B1, except that the shift ( �sj t ) in microbiota true 
composition between ‘low-risk’ and ‘high-risk’ subjects 

Fig. 2  Shifting procedure in simulation scenario B1. From time T1 to T4, taxa A-C decrease and taxon D increases in relative abundance. Compared 
to a low-risk set, taxa A, D are more abundant and taxa B, C are less abundant in a high-risk set. Taxon A is less abundant (i.e., M− ) and taxon B is 
more abundant (i.e., M+ ) in a high-risk subject compared to the matched low-risk subject, both being true biomarkers at each time point. Taxon C 
is a pseudo biomarker (randomly selected as M0 at time point T1) with relative abundance automatically changed due to sum-to-one constraint, 
while taxon D is unchanged at T1
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varies by time points. It’s worth to note that we cannot 
distinguish ‘false positive’ from ‘pseudo positive’ in sce-
narios B1 and B2. Hence, we use the sum of false positive 
rate and pseudo positive rate, i.e., false or pseudo positive 
rate (FPPR) as a performance metric for scenarios B1,B2. 
That is FPPR =

# of positives in (M+∪M−)c

# of OTUs in (M+∪M−)c
.

Scenario C: counts table without pseudo biomarkers
In this scenario we considered random intercept signal-
ing the disease onset and fixed half OTUs in η̄sj t as ‘null’ 
in order to evaluate the FPR and FDR of each method, 
although this scenario is not applicable to real data. 
Among the other half OTUs, we selected 10% OTUs 
in η̄sj t as M+ and 40% OTUs as M− without a subset of 
pseudo biomarkers ( M0).

Performance of competing methods
In scenario A, we compared JMR not adjusting for cor-
related taxa (JMR-NC) with the following methods: a) 
a joint model with regularization but without matching 
indicator and correlated taxa (JR-NC); b) the ZIBR model 
with a Wald statistic jointly testing OTU-specific abun-
dance or presence using either a single random effect 
(ZIBR-S) or nested random effects (ZIBR-N); c) LMM 
with arcsin-square-root transformation using either a 
single random effect (LMM-S) or nested random effects 
(LMM-N). For LMM and ZIBR methods, we used R 
package gamlss and set the sample age, genotype, disease 
status, and genotype-disease interaction term as the fixed 
effect covariates. It’s worth to note that the nested ran-
dom effects used in LMM and ZIBR are independent of 
host disease risk, different from those in JMR.

We randomly selected 6 OTUs with different rela-
tive abundance from TEDDY data and estimated the 
baseline parameters for each. These OTUs are Acineto-
bacter sp. NIPH 236, Brachyspira murdochii, Streptococ-
cus phage YMC-2011, Erysipelatoclostridium ramosum, 
Ruminococcus gnavus. Then we generated n = 10000 
replicates for each OTU with S ∈ {50, 100} . The type I 
error rate and power of each method was calculated at 
statistical significance level p < 0.05 , shown in Table  1. 
The results showed that JMR-NC persistently controlled 
the type I error and provided higher detection power 
at distinct abundance levels except for the OTUs with 
− log10(y) ∈ (2, 3] and (5, 6]. Type I error of the reduced 
model JR-NC was severely inflated in some datasets and 
its power was lower than JMR-NC. LMM consistently 
controlled type I error, with power lower than JMR-NC 
in most simulated OTUs. The ZIBR method yielded 
inflated type I error rate and low efficacy regardless of 
sample size in this single-OTU scenario.

In scenarios B1, B2 and C, we generated 10 repli-
cates for each OTU table to assess the performance of 
competing methods. We evaluated the performance of 
each method at different size of set-level random effect 
γ ∈ {0.6, 0.7, 0.8} . The taxa associated with disease onset 
in each OTU table are detected by FDR cutoff q < 0.15 . 
The FPPR in scenario B1 (Fig.  3) showed that adjusting 
for the top-correlated taxa in JMR successfully controlled 
the rate of pseudo biomarkers across different scenarios 
and was more powerful than LMM at larger sample size 
( N = 200 ), although JMR showed lower detection power 
compared to JMR-NC. The results in Fig. 4 also demon-
strated the outperformance of JMR-NC, JMR, and ZIBR 
in the sensitivity of detecting taxon-specific trajectory 
heralding disease outcome. The power of ZIBR in either 
intercept or slope analysis was higher than the compet-
ing methods regardless of sample size in the high-dimen-
sional scenarios, but this model yielded inflated FPPR 
(Fig. 3). The LMM methods were powerful in the test of 
intercept, but this model occasionally produced inflated 
FPPR (Fig.  3) regardless of the set-level random effect 
size. Furthermore, the power of LMM was unstable in 
intercept analysis, while its power in slope analysis was 
nearly zero. To confirm the impact of γ on performance, 
we also compared the metrics in Figs.  3 and 5 between 
different values of γ , using Kruskal-Wallis test. A larger 
set-level random effect led to significant change in FPPR, 
FPR, FDR for LMM and ZIBR methods ( p < 10−5 ), but 
this impact was trivial in JMR or JMR-NC ( p > 0.1 ). 
JMR showed the best performance in slope analysis, with 
higher sensitivity (Fig.  4) and the lowest FPPR (Fig.  3). 
Results of scenario C in Fig.  5 showed that JMR and 
LMM effectively controlled the FPR, while LMM pro-
duced higher FPR at larger matched-set-specific ran-
dom effect ( γ ). The FDR of JMR at γ = 0.6 was relatively 
higher than that of LMM due to lower sensitivity. The 
inflated FPR and FDR of ZIBR in scenario C (Fig.  5) is 
consistent with the FPPR in scenario B (Fig. 3).

For each raw counts table in scenarios B and C, more 
than half of simulated OTUs have the observed zero-
inflation probability (i.e., 1−prevalence) between 2% and 
90%, although there are a few OTUs with the observed 
prevalence at 100% . The overall prevalence of each OTU 
table in scenarios B and C is similar between different 
datasets, which cannot be specified in the Dirichlet-Mul-
tinomial distribution or the shifting procedure. Hence, 
we assess the impact of zero-inflation on performance 
only in scenario A, whereas the prevalence is related to 
taxon-specific relative abundance. We also visualized the 
prevalence of six OTUs generated in scenario A (Fig. 6). 
The power of JMR-NC (Table 1) was better for the preva-
lence at a medium level, i.e., replicates with − log10(y) 
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Table 1  The type I error and power based on 10000 simulated replicates for a taxon at different levels of mean relative abundance ( y)

− log10(y) (0, 1] (1, 2] (2, 3] (3, 4] (4, 5] (5, 6]

Type I error

JMR-NC 0.01 0.003 0.008 0.0004 0 0

JR-NC 0.061 0.03 0.001 0.002 0.0003 0.0005

N = 100 LMM-N 0.045 0.031 0.026 0.033 0.068 0.052

(S = 50) LMM-S 0.041 0.036 0.023 0.036 0.066 0.049

ZIBR-N 0.057 0.066 0.080 0.053 0.164 0.369

ZIBR-S 0.049 0.079 0.076 0.063 0.163 0.366

JMR-NC 0.018 0.004 0.022 0.051 0.001 0.0003

JR-NC 0.162 0.091 0.049 0.066 0.035 0.002

N = 200 LMM-N 0.043 0.039 0.068 0.057 0.079 0.058

(S = 100) LMM-S 0.046 0.051 0.066 0.060 0.079 0.056

ZIBR-N 0.056 0.067 0.099 0.078 0.170 0.324

ZIBR-S 0.059 0.088 0.099 0.088 0.174 0.324

Power

JMR-NC 0.399 0.5 0.372 0.833 0.798 0.136

JR-NC 0.32 0.65 0.051 0.057 0.548 0.040

N = 100 LMM-N 0.040 0.084 0.474 0.107 0.552 0.512

(S = 50) LMM-S 0.043 0.090 0.468 0.108 0.347 0.468

ZIBR-N 0.06 0.088 0.412 0.123 0.743 0.666

ZIBR-S 0.057 0.095 0.405 0.123 0.686 0.664

JMR-NC 0.452 0.723 0.619 0.944 0.917 0.388

JR-NC 0.677 0.699 0.194 0.836 0.737 0.324

N = 200 LMM-N 0.06 0.115 0.429 0.478 0.287 0.253

(S = 100) LMM-S 0.068 0.134 0.423 0.321 0.273 0.206

ZIBR-N 0.057 0.332 0.433 0.667 0.280 0.379

ZIBR-S 0.063 0.344 0.430 0.648 0.265 0.377

Fig. 3  FPPR of each method for scenario B1 at different size of matched-set-specific random effect
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Fig. 4  Sensitivity of each method for scenarios B1 and B2 at different sample size (N) and different effect size ( �)

Fig. 5  FDR and FPR for each method in scenario C at different size of matched-set-specific random effect
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between (3,  4] or (4,  5] (Fig.  6). The OTUs with higher 
abundance and relatively lower prevalence (i.e., replicates 
with − log10(y) ∈ (1, 2] in Fig.  6) showed better efficacy 
in Table 1. In general, OTU-specific prevalence being too 
high or too low may reduce the power of JMR.

Application in TEDDY
We applied the competing methods to the longitudinal 
metagenomes profiled from TEDDY children’s monthly 
stool samples collected at the age of 4-9 months [1]. We 
included the cases developing IA between 9-month and 
24-month age and their matched controls who remained 
IA-negative by the cases’ diagnosis age. For each matched 
pair included in the present analysis, one participant was 
IA positive and the other one was negative at the age of 
24 months. We excluded the participant(s) matched to 
multiple pairs, yielding N = 152 subjects ( S = 76 pairs) 
and n = 672 metagenome samples. The cases who expe-
rienced IA onset after 24 months and their matched con-
trols were not included in this analysis.

We first filtered OTUs at genus and species level by rel-
ative abundance > 10−6 and prevalence > 5% , selecting 
125 out of 265 genera and 365 out of 750 species in down-
stream analysis. It’s worth to note that there are 1797 
species in total profiled and quantified in TEDDY cohort, 
with 750 species detected between 3- and 9-month age. 
The sample age and the hosts’ breastfeeding status per 
time point were used as longitudinal covariates, while 
HLA DR3 &4 haplotype was included as time-invariant 

covariates. For the LMM and ZIBR methods, we used the 
interaction term between IA status and the binary HLA 
category (DR3 &4 vs. others) as a covariate to adjust for 
the association. We tested each OTU’s association with 
IA by FDR cutoff q < 0.05 or q < 0.1 , individually. The 
HLA DR3 &4 genotype was confirmed positively and 
significantly ( p < 0.05 by Wald test) associated with IA 
in JMR. The results in Table 2 showed that JMR identi-
fied more OTUs than LMM in both intercept and slope 
analysis. The LMM methods only found a small subgroup 
of taxa associated with IA at either genus or species level. 
We also visualized the overlap and difference between 
JMR, JMR-NC, LMM-N selected by q < 0.1 in Fig. 7 with 
OTU names listed in Supplementary Table S1, and then 
compared Akaike Information Criterion (AIC) of JMR 
and JMR-NC for the 76 species detected by both meth-
ods. Adjusting for the correlated taxa in JMR did improve 
model fitting with lower mean AIC (-2631.847) compared 
to JMR-NC (-2615.571). LMM-N is not comparable to 
JMR or JMR-NC in terms of information criteria, since 
the taxon-specific relative abundance was transformed by 
asin-square-root.

The taxa with mean abundance (intercept) associated 
with IA onset exclusively detected by both JMR and 
JMR-NC at q < 0.1 include Bifidobacterium breve, Bac-
teroides fragilis, Lactobacillus ruminis, Veillonella ratti. 
B.breve, as one of the three species dominating infant-
age gut microbiota in TEDDY, was less abundant in 
intercept (i.e. at 4- and 9-month) during infancy among 

Fig. 6  Prevalence distribution for each OTU in scenario A
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IA cases, with density shown in Fig.  8. The species 
B.fragilis as part of the normal microbiota in human 
colon was found more abundant among IA cases com-
pared to their matched controls (Fig.  1). This Bacte-
roides species was also found differential between T1D 
cases and controls at only one time point in a small-size 
Finnish cohort [20].

There are two more abundant species Faecalibacterium 
prausnitzii and Escherichia coli visualized in Fig. 1 asso-
ciated with IA in slope and exclusively detected by JMR. 

F.prausnitzii, as one of the most abundant and important 
commensal bacteria of human gut microbiota that pro-
duces butyrate and short-chain fatty acids from the fer-
mentation of dietary fiber, increased faster in IA cases 
after 6-month of age. This rapid change and abnormally 
higher level of F.prausnitzii prior to IA seroconversion 
may be a result of the sudden change of dietary pattern 
during infancy.

Our method successfully detected the case-control 
difference in the slope of E.coli, which was found as an 
amyloid-producing bacteria with temperal dynamics her-
alding IA onset in a subset analysis in DIABIMMUNE 
cohort [21]. The relative abundance of E.coli in TEDDY 
smoothly decreased from 4-month to 9-month for both 
cases and controls (Fig.  1), and it was relatively more 
abundant in controls between 7- and 9-month with strat-
ified densities shown in Fig.  8. The temporal change of 
E.coli prior to IA seroconversion in TEDDY detected by 
JMR was consistent with the decrease of E.coli reported 
in DIABIMMUNE cohort [21], which was possibly due to 
prophage activation according to the E.coli phage/E.coli 
ratio prior to E.coli depletion in that research.

Discussion
We developed a joint model with nested random effects 
to test the association between taxa and disease risk, 
and adjusted for the correlated taxa screened by a pre-
selection procedure in abundance and prevalence, indi-
vidually. We implemented our method in an R package 
mtradeR (metagenomic trajectory analysis with disease 
endpoint and risk factors) with illustration examples at 
https://​github.​com/​qianl​i10000/​mtrad​eR. The JMR func-
tion implemented the framework in equation (1) by par-
allel computing. We also provided simulation functions 
StatSim and TaxaSim to generate (binary) disease status 
and temporal high-dimensional metagenomic counts of 
matched sets. The runtime of each method for different 
sample size and different number of OTUs were com-
pared on an 8-core computer, with mean and standard 
deviation shown in Table  3. The nested random effects 
were utilized in each method. For the univariate models 
without covariate taxa, LMM-N is the fastest algorithm 
and ZIBR-N is the slowest, both implemented in gamlss 
R package. Although the adjustment of correlated taxa 
in JMR requires additional computation, the runtime of 
JMR is still shorter than ZIBR-N in gamlss.

The simulation of single OTU demonstrated the per-
formance of each method at different relative abundance 
levels, implying that LMM with either single or nested 
random effect is still a robust method. The simulation 
of high-dimensional OTU tables also illustrated LMM’s 
overall performance in the test of intercept, but the 
unstableness of LMM is a concern in real data analysis. 

Table 2  The number of genera and species associated with IA 
detected by each method in a subgroup of TEDDY participants

Intercept Slope

FDR q < 0.05 q < 0.1 q < 0.05 q < 0.1

JMR 27 31 27 34

JMR-NC 44 52 36 44

LMM-N 11 16 3 4

Genera LMM-S 49 82 10 19

ZIBR-N 26 30 31 36

ZIBR-S 26 32 31 36

JMR 75 94 37 46

JMR-NC 147 166 112 125

LMM-N 43 60 13 21

Species LMM-S 40 63 7 16

ZIBR-N 89 106 119 138

ZIBR-S 83 105 120 140

Fig. 7  Venn diagram for the intercept analysis in TEDDY data by JMR, 
JMR-NC, LMM-N

https://github.com/qianli10000/mtradeR
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JMR yielded lower false or pseudo positive rate in the 
simulated datasets and higher detection power in slope 
analysis by adjusting for the top-correlated taxa. The pre-
selection of top-correlated taxa in JMR was performed 
in relative abundance and presence, individually, being 
consistent with the two-part model strategy. According 
to the simulation study, a disadvantage of JMR is the lim-
ited power at small sample size and the dependence on 
tuning parameter. The prescreening procedure in JMR 
may occasionally select a true biomarker as covariate 

taxon, which is possibly confounding with the subject-
level random effect. Hence, the adjustment of related 
taxa in JMR reduced the detection power compared to 
JMR-NC, although this strategy controlled the pseudo 
biomarker rate. Adding nodes in the GH approximation 
may improve the power of JMR, but more nodes will also 
lead to additional computation costs. Hence, future work 
should focus on improvement of JMR in both detec-
tion power and computation efficiency. Furthermore, 
the simulation results in Fig. 3 also suggested the mini-
mum number of participants or matched pairs required 
based on set-level or subject-level random effect size. In 
an observational study with strong set-level noises in the 
microbiota (e.g., multi-center effect), a minimum sample 
size of N = 200 participants (i.e., S = 100 pairs) coupled 
with JMR can improve the detection power and control 
FPPR at each level of disease-associated random effect.

Another limitation of our method is the potential bias 
in scaling parameter ( �r , �p ) estimation, possibly caused 
by the L2 regularization. Our current work only focused 
on the unsigned association between a taxon and host 
disease status by using a Wald statistic. An improvement 
in the estimate of scaling parameter and statistical infer-
ence should be considered in future work, such as the 
algorithm in ZINQ [14]. We did not use quantile regres-
sion in current research, since the performance of ZINQ 

Fig. 8  Distribution of relative abundance for B.breve and E.coli per time point grouped by 2-year IA status

Table 3  The mean and standard deviation (SD) of runtime in 
minutes for 30 repeated runs by each method at different number 
of longitudinal samples (n) and filtered OTUs ( ̃P ) in TEDDY data. 
The OTUs in each dataset are filtered by either relative abundance 
> 10−6 , prevalence > 5% or relative abundance > 10−5 , prevalence 
> 10%

Mean Runtime (SD)

Dataset scale JMR-NC ZIBR-N LMM-N JMR

n = 153 P̃ = 359 11.62 (0.95) 44.11 (4.72) 3.01 (0.36) 35.95 (3.6)

n = 153 P̃ = 234 8.02 (0.26) 20.79 (0.31) 1.93 (0.04) 24.58 (0.52)

n = 307 P̃ = 370 14.16 (0.65) 56.01 (4.78) 5 (0.45) 43.67 (3.09)

n = 307 P̃ = 247 9.69 (0.63) 37.89 (2.31) 3.9 (0.24) 26.97 (0.68)
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required tuning of grid. But ZINQ provided an alterna-
tive approach for modeling zero-inflation in microbiota 
composition with fewer statistical assumptions.

The right-censoring of longitudinal biomarker meas-
urements or a binary disease outcome always occurs in 
observational studies. Our model allows random miss-
ingness or censoring of microbiome samples at any 
time point. In an observational study like TEDDY, the 
controls’ disease outcome was censored at or later than 
the matched cases’ endpoint, because the case-control 
matching was based on the participants’ disease status. 
Thus, right-censoring is not applicable to the disease 
status at matched endpoint. For a study matching par-
ticipants solely based on confounding risk factors (e.g., 
DIABIMMUNE), the right-censoring of disease out-
come should be addressed prior to the usage of JMR, 
such as multiple imputation. There are other important 
topics to be considered in the modeling of longitudinal 
microbiome data. One potential direction is high dimen-
sional modeling framework, such as tensor singular value 
decomposition [22]. A promising extension of the cur-
rent work in JMR is to exploit functional data analysis for 
multiple microbial trajectories. By employing a non-par-
ametric joint modeling, we may be able to capture non-
linear trends and heterogeneous patterns of longitudinal 
biomarkers in microbiota, as well as negative correlations 
among taxa [23].

Conclusions
The proposed framework JMR successfully controlled 
the false or pseudo biomarkers in taxon-specific trajec-
tory analysis with improved detection power by incorpo-
rating the matching of participants and adjusting for the 
dependence between taxa.

Methods
Joint model with matching and regularization
The probability for participant j (j = 1, . . . , J ) in matched 
set s (s = 1, . . . , S) developing the disease of interest is 
psj = P(Osj = 1) , where Osj is the binary disease status. 
There are J participants in each matched set. Let ysjt be the 
relative abundance of an OTU for participant j in matched 
set s at time point t (t = 1, . . . ,Tsj ) . We denote the 
expected non-zero abundance by µsj t = E(ysjt |ysjt > 0) , 
and the probability of presence (or zero-inflation) by 
πsj t = P(ysjt > 0) , similar to [9]. For a microbiome study 
matching participants by the disease-associated factors 
and/or disease status (e.g., DIABIMMUNE, TEDDY), the 
matched participants are assumed to have comparable but 
distinct disease risk. Hence, we model the disease status by 
a logistic mixed effect model with nested random effects. A 
joint model for the host disease status and microbial trajec-
tory in matched set is

The host disease status is determined by a vector of fixed 
effect covariates usj and the independent nested random 
effects asj , bs . The non-zero relative abundance µsj t and 
presence πsj t per OTU are predicted by the same random 
effects rescaled by parameters �r , �p and a vector of clini-
cal or bioinformatics technical covariates zsj t . To model 
the unknown correlation between taxa, this OTU’s non-
zero abundance and presence per time point also depend 
on the other taxa with relative abundance x(1)sj t

 and pres-
ence-absence x(2)sj t

 measured at the same time point, pre-
selected by a procedure described below. The two-part 
submodel of ysjt characterizes how the trajectory is 
affected by subject- and set-level latent factors contribut-
ing to disease risk, and how the OTU trajectory interacts 
with correlated taxa over time. If an OTU is a pseudo 
biomarker, then its relative abundance ( ysjt ) should be 
driven by the top-correlated taxa per time point instead 
of the disease-associated random effect asj . On the other 
hand, the abundance of a true biomarker OTU at each 
time point is mainly determined by the latent risk of dis-
ease onset ( asj , bs ) and possibly associated with the top-
correlated taxa.

We set z̃sj t = 1 in equation (1) to test intercept, and 
z̃sj t = age to test slope. The nested random effects and 
parameters �r , �p provide flexibility in the modeling of 
between-subjects and between-sets heterogeneity, as well 
as model the abundance-presence correlation in each 
taxon by shared nested random effects instead of assuming 
independence between the two processes as in [9].

Parameter estimation and hypothesis testing
To account for the sum-to-one restriction on non-zero 
relative abundance ( 0 < µsj t < 1 ) and the binarized meas-
urement I(ysjt > 0) of an OTU, we intuitively employ the 
Zero-Inflated Beta (ZIB) density function [9] to define the 
match-set-specific marginal likelihood for parameter esti-
mation. That is L(θ; y,O) = S

s=1 Ls , where

ga(asj ), gb(bs) are the Gaussian density functions 
with mean 0 and variance σ 2

a , σ
2
b  , individually, and 

f (ysjt |ysjt > 0) is the Beta density function with mean 
µsj t and overdispersion φ . In the simulation study, we 

(1)

logit(psj ) = usjα + asj + bs

logit(µsj t) = x
(1)
sj t
β11 + zsj tβ12 + z̃sj t(�rasj + γrbs)

logit(πsj t) = x
(2)
sj t
β21 + zsj tβ22 + z̃sj t(�pasj + γpbs)

(2)Ls = ∫ ∞

−∞
... ∫ ∞

−∞
gb(bs)

∏J

j=1
l
(1)
sj
(asj , bs)l

(2)
sj
(asj , bs)ga(asj )das1

...dasJ
dbs

(3)

l
(1)
sj
(asj , bs) =

∏
Tsj

t=1
[(1 − 𝜋sj t

)I(ysj t = 0) + 𝜋sj t
I(ysj t > 0)f (ysj t �ysj t > 0)]

l
(2)
sj
(asj , bs) = psj I(Osj

= 1) + (1 − psj )I(Osj
= 0)
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demonstrated that the robustness and performance of 
this model does not require the observed relative abun-
dance being generated from ZIB distribution.

The estimate of overdispersion φ̂ without regularization 
is severely inflated and also leads to bias in the estimate 
of other parameters. Hence, we use L2 (ridge) regulari-
zation to control the overdispersion and type I error in 
hypothesis testing. All the parameters θ are estimated 
by maximizing a penalized marginal likelihood function 
θ̂ = argmaxL̃(θ; y,O) , where

and ρ is selected by a cross-validation described below.
There is no closed form of the multivariate integral Ls 

in equation (2) because of the Beta density in l(1)sj (asj , bs) . 
Hence, Ls can be approximated by Gauss-Hermite (GH) 
quadrature, with details explained in Appendix. We test 
the association between OTU trajectory and host disease 
status with null hypothesis H0 : �r = �p = 0 and a Wald 
statistic W =

�̂
2
r

SE2
�r

+
�̂
2
p

SE2
�p

 , which follows a Chi-Square 

distribution W ∼ χ2(2) . The false discovery rate (FDR) 
for multiple testing is corrected by the Benjamini-Hoch-
berg (BH) procedure.

Pre‑selection of correlated taxa and tuning parameter 
selection
For each OTU ( ysjt ) in equation (1), using all the other 
taxa as covariates is computationally inefficient. Hence, 
we use a data-driven procedure to pre-select x(1)sj t

 and x(2)sj t
 , 

and then perform a post-selection hypothesis testing. 
The first step screens the taxa correlated with ysjt in 
abundance and presence, individually, using the Bray-
Curtis distance less than 0.1 quantile. Our current 
method uses relative abundance in both pre-selection 
and modeling, since this method is developed for large-
scale microbiome studies and the multi-center technical 
batch effect can be simply normalized by relative abun-
dance. According to the comparison of dissimilarity met-
rics on microbiome compositional data [24], we choose 
Bray-Curtis dissimilarity to pre-select the related taxa. 
This step may still result in many covariate taxa at species 
level in metageonmic data due to high dimensionality. 
Thus, we employ elastic net regression to further select 
the taxa with relative abundance x(1)sj t

 associated with ysjt 
or the taxa with presence x(2)sj t

 associated with I(ysjt > 0) , 
individually. In this pre-selection procedure, we model all 
the longitudinal metagenomes as independent samples 
regardless of time points (or age). One may restrict this 

(4)L̃(θ; y,O) = ln L(θ; y,O)− ρ||θ ||22

procedure to a sub-community such as the species or 
subspecies of certain genera.

To reduce the computational burden of cross-validation for 
a high-dimensional OTU table, we randomly select P0 OTUs 
from distinct relative abundance levels to represent the com-
plexity of microbiota composition. The matched sets are 
divided into 5 folds, each being a validation fold for the model 
built on the other four (training) folds. The penalized log like-
lihood in equation (4) is the negative objective function in 
cross-validation. For each validation fold f and the selected 
OTU i, the loss function is Sfi = −L̃(θ̂ i−f ; y

i
f ,Of ) , where 

θ̂ i−f = arg max L̃(θ i; yi−f ,O−f ) . The optimal ρ is selected by 
the ‘elbow point’ minimizing S =

∑5
f=1

∑P0
i=1 Sfi/(5P0).

Data generation process for simulation scenario B1
Step 1: Estimate the baseline mean composition (or 
frequency) of microbiota ( ̄η0 ) and the overdispersion 
( ξ0 = 0.04 ) at the starting time point t = 1 in TEDDY 
data by Dirichlet-Multinomial (DM) maximum likeli-
hood estimate (MLE) of the observed counts. Generate 
the mean frequency of microbiota at the first time point 
by Dirichlet (DL) distribution: η̄01 ∼ DL(η̄0, ξ0).

Step 2: The mean frequency η̄0t at a later time point 
t > 1 is generated by the following shifting procedure: 
increase the frequency of some OTUs in η̄01 (denoted 
by M+

base ) with a sum of �t and simultaneously reduce 
that of other OTUs in η̄01 (denoted by M−

base ) by �t . 
The absolute shift size �t represented the age effect 
on microbiota. This shifting strategy characterized the 
inherent correlation between M+

base and M−
base because 

of the simultaneous compositional change in these 
OTUs. All the OTUs in η̄0t are assigned to either M+

base 
or M−

base to account for the impact of latent exposures 
across time points.

Step 3: At each time point, the heterogeneity 
between matched sets is the overdispersion estimated 
by DM MLE based on the samples per time point in 
TEDDY, denoted by ξt . The overdispersion at the 
first time point is ξ1 = 0.05 and linearly decreases 
over time, which mimics the time-dependent over-
dispersion observed in the infant-age metagenome 
in TEDDY. We generated a mean frequency for each 
matched set s at time point t by η̄st ∼ DL(η̄0t , ξt) . If a 
set is labeled as ‘high-risk’, we shifted all the OTUs in 
η̄st using the procedure in Step 2 with shift size �st , 
which is a proportion of the maximum shift size, i.e., 
�st = γ�0

st.
Step 4: The between-subject heterogeneity within 

each matched set was the median DM MLE of overd-
ispersion per matched set based on the real data, that 
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is ξ∗ = 0.03 . Hence, we generated the true microbiota 
composition for a sample collected from a ‘low-risk’ 
subject j in set s at time t by η̄sj t ∼ DL(η̄st , ξ

∗) . The shift 
in η̄sj t between ‘low-risk’ and ‘high-risk’ subjects were 
described in Results.

Step 5: The library size for each sample is simulated 
by a Poisson distribution Nsjt ∼ PS(100000) , trun-
cated by a minimum of 10000. The raw counts per 
sample is generated by Multinomial (MN) distribution 
Csjt ∼ MN (Nsjt , η̄sj t).
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