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Abstract
Background  Previous studies have shown that microtubule actin crosslinking factor 1 (MACF1) can regulate 
osteoblast proliferation and differentiation through non-coding RNA (ncRNA) in bone-forming osteoblasts. 
However, the role of MACF1 in targeting the competing endogenous RNA (ceRNA) network to regulate osteoblast 
differentiation remains poorly understood. Here, we profiled messenger RNA (mRNA), microRNA (miRNA), and long 
ncRNA (lncRNA) expression in MACF1 knockdown MC3TC‑E1 pre‑osteoblast cells.

Results  In total, 547 lncRNAs, 107 miRNAs, and 376 mRNAs were differentially expressed. Significantly altered 
lncRNAs, miRNAs, and mRNAs were primarily found on chromosome 2. A lncRNA-miRNA-mRNA network was 
constructed using a bioinformatics computational approach. The network indicated that mir-7063 and mir-7646 
were the most potent ncRNA regulators and mef2c was the most potent target gene. Pathway enrichment analysis 
showed that the fluid shear stress and atherosclerosis, p53 signaling, and focal adhesion pathways were highly 
enriched and contributed to osteoblast proliferation. Importantly, the fluid shear stress and atherosclerosis pathway 
was co-regulated by lncRNAs and miRNAs. In this pathway, Dusp1 was regulated by AK079370, while Arhgef2 was 
regulated by mir-5101. Furthermore, Map3k5 was regulated by AK154638 and mir-466q simultaneously. AK003142 
and mir-3082-5p as well as Ak141402 and mir-446 m-3p were identified as interacting pairs that regulate target genes.

Conclusion  This study revealed the global expression profile of ceRNAs involved in the differentiation of MC3TC‑E1 
osteoblasts induced by MACF1 deletion. These results indicate that loss of MACF1 activates a comprehensive ceRNA 
network to regulate osteoblast proliferation.

Keywords  Microtubule actin crosslinking factor 1 (macf1), Competing endogenous RNA (ceRNA), Osteoblast 
proliferation, LnRNA, MiRNA, Transcriptomic analysis
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Background
Decreased bone formation plays a major role in osteo-
porosis, which results in low bone mass and increased 
fracture risk [1]. New bone formation is primarily medi-
ated by osteoblasts[2, 3]. Therefore, regulating osteo-
blast proliferation and differentiation can enhance bone 
formation.

Previous studies have shown that microtubule actin 
crosslinking factor 1 (MACF1) can regulate osteoblast 
proliferation and differentiation in bone-forming osteo-
blasts [4, 5]. MACF1 can bind to actin filaments through 
its N-terminal calponin homology domain and positively 
regulates the Wnt/b-catenin signaling pathway, which 
is involved in multiple stages of osteoblast differentia-
tion and bone formation [6–8]. To date, however, these 
studies have focused on a single regulator and system-
atic transcriptome-wide analysis of the MACF1 regula-
tion network, especially the competing endogenous RNA 
(ceRNA) network, remains limited.

Non-coding RNA (ncRNA) is thought to play an 
important role in cellular processes. More recently, it has 
also been suggested that microRNA (miRNA) and long 
ncRNA (lncRNA) interact with each other, imposing an 
additional level of post-transcriptional regulation [9–11]. 
Furthermore, ncRNA and messenger RNA (mRNA) can 
form a well-regulated ceRNA interaction network. MiR-
NAs are a relatively well-documented class of ncRNAs 
involved in the regulation of various biological processes 
[12–15]. They can cause transcriptional degradation or 
translational inhibition by post-transcriptional regula-
tion and binding to mature mRNAs. Many miRNAs have 
been implicated in the regulation of osteogenic differ-
entiation. Mir-27a-3p and mir-365 can enhance osteo-
genesis in MC3T3-E1 cells, while mir-195, mir-146a, 
and mir-705 can inhibit this process [16–20]. LncRNAs, 
the largest class of ncRNAs in the mammalian genome, 
undergo further alteration by post-transcriptional modi-
fication to regulate gene expression [21]. Several stud-
ies have indicated that lncRNAs can promote osteoblast 
proliferation and differentiation by direct regulation of 
genes. For example, lnc-ob1 regulates osteoblast activity 
and bone formation in mice by up-regulating the osteo-
genic transcription factor Osterix [22]. In addition, H19 
can act as a competitive inhibitor of mir-141 and mir-22 
to reverse their inhibition of Wnt/beta-catenin signaling, 
thereby promoting osteogenic differentiation [23, 24].

To date, however, few studies have explored the pre-
transcriptional levels of ncRNAs involved in osteogen-
esis. Furthermore, none of these interaction networks 
have been shown to regulate the MACF1-induced osteo-
blast proliferation of MC3T3-E1 cells. Analysis of the 
genetic factors that affect osteoblast proliferation and 
differentiation will provide valuable insight into bone dis-
eases. In this study, MC3T3-E1 cells, which are precursor 

cells of osteoblasts, were used to examine the regulation 
pathways of MACF1.We conducted integrative analysis 
of the gene expression profiles of mRNAs, miRNAs, and 
lncRNAs induced by MACF1.

Results
Profiles of DEGs and ncRNAs
After applying a stringent filtering approach, we identi-
fied 547 differentially expressed lncRNAs in the MACF1-
knockdown MC3T3-E1 cells, including 205 up-regulated 
and 304 down-regulated lncRNAs. We also identified 107 
differentially expressed miRNAs, including 64 up-regu-
lated and 43 down-regulated miRNAs, and 376 differen-
tially expressed mRNAs, including 236 up-regulated and 
140 down-regulated mRNAs, as presented in the cluster-
ing heat map (Fig. 1). Although the number of dysregu-
lated miRNAs was the lowest, miRNAs had a higher ratio 
of DEGs/identified genes (5.63%) compared to lncRNAs 
(1.35%) and mRNAs (1.29%) (Table 1). The top three dif-
ferentially expressed miRNAs were up-regulated mir-
6942-3p and down-regulated mir-1950 and mir-669p-3p. 
AK033832 was the most up-regulated lncRNA and was 
located on chromosome 1. Locational distributions of the 
differentially expressed lncRNAs, miRNAs, and mRNAs 
were analyzed synchronously. The significantly altered 
lncRNAs, miRNAs, and mRNAs were found at the high-
est levels on chromosome 2 and at the lowest levels on 
chromosome Y (Fig. 1). No relatively consistent variation 
pattern was observed among the aberrant lncRNA and 
miRNA species. In addition, 25 lncRNAs, four miRNAs, 
and 14 mRNAs were located on chromosome 4, which 
was also the location of MACF1.

Comprehensive functional analysis of genes and 
ncRNAs
The main functions of the differentially expressed 
mRNAs were explored using GO annotation and KEGG 
pathway enrichment analysis (Fig.  2). All enriched bio-
logical processes were related to organization, prolifera-
tion, migration, and differentiation (Fig. 2). For example, 
both regulation and negative regulation of epithelial cell 
proliferation were enriched, and extracellular matrix 

Table 1  Profiles of DEGs and ncRNAs in MACF1-knockdown cell 
line
Gene Total 

number
Expression MACF1−/− vs. 

WT
Ratio

lncRNA 47 047 Up-regulated 369 0.78%

Down-regulated 268 0.57%

miRNA 1 900 Up-regulated 64 3.37%

Down-regulated 43 2.26%

mRNA 29 086 Up-regulated 236 0.81%

Down-regulated 140 0.48%
MACF1−/− : MACF1-knockdown cell line, WTL: wide type
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organization was the most enriched process. For path-
way analysis, the fluid shear stress and atherosclerosis, 
p53 signaling, and focal adhesion pathways, which are 
involved in osteoblast proliferation [25–29], were all 
enriched.

For miRNA regulation analysis, biological processes 
related to migration and differentiation, which are influ-
enced by MACF1 [30, 31], were significantly enriched. 
Among the miRNAs enriched in KEGG pathways, mir-
370‐3p was predicted to have the greatest number of 

Fig. 2  Functional enrichment analysis of ceRNAs. A: GO and KEGG analysis of differently expressed mRNA. B: GO and KEGG analysis of differently ex-
pressed genes targeted by miRNA. C: GO and KEGG analysis of differently expressed genes targeted by lncRNA.

 

Fig. 1  The profile of differentially expressed lncRNA, miRNA and mRNA in the MACF1 knockdown. MC3TC‑E1 cells. A: Hierarchical cluster analysis of the 
differentially expressed lncRNAs. The red color represented higher expression, and the green color represented lower expression. B: Hierarchical cluster 
analysis of the differentially expressed miRNAs. The red color represented higher expression, and the green color represented lower expression. C: Hierar-
chical cluster analysis of the differentially expressed mRNAs. The red color represented higher expression, and the green color represented lower expres-
sion. D: Location distributions of deregulated lncRNAs, miRNA and mRNAs on chromosomes
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targets. Pathway analysis indicated no significant path-
way was enriched in the miRNA-regulated genes.

We identified four candidate pathways related to 
osteoblast proliferation, i.e., fluid shear stress and ath-
erosclerosis, p53 signaling, focal adhesion and PI3k-Akt 
pathways. A total of 22 miRNAs were involved in these 
pathways through regulating target genes. For example, 
six miRNAs (mir-7646-3p, mir-7063-3p, mir-669c-3p, 
mir-5101, mir-466  m-3p, and mir-466f-3p) were pre-
dicted to target Mef2c in the PI3K-Akt signaling pathway.

Only four biological processes were significantly 
enriched in the lncRNA-regulated mRNAs. Among 
those processes, extracellular matrix organization and 
extracellular structure organization are involved in the 

accumulation of cytoskeletal components [32]. Regard-
ing enriched pathways in the lncRNAs, MAPK sig-
naling and fluid shear stress were identified as two 
candidate pathways involved in the regulation of osteo-
blast proliferation.

Of the 1030 dysregulated ceRNAs, 538 interacted with 
each other (Fig.  3). In addition, some isolated sub-net-
works only included two components. The core network 
consisted of 530 nodes and 1 196 connections among 
ceRNAs, including 181 lncRNAs, 63 miRNAs, and 286 
mRNAs. Within this core network, 593 pairs showed 
positive regulatory associations and 603 pairs showed 
negative regulatory associations.

Fig. 3  The connected interaction network of differently expressed ceRNA. The ellipse nodes represent miRNAs, the rectangle nodes represents mRNAs, 
and the diamond nodes represents lncRNAs. Red color indicated genes were up regulated and yellow indicated genes were down regulated
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Results showed that the Actb coding gene had the high-
est degree among all mRNAs, while AK009328 had the 
highest degree among all dysregulated RNAs (Table  2). 
Actb also showed the highest closeness centrality and 
second highest betweenness centrality, indicating a core 
position in network topology. Actb is known to interact 
with certain genes related to cell proliferation, such as 
Txn1, Casp6, and Arhgef2 [33–35]. Most miRNAs inter-
acted with only 1–2 genes. Mir-669c-3p targeted 13 
genes including Mef2c. AK009328 had 40 targets that are 
all coding genes.

Primary co-regulated pathway in ceRNA network
After functional analysis, the fluid shear stress and ath-
erosclerosis pathway was the most significantly enriched 
in the entire ceRNA network. Further expression analysis 
of this pathway was carried out, which identified six up-
regulated genes and four down-regulated genes (Fig. 4). 
Notably, this pathway shares many processes with the 
focal adhesion, cell apoptosis, PI3k-Akt, MAPK, and 
NF-κB signaling pathways, which are all related to cell 
growth [36, 37]. For example, FAK, a key gene in the focal 
adhesion pathway, is a promoter of osteoblast prolifera-
tion [28, 29]. Our results also showed that Mef2 and PI3K 
in the PI3k-Akt pathway were down-regulated, which 
may reduce cell proliferation [30]. The MAPK signaling 
pathway is activated in osteoblasts under fluoride expo-
sure and can stimulate growth [31–33]. No dysregulated 
genes in the NF-κB signaling and apoptosis pathways 
were enriched.

Co-modules of ceRNA related to the fluid shear 
stress and atherosclerosis pathway
After network-regularized sparse orthogonal-regularized 
joint non-negative matrix factorization (NSOJNMF), we 
obtained 200 ceRNA modules, each containing an aver-
age of 6.8 mRNAs, 1.7 miRNAs, and 7.9 lncRNAs. If 
more than one gene in a module participated in the fluid 
shear stress and atherosclerosis pathway, the module 

was considered to be associated with that pathway. For 
example, genes in co-module 15 involved in the fluid 
shear stress and atherosclerosis pathway included Actb 
and Txn1. Genes, lncRNAs, and miRNAs in the module 
were highly correlated (Fig. 4). Although other genes in 
the module are not involved in the fluid shear stress and 
atherosclerosis pathway, S100a6 and Ifitm3 are known 
to regulate PI3K signaling [38, 39], a sub-pathway of the 
fluid shear stress and atherosclerosis pathway. In addi-
tion, mir-466 h is implicated in apoptosis regulation [40].

Predicted MACF1 regulation network for MC3T3‑E1 
osteoblast proliferation
After analysis, we reconstructed the ceRNA network 
with genes and their interaction ncRNA pairs in the fluid 
shear stress and atherosclerosis pathway (Fig.  5). We 
found that MACF1 regulated miRNAs and proliferation-
related genes via its targeted genes directly and indirectly. 
For example, knockdown of MACF1 attenuated the 
phosphorylation of GSK3β, which regulated transcrip-
tion factors targeting miRNAs and, in turn, dysregulated 
the expression of core genes.

Our results also indicated that Mef2c plays an impor-
tant role in the MACF1 regulation network. Firstly, 
mir-466  m-3p, mir-466f-3p, and mir-5101, which are 
predicated to inhibit Mef2c, were all down-regulated, 
as was AK141402, which can sponge mir-466  m-3p. In 
addition, mir-7646-3p and mir-7063-3p were up-regu-
lated, consistent with the down-regulation of Mef2c. In 
mammalian cells, p38 can be regulated by dysregulated 
MAP3Ks and DUSP1 [41, 42], and p38-catalyzed phos-
phorylation can increase the transactivation of MEF2C 
[43, 44].

Discussion
MACF1 plays an important role in regulating osteoblast 
proliferation and differentiation in bone-forming osteo-
blasts [4, 5, 45]. However, no integrated network has been 
reported regarding its underlying regulatory mechanism.

In recent years, ncRNAs, such as lncRNAs and miR-
NAs, have emerged as previously underappreciated 
classes of gene expression modulators that regulate vari-
ous cellular processes [9–11, 46]. In the current study, we 
illustrated a comprehensive ceRNA network for MACF1 
deletion to regulate osteoblast proliferation through bio-
informatics analysis of gene chip data.

In the current study, MACF1 deletion resulted in a 
large number of differentially expressed RNAs. The most 
enriched GO terms in the mRNAs and lncRNAs were 
related to positive regulation of cell death and extracellu-
lar matrix organization, which may be related to MACF1 
deletion as it binds with F-actin and microtubules [7]. 
Based on mRNA analysis, the fluid shear stress and ath-
erosclerosis, p53 signaling, and focal adhesion pathways 

Table 2  The top 10 hub genes with a high degree of 
connectivity
mRNA degree miRNA degree lncRNA degree
Actb 23 mir-669c-3p 13 AK009328 40

Hist1h3h 20 mir-3082-5p 7 AK138628 27

Dcn 17 mir-181b-5p 5 AK020774 26

Lgals3 17 mir-466i-5p 5 AK050595 23

Anxa5 16 mir-467a-3p 5 AK090335 21

Hist1h3h 16 mir-532-3p 5 AK152140 19

Spp1 16 mir-669f-3p 5 AK007124 16

Tpi1 16 mir-130a-3p 4 AK046618 16

Thbs1 15 mir-466f-3p 4 AK087552 16

Tmem200c 14 mir-466j 4 AK019187 15
Degree is the measure of the total number of edges connected to a particular 
node
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promoted osteoblastogenesis. Fluid shear stress plays a 
critical role in promoting osteoblast proliferation and 
differentiation [47, 48]. It can promote cytoskeletal reor-
ganization to activate the ERK5 pathway [25, 26, 47]. 
MACF1 deletion may result in similar cytoskeletal reor-
ganization to regulate osteoblast proliferation. Among 
the 19 genes mapped to the three pathways in the current 
work, Map3k and Mef2 are well-studied in osteoblast 
proliferation [49–52]. Map3k participates in MEK1 and 
MEK2 activation [53]. In turn, MEK1/2 activate ERKs 
to phosphorylate RUNX2, thereby enhancing the prolif-
eration of osteoblast progenitors. Mef2 is a component of 
the enhanceosome that regulates the enhancer of Runx2 
[54]. In addition, the Txn1, Dusp1, Nqo1, Arhgef2, Pik3cd, 
Sfn, and Sesn3 genes can regulate cell proliferation too.

Five pathways promoting osteoblastogenesis were 
found to be regulated by miRNAs. In addition to the fluid 

shear stress and atherosclerosis pathway, the p53 signal-
ing and focal adhesion pathways were also enriched in dif-
ferentially expressed mRNAs. Furthermore, the apoptosis 
and PI3K-Akt signaling pathways were also enriched in 
the miRNA target genes. Several miRNAs targeting these 
pathways are reported to influence cell proliferation. For 
example, although Mir-532-3p inhibits osteogenic differ-
entiation in MC3T3-E1 cells [55], it also inhibits prolif-
eration by regulating β-catenin expression and targeting 
the phosphatase and tensin homolog (PTEN) gene in the 
PI3K/AKT signaling pathway [56]. Thus, Mir-532-3p may 
be a potential regulating factor of osteoblast prolifera-
tion following MACF1 deletion. In addition, Mir-466f-3p 
is down-regulated during osteoblast differentiation and 
bone regeneration [57] and Mir-139-5p can inhibit mes-
enchymal stem cell (MSC) osteogenesis through the 
Wnt/β-catenin pathway by directly targeting CTNNB1 

Fig. 4  Fluid shear stress and atherosclerosis pathway. Red nodes indicated mRNA were up regulated and yellow nodes indicated mRNA were down 
regulated
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and frizzled 4 (FZD4) [58]. Thus, these miRNAs may 
also participate in cell proliferation induced by MACF1. 
We also identified several dysregulated miRNAs that are 
involved in cell proliferation, although they have not been 
reported in osteogenesis. For example, Mir-466q modu-
lates the p38 MAPK signaling pathway by inhibiting the 
expression of its target gene Map3k [59]. Mir-574-5p tar-
gets Bcl11a and Sox2 to attenuate proliferation in triple-
negative breast cancer cells and governs cell proliferation 
through the Wnt/β-catenin pathway in PTC-1 cells [60]. 
Mir-489-3p can also inhibit cell proliferation by targeting 
the brain-derived neurotrophic factor-mediated PI3K/
AKT pathway in glioblastoma cells and suppress prolif-
eration by targeting JAG1 in bladder cancer cells [61]. For 
some miRNAs, such as mir-7646-3p, mir-7045-3p, and 
mir-6973b-3p, although they have not been implicated 
in regulating proliferation, our results indicate that they 
have the potential to influence osteogenesis through their 
target genes.

The fluid shear stress and atherosclerosis, MAPK sig-
naling, and apoptosis pathways can influence prolif-
eration via lncRNA regulation [26, 47, 48, 53, 62]. Here, 
four lncRNAs (AK079829, AK079370, AK154638, and 
AK161980) were predicted to regulate these pathways. 
Previous research has shown that AK079370 can inhibit 
bone formation by suppressing the Wnt/β-catenin path-
way [63]. Our results also indicated that AK079370 may 
interact with Dusp1, which can inhibit cell prolifera-
tion via the ERK signaling pathway [64]. Two cell pro-
liferation genes,Txn1 and Map3k5, were also regulated 
by AK079829 and AK161980 and by AK154638, respec-
tively. However, their functional mechanisms related to 
osteoblasts require further experimental validation.

We also identified three interaction pairs (Mir-3082-5p 
and AK003142, mir-466  m-3p and AK141402, and mir-
532-3p and AK009175) that may regulate osteoblasto-
genesis-related genes. As mentioned above, mir-532-3p 
has the capacity to inhibit proliferation by regulating 
β-catenin expression, while mir-466  m-3p is predicted 
to target Mef2c in the PI3K-Akt signaling pathway [56]. 
In our study, Mir-3082-5p was predicated to target Pik3 
to participate in osteogenesis. However, although several 
lncRNA-mRNA pairs were identified, none directly par-
ticipated in proliferation. Thus, lncRNAs appear to regu-
late osteoblastogenesis by sponging miRNAs rather than 
by directly regulating mRNAs.

Co-module analysis also revealed that ceRNA net-
work contributed to the cell proliferation. A total of 106 
co-modules were found related to fluid shear stress and 
atherosclerosis pathway. This may be caused by the high 
degree of connectivity of Actb, which is involved in the 
co-modules and the fluid shear stress and atheroscle-
rosis pathway simultaneously. Actb also participates in 
focal adhesion and adherent junction pathways, two key 
regulation pathways in osteoblast proliferation, Besides, 
Txn1 is involved in co-modules 15,100 and 187. Txn1 
may play an important role in regulating cell prolifera-
tion [65]. More importantly, the analysis of co-modules 
is convenient to find RNAs that could complement the 
ceRNA regulation network. For example, miR-466 in 
co-module 187 could significantly inhibit cell prolifera-
tion while miR-671-5p in co-module 100 could foster the 
proliferation [66–68]. The results indicate that ceRNA 
network plays an important role in the regulation of cell 
proliferation.

Fig. 5  Spearman correlation of lncRNAs and mRNAs in ceRNA network. Green (red) indicates positive (negative) correlation
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We found that the fluid shear stress and atherosclerosis 
pathway was enriched in mRNAs, lncRNAs, and miRNAs 
simultaneously. Fluid shear stress is thought to mediate 
bone cell proliferation by producing cellular chemical 
signals [47]. The extracellular signal-regulated kinase 5 
(ERK5) pathway is well-studied in regard to the promo-
tion effects of fluid shear stress on osteoblast prolifera-
tion [25, 26, 69]. The fluid shear stress and atherosclerosis 
pathway shares various processes with the PI3k-AKT 
signaling, focal adhesion, NF-κB signaling, MAPK sig-
naling pathways, which are key regulation pathways in 
osteoblast proliferation [27, 28, 49, 50, 52, 53, 70–72]. 
After we reconstructed the lncRNA and miRNA-regu-
lated pathway for DEGs, all related lncRNAs increased. 
Core genes in this interaction network included Pik3ca, 
Mef2a, Map3k5, and Dusp1, which are related to cell 
proliferation [64, 73, 74]. The DEGs revealed that the 
network contributed to osteoblast proliferation via mul-
tiple approaches. For example, AK154638 and AK079370 

were predicted to act as antisense lncRNAs for Map3k5 
and Dusp1, respectively, to inhibit osteoblast prolif-
eration. Mir-466f-3p, mir-510, mir-466  m-3p, mir-669c, 
mir-7063, and mir-7646 negatively regulated osteogen-
esis by binding to Mef2c, while AK141402 sponged mir-
466  m-3p to resist this inhibition. In previous research, 
we found that proliferation and differentiation are inhib-
ited in MACF1-knockdown MC3T3-E1 cells [4, 30]. 
This is consistent with the function of Mef2c in cell pro-
liferation and differentiation, which regulates a novel 
Runx2 enhancer for osteoblast-specific expression [54]. 
In our regulation network, only mir-7063 and mir-7646 
targeting mef2c were increased. Thus, it is possible that 
MACF1 influences Mef2c expression via GSK3β and cell 
division cycle 5 like (CDC5L), which may target miRNA 
transcription factors.

Overall, our analysis revealed a comprehensive ceRNA 
network of MACF1 for the regulation of osteoblast pro-
liferation. Using bioinformatics analysis, a considerable 

Fig. 6  Predicted MACF1 regulation network of ceRNA in MC3T3-E1 cells. Orange nodes indicate genes interact with MACF1 directly; olive nodes indicate 
transcription factors that regulated related miRNAs; aquamarine nodes indicate ncRNA and lightgreen nodes indicate genes enriched in fluid shear stress 
and atherosclerosis pathway
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number of functional ncRNAs were predicted to be 
involved in the regulation of osteoblast proliferation. 
The fluid shear stress and atherosclerosis pathway was 
presumed as the most important pathway for MACF1 
to regulate osteogenesis. Although further in vivo and in 
vitro experiments are required to test this hypothesis, the 
present study provides novel insight into the molecular 
mechanism underlying osteoblast proliferation.

Materials and methods
Cell culture and construction of MACF1-knockdown cell 
line
Murine preosteoblast MC3T3-E1 cell line was gener-
ously provided by Dr. Hong Zhou (University of Sydney, 
Sydney, NSW, Australia). The MC3T3-E1 cells were cul-
tured in α-modified Eagle’s medium (α-MEM) (Gibco, 
Carlsbad, CA, USA) supplemented with 10% fetal bovine 
serum (FBS) (Life Technologies, USA) and 1% penicillin/
streptomycin. Cells were incubated for 15 days at 37 ℃ 
with 5% CO2 in a humidified chamber. The MACF1-
knockdown cell line was constructed as described in our 
previous report [4]. In brief, the MC3T3-E1 cells were 
transfected with short hairpin RNA (shRNA) specifically 
targeting the murine MACF1 lentivirus vector or with 
scrambled shRNA, and the stably transfected cell lines 
were selected using puromycin. After 15 days of selec-
tion, all cells were collected for further study.

LncRNA, miRNA, and mRNA microarray analyses
The collected MC3T3-E1 cells were subjected to 
sequencing by RiboBio Co., Ltd. (Guangzhou, China) for 
lncRNA, miRNA, and mRNA microarray analyses. Total 
RNA was harvested and quantified, and its quantity and 
purity were assessed using a K5500 Micro-Spectropho-
tometer (Beijing Kaiao Technology Development Co., 
Ltd., Beijing, China). Here, A260/A280 ≥ 1.5 and A260/
A230 ≥ 1 indicated acceptable RNA purity and RNA 
integrity number (RIN) ≥ 7 (based on an Agilent 2200 
RNA assay, Agilent Technologies, USA) indicated accept-
able RNA integrity. Genomic DNA contamination was 
evaluated by gel electrophoresis.

Differentially expressed mRNAs, miRNAs, and 
lncRNAs
The fold-change of each differentially expressed mRNA 
and lncRNA was obtained by log2 fold-change (normal-
ized spot intensities were transformed to gene expression 
log2 ratios between test and control samples). The P-val-
ues were calculated using analysis of variance (ANOVA). 
Differentially expressed genes (DEGs) were determined 
based on fold-change > 2 and adjusted P < 0.05.

For lncRNA identification, the transcripts mapped to 
known genes were eliminated. The Coding Potential Cal-
culator (CPC) and Coding Non-Coding Index (CNCI) 

were then used to predict the coding potential of the 
sequences, requiring CPC and CNCI scores < 0 as indica-
tors for potential lncRNAs.

Finally, differentially expressed mRNAs were selected 
for cluster analysis performed using the R language pack-
age ggplots (v3.3.2) according to Fragments Per Kilobase 
of exon model per Million mapped fragments (RPKM) 
values.

Prediction of target genes of differentially 
expressed ncRNAs
Based on the co-expression of lncRNAs and mRNAs 
(correlation 0.99 or − 0.99 and P < 0.05), the functions 
of the lncRNAs were executed on coding genes via cis- 
or trans-regulation. The lncRNAs and target coding 
genes were considered lncRNA-mRNA pairs. BEDTools 
(v2.29.1) was used for positional relationship analysis. If 
the lncRNA gene was within 100 kb upstream or down-
stream of the coding gene, it was determined to be cis-
regulatory, while trans-prediction was based on the 
binding energy of the lncRNA and coding genes accord-
ing to sequence complementarity. Pairs of lncRNA and 
mRNA with a binding ndG < − 0.1 based on LncTar analy-
sis were deemed interactive.

Target gene prediction for miRNAs was performed 
using the Encyclopedia of RNA Interactomes (ENCORI) 
database [75], which provides seven miRNA target 
gene prediction programs, i.e., PITA, RNA22, miRmap, 
DIANA-microT, miRanda, PicTar, and TargetScan. The 
prediction results were screened using at least three pro-
gram predictions.

To identify the miRNAs that can target lncRNAs, the 
binding of lncRNAs to miRNAs was predicted using the 
bioinformatics tool starBase with ENCORI APIs [75].

Construction and analysis of lncRNA, miRNA, and 
mRNA interaction network
LncRNAs can target mRNAs through cis or trans activity. 
Coupled with the targeted relationship between miRNAs 
and mRNAs and possible targeted relationship between 
miRNAs and lncRNAs, lncRNA-miRNA-mRNA net-
work interactions were identified using STRING (v11). 
Results were visualized using Cytoscape (v3.6.0) [76]. 
In the network diagram, connections indicate possible 
regulatory relationships. Core genes were detected using 
NetworkAnalyzer (v2.8) by calculating network topology 
parameters.

Functional enrichment analysis
To determine the functional modules, we focused on the 
DEGs and ncRNAs and conducted functional enrich-
ment analysis with clusterProfiler [77]. For ncRNAs, tar-
get genes were used for analysis. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
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pathway enrichment analyses were screened at P < 0.05 
and q-value < 0.05.

Recognition of ceRNA co-modules
After identifying functional modules, to further dis-
cover their potential biological associations, we applied 
network-regularized sparse orthogonal-regularized joint 
non-negative matrix factorization (NSOJNMF) to iden-
tify correlative modules using multi-dimensional genom-
ics data [78–80]. The code is public available at https://
github.com/JN-WYJ/NSOJNMF. Briefly, the three micro-
array data X1, X2 and X3 were decomposed into a com-
mon basis matrix W ∈ Rm×K, and different coefficient 
matrices Hi ∈ RK×n

i (i = 1,2,3) using the JNMF frame-
work. The prior knowledge of the algorithm combination 
includes the known or predicted interactions of the three 
RNAs as described in the previous section. Z-score of 
each column was used in the coefficient matrix to select 
the members. Eventually, k ceRNA co-modules can be 
identified. K was assigned to 200 according to the num-
ber of the mRNA enrichment pathways in this study. The 
constraint parameters were λ1 = λ2 = 0.001. The sparse 
parameter γ = 10 and maximum number of iterations to 
run is 500. Matlab (R2021a) was used to calculate the co-
modules, with the selection of co-module number set to 
200. The constraint parameters were λ = 0.001 and γ = 10.

Re-construction of ceRNA regulation pathway for 
proliferation in MACF1 deletion cells
To build a MACF1-regulated ceRNA network, STRING 
and TransmiR (v2.0) were used to predict the relationship 
between the core ceRNAs and MACF1. Firstly, direct 
target genes of MACF1 were extended by STRING and 
transcription factors of miRNA were predicted by Trans-
miR, respectively. The MACF1-target network and TF-
miRNA network were then integrated into a sub-network 
of a previously built ceRNA network of core genes. Thus, 
a MACF1-TF-miRNA-mRNA network was constructed.
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