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Co‑expression network analysis identifies 
potential candidate hub genes in severe 
influenza patients needing invasive mechanical 
ventilation
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Abstract 

Background:  Influenza is a contagious disease that affects people of all ages and is linked to considerable mortality 
during epidemics and occasional outbreaks. Moreover, effective immunological biomarkers are needed for elucidat-
ing aetiology and preventing and treating severe influenza. Herein, we aimed to evaluate the key genes linked with 
the disease severity in influenza patients needing invasive mechanical ventilation (IMV). Three gene microarray data 
sets (GSE101702, GSE21802, and GSE111368) from blood samples of influenza patients were made available by the 
Gene Expression Omnibus (GEO) database. The GSE101702 and GSE21802 data sets were combined to create the 
training set. Hub indicators for IMV patients with severe influenza were determined using differential expression analy-
sis and Weighted correlation network analysis (WGCNA) from the training set. The receiver operating characteristic 
curve (ROC) was also used to evaluate the hub genes from the test set’s diagnostic accuracy. Different immune cells’ 
infiltration levels in the expression profile and their correlation with hub gene markers were examined using single-
sample gene set enrichment analysis (ssGSEA).

Results:  In the present study, we evaluated a total of 447 differential genes. WGCNA identified eight co-expression 
modules, with the red module having the strongest correlation with IMV patients. Differential genes were combined 
to obtain 3 hub genes (HLA-DPA1, HLA-DRB3, and CECR1). The identified genes were investigated as potential indica-
tors for patients with severe influenza who required IMV using the least absolute shrinkage and selection operator 
(LASSO) approach. The ROC showed the diagnostic value of the three hub genes in determining the severity of influ-
enza. Using ssGSEA, it has been revealed that the expression of key genes was negatively correlated with neutrophil 
activation and positively associated with adaptive cellular immune response.

Conclusion:  We evaluated three novel hub genes that could be linked to the immunopathological mechanism of 
severe influenza patients who require IMV treatment and could be used as potential biomarkers for severe influenza 
prevention and treatment.
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Background
Influenza is a contagious respiratory disease caused by 
the influenza virus. Despite advances in medical technol-
ogy, influenza continues to cause many hospitalizations 
and deaths [1, 2]. Symptomatic influenza affects 10–20% 
of the global population yearly, with 3–5 million cases of 
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severe disease and 290,000–650,000 deaths reported [3]. 
Furthermore, influenza is a disease with a wide range of 
clinical manifestations, from a self-limited upper res-
piratory tract infection to severe pneumonia [4, 5]. With 
a mortality rate as high as 50–80%, critically ill patients 
with influenza frequently have severe respiratory failure 
(e.g., arterial pressure of oxygen/fraction of inspiration 
oxygen 200 mmHg) and require invasive mechanical ven-
tilation (IMV) [6–8]. Moreover, the detailed pathogenesis 
of severe influenza is still unknown.

Previous studies have revealed that immunological cells 
and immune pathways have been implicated in the onset 
and progression of severe influenza [9, 10]. Hence, it is 
needed to evaluate promising immunological biomark-
ers for diagnosing and treating patients with severe influ-
enza. Bioinformatics analysis has been frequently used to 
screen disease-specific biomarkers since the emergence 
of microarray technologies [11, 12]. However, it is chal-
lenging to conduct statistical evaluations and extract 
relevant information due to sample heterogeneity and 
sampling discrepancies, different technology platforms, 
and technique utilization in individual studies [13–15]. 
Hence, integrated bioinformatics tools that provide com-
prehensive and valuable information have been employed 
to investigate the molecular pathophysiology of influenza 
infection and evaluate novel biomarkers. Weighted cor-
relation network analysis, also known as weighted gene 

co-expression network analysis (WGCNA), is a tool 
utilized for indicating gene interaction patterns across 
models, which can characterize the relationship between 
genes and interaction pathways based on the endogene-
ity of the gene set and the link between the gene set and 
the phenotype [16, 17]. Therefore, this promising method 
is increasingly being utilized to identify highly synergis-
tic gene sets, potential biomarker genes, and therapeutic 
targets.

Herein, we aimed to evaluate the key genes linked with 
the severe influenza patients needing invasive mechani-
cal ventilation (IMV) by WGCNA and their association 
with the infiltration levels of distinctive immune cells via 
single-sample gene set enrichment analysis (ssGSEA).

Results
The stable DEGs detection and functional enrichment 
between IMV and NIMV group
Differentiation analysis was employed to examine the 
gene expression profiling from the training set. Accord-
ing to the criteria, between IMV and NIMV patients with 
influenza, a total of 447 DEGs (containing 261 upregu-
lated and 186 downregulated genes) were found (Fig. 1).

The biological activities and signal cascades of DEGs 
co-related with severe influenza patients with IMV were 
studied using GO and KEGG analyses. Based on the 
GO enrichment analysis, DEGs were mostly involved in 

Fig. 1  Illustrates the training set gene expression profiling. A A heatmap of the top 50 DEGs. Upregulated genes are seen in red, while 
downregulated genes are highlighted in blue. B The DEGs volcanic plot. Upregulated genes are highlighted in red, while downregulated genes are 
indicated in green
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antigen processing and presentation (e.g., antigen pro-
cessing and presentation of exogenous peptide antigen 
via MHC class II, MHC class II protein complex assem-
bly, and peptide antigen assembly with MHC class II pro-
tein complex) and cell–cell adhesion (e.g., regulation of 
T cell activation), as shown in Fig. 2A. According to the 
KEGG signaling cascades analyses, DEGs were abundant 
in pathways linked to infection and cellular differentia-
tion (e.g., Th1, Th2, and Th17 cell differentiation, Staph-
ylococcus aureus infection, hematopoietic cell lineage, 
and human T-cell leukaemia virus-1 infection) (Fig. 2B). 
These findings demonstrated the immunological and 
inflammation-related pathways are  associated with 
influenza severity in patients requiring IMV for severe 
influenza.

WGCNA and hub gene analysis
The training set was utilized to build the co-expression 
network by WGCNA analysis to evaluate the important 
modules linked with influenza severity. The significance 
of the diagnosis and evaluation of hub gene expression 
level was examined  using a soft-thresholding power of 
6 (scale-free R2 = 0.85) and a cut height of 0.25. We then 
narrowed it down to eight modules, as shown in Fig. 3A-
C. The link between module eigengene (ME) values and 
sample traits was used to quantify the link between the 
modules and clinical sample traits, which was observed 
using heat map profiling. The red module was the most 
closely related to illness severity (cor = 0.53, P = 7e-12) 
(Fig.  3D). Subsequently, three intersecting genes were 

determined based on DEG intersections (Fig. 3E). LASSO 
analysis confirmed 3 hub genes as follows: CECR1, HLA-
DPA1, and HLA-DRB3 (Fig. 3F-G).

Evaluation of hub gene expression and diagnostic value
Boxplots were utilized to identify the expression of the 
three hub genes. Figure 4A shows that IMV patients have 
considerably lower CECR1, HLA-DPA1, and HLA-DRB3 
expression levels than NIMV patients from the train-
ing set. Moreover, similar results were observed in the 
patients from the test set (Fig.  4C). ROC analysis from 
the training set showed that area under the ROC curve 
(AUC) was 0.862 [95% confidence interval (CI) 0.800–
0.921] for CECR1, 0.866 (95% CI 0.805–0.919) for HLA-
DPA1, and 0.821 (95% CI 0.748–0.886) for HLA-DRB3, 
accordingly (Fig.  4B). Meanwhile, the AUC was 0.700–
0.800 for the three hub genes from the test set, suggesting 
a moderate diagnostic accuracy (Fig. 4D).

The link between hub genes and ICI
The ssGSEA algorithm was employed to evaluate the 
variances in ICI between IMV and NIMV groups. The 
results obtained from sGSEA revealed a considerably 
elevated infiltration of neutrophils and dendritic cells, a 
lower infiltration of activated CD8 T cells, memory CD8 
T cells, memory CD4 T cells, and natural killer cells in 
the IMV group. Immunological cell correlation analysis 
with hub genes suggested that the three hub genes were 
positively linked with activated CD8 T-cells, T follicu-
lar helper cells, memory CD8 T-cells, and memory CD4 

Fig. 2  The DEGs from the training set were analyzed for functional enrichment Analysis of; A GO enrichment, and B Analysis of KEGG enrichment
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T-cells, while negatively associated with activated den-
dritic cells. In addition, HLA − DPA1 and HLA − DRB3 
were negatively related to neutrophils (Fig. 5A, B).

Discussion
Influenza is a contagious respiratory disease caused by 
the influenza virus. Despite advances in medical technol-
ogy, influenza continues to cause many hospitalizations 
and deaths [1–3]. In recent decades, transcriptomics 
studies revealed that the structure of gene sets and their 
roles differed throughout the broad spectrum of patients 
with varying degrees of severity [13–15, 18, 19]. By com-
bining numerous datasets and employing systematic bio-
informatics tools, we identified three key genes related to 
severe influenza patients requiring IMV. WGCNA offers 
numerous advantages over other bioinformatics meth-
ods because the analysis focuses on the link between 

clinical features and co-expression modules, resulting in 
more complete data with high reliability and biological 
significance.

In this study, the functional enrichment analysis 
indicated that the DEGs between IMV and NIMV 
patients were mostly linked with immunological and 
inflammatory cascades, consistent with previous find-
ings [18–21]. Moreover, the ICI showed two opposing 
results. First, the adaptive cellular immune response 
to influenza viruses was suppressed, as evidenced 
by a significant drop in active and memory CD8 + T 
cells in IMV patients, despite an increase in activated 
dendritic cells and Th1 cells. Second, the neutrophils 
were found to be activated. A similar study by Nguyen 
et al. [19] reported comparable results. They revealed a 
relationship between increased Sequential Organ Fail-
ure Assessment (SOFA) and lower adaptive interferon 
(IFN)-γ producing CD8 + T cell responses in people 

Fig. 3  Establishing a weighted gene co-expression network analysis (WGCNA) and screening for Hub genes. A Scale-free fit index and mean 
connectivity analysis for various soft-thresholding powers. The red line denotes the point when the correlation coefficient is 0.9, and the 
soft-thresholding power (β) is 6. B Connectivity distribution histogram and scale-free topology check when β = 6. C Gene dendrograms and 
clustering of module eigengenes using a dissimilarity metric (1-TOM) (the red line represents a cut height of 0.25). D Module-trait correlations 
between module eigengenes and sample traits were assessed. The correlation coefficient and P value are displayed in each cell. E Venn diagram 
showing where the DEGs and the red module overlap. F LASSO regression’s partial likelihood deviance with changing log(l) is shown in tenfold 
cross-validations. Using the minimum criterion (lambda.min) and 1 standard error of the minimum criterion (1-SE criteria), dotted vertical lines were 
created at the ideal values. G The tenfold cross-LASSO validation coefficient profiles for three hub genes are shown
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hospitalized with acute influenza. According to Jake 
Dunning et  al., patients with the most severe illnesses 
also have a higher proportion of transcripts associ-
ated with neutrophils and fewer transcripts connected 

to IFN- γ [21]. Although multiple studies [22, 23] have 
shown a correlation between lymphopenia and severe 
influenza, the mechanism by which the adaptive cel-
lular immune response is inhibited in severe influenza 

Fig. 4  Confirmation of hub genes. A Boxplots in the training set were applied to validate the hub genes’ expression levels. B ROC analysis in the 
training set was used to validate the diagnostic utility of the hub genes. C Boxplots in the test set were used to verify the hub genes’ expression 
levels, and (D) ROC analysis in the test set was utilized to establish the hub genes’ diagnostic value
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Fig. 5  Analysis of the immunological landscape concerning disease severity. The distribution of immune cells in the IMV and NIMV groups is 
depicted in an (A) heatmap and (B) violin plot. C The connection between immune cell infiltration and hub genes
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remains largely unknown [24–26]. When the lungs get 
infected with influenza, neutrophils are among the first 
cells attracted there and perform a defensive function 
[27]. In severe influenza infection, higher numbers of 
circulating and lung neutrophils are associated with, 
but not dependent on, bacterial co-infection [28, 29]. A 
significant neutrophil influx was associated with severe 
lung inflammation, whereas neutrophil reduction had 
little effect on viral clearance and caused only minor 
lung pathology [27–29]. Myeloperoxidase and neutro-
phil extracellular traps (NETs), which have been recog-
nized as endothelial-damaging agents, are released by 
neutrophils [30, 31]. NETs produced by influenza infec-
tion may compromise lung function rather than con-
tribute to bacterial killing or protect against secondary 
bacterial infection. According to recent studies, neutro-
phil-dependent tissue damage causes mortality regard-
less of viral load, and DNase neutralization of NETs 
enhances longevity [32].

Furthermore, poor outcomes in septic patients have 
previously been associated with decreased expression of 
MHC class II-related genes, including HLA-DPA1 and 
HLA-DRB3 [33–35]. Several inflammatory mediators 
may be responsible for the downregulation of MHC II 
mRNA expression [36, 37]. Rare accounts, nonetheless, 
did concentrate on influenza in the literature. We hypoth-
esized that decreased MHC II expression results in 
impaired antigen processing and presentation, abnormal 
lymphocyte proliferation, and impaired viral clearance, 
all of which affect the development of severe influenza. 
The CECR1 (Cat Eye Syndrome Chromosome Region 1) 
gene, found on chromosome 22q11, also produces the 
ADA2 protein. According to previous research, ADA2 
deficiency is frequently linked to lymphopenia (including 
CD8 memory cells, T cells, and follicular T cells) [38, 39]. 
It is also linked to increased myeloperoxidase expression 
and up-regulation of neutrophil-expressed gene tran-
scripts, which can lead to the formation of NET [40]. In 
severe influenza, these could cause endothelium dam-
age and severe illness. The current study indicated that 
the expression of three key genes was considerably lower 
in severe influenza patients requiring IMV compared to 
NIMV patients.

This study has some limitations. First, the sample size 
is still relatively small, which might limit the accuracy of 
the obtained data. Second, we should classify the asso-
ciation of hub genes and immune cells identified in this 
study as just a statistical correlation rather than causal-
ity. Finally, despite identifying several DEGs in IMV and 
NIMV patients, it is unknown if these host factors are 
unique to severe influenza infection. Hence, in vivo and 
in vitro studies are necessary to identify the function of 

identified hub genes and the underlying mechanism in 
severe influenza.

Conclusions
In conclusion, we evaluated three novel hub genes that 
could be linked to the immunopathological mechanism 
of severe influenza patients that require IMV treatment 
and could be used as candidate  biomarkers for severe 
influenza prevention and treatment.

Methods
Data source
The NCBI-GEO (http://​www.​ncbi.​nlm.​nih.​gov/​geo) 
was used to obtain the mRNA expression patterns of 
influenza patients’ blood samples. The selection criteria 
included: i) influenza infection confirmed by RT-PCR 
using respiratory tract samples; ii) identical disease 
severity categorization; and iii) influenza patients ≥ 
16  years of age and intubated. In this study, we iden-
tified  three data sets such as  GSE101702, GSE21802, 
and GSE111368. The GSE21802 microarray data con-
tained 20 whole-blood samples from IMV patients 
and 16 whole-blood samples from non-IMV patients 
(NIMV), whereas the GSE101702 included 44 whole-
blood samples from the IMV group and 63 whole-blood 
samples from the NIMV group. The microarray data 
of GSE111368 included 69 whole-blood samples from 
the IMV group and 160 whole-blood samples from 
the NIMV group. The training data for the GSE101702 
and GSE21802 were combined to identify differentially 
expressed genes (DEGs) to construct WGCNA. The 
hub genes were validated using GSE111368 as the test 
set.

Evaluation of DEGs
The ’limma’ and ’GEOquery’ packages of R software 
(version 4.2.0) were used to normalize and annotate the 
data from the training set (GSE101702 + GSE21802), 
with DEG screening criteria of adjusted P-value < 0.05 
and log fold change (logFC) > 0.5. The data was plotted 
on a volcano, and the top 50 DEGs were plotted on a 
heatmap.

Functional enrichment analysis
The R package ’cluster-profile’ was utilized to conduct 
GO enrichment and KEGG pathway analyses. With an 
adjusted P < 0.05, GO terms or KEGG cascades were 
considered statistically significant. Biological process, 
cellular component, and molecular function (abbrevi-
ated as BP, CC, and MF, respectively) were GO terms’ 
three aspects.

http://www.ncbi.nlm.nih.gov/geo
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Generation of WGCNA
With the ’WGCNA’ package of R software, a WGCNA 
was generated for the expression profile data of the 
training set. Next, genes were selected with the top 25% 
absolute deviation from the median. The ’goodSample-
Genes’ function was used to ensure that the data was 
accurate. With the help of the ’pickSoftThreshold’ func-
tion, an ideal soft threshold (β) was chosen and con-
firmed. The data from the matrix were then changed 
into an adjacency matrix, clustered to find modules 
based on the topological overlap. A hierarchical clus-
tering dendrogram was constructed after completing 
the module eigengene (ME) calculation and combin-
ing related modules in the ME-based clustering tree. 
Gene significance (GS) and module significance (MS) 
were evaluated using modules and phenotypic data to 
identify the GS and clinical information and examine 
the relationship between modules and models. In addi-
tion, for each gene, the module membership (MM) was 
determined to examine the GS in the module.

Hub gene evaluation and confirmation
Candidate hub genes were chosen based on their sig-
nificant inter-module interaction. The absolute GS val-
ues of genes having biological importance are frequently 
greater. The criteria were used to screen candidate hub 
genes (absolute value of GS > 0.20; absolute value of 
MM > 0.80). The DEGs were then intersected with the 
potential hub genes using the R software’s ’glmnet’ pack-
age to conduct LASSO analysis to find the final hub 
genes.

Box plots were used to compare the levels of hub gene 
expression in the IMV and NIMV groups. The expression 
of hub genes was assessed through receiver operating 
characteristic curves (ROCs) to differentiate IMV from 
NIMV patients.

Evaluation of immune cell infiltration (ICI) and its 
association with hub genes
The ssGSEA algorithm was used to calculate the rela-
tive infiltration levels of immune cells in the training set 
samples. Differential expression levels of immune invad-
ing cells were visualized using violin plots. The ’ggplot2’ 
package was used to visualize the Spearman correlations 
for immune infiltrating cells with hub genes.
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