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Abstract 

Background:  Recently, Zika virus (ZIKV) re-emerged in India and was potentially associated with microcephaly. How‑
ever, the molecular mechanisms underlying ZIKV pathogenesis remain to be explored.

Results:  Herein, we performed a comprehensive RNA-sequencing analysis on ZIKV-infected JEG-3, U-251 MG, and 
HK-2 cells versus corresponding uninfected controls. Combined with a series of functional analyses, including gene 
annotation, pathway enrichment, and protein–protein interaction (PPI) network analysis, we defined the molecular 
characteristics induced by ZIKV infection in different tissues and invasion time points. Data showed that ZIKV infec‑
tion and replication in each susceptible organ commonly stimulated interferon production and down-regulated 
metabolic-related processes. Also, tissue-specific immune responses or biological processes (BPs) were induced after 
ZIKV infection, including GnRH signaling pathway in JEG-3 cells, MAPK signaling pathway in U-251 MG cells, and 
PPAR signaling pathway in HK-2 cells. Of note, ZIKV infection induced delayed antiviral interferon responses in the 
placenta-derived cell lines, which potentially explains the molecular mechanism by which ZIKV replicates rapidly in 
the placenta and subsequential vertical transmission occurs.

Conclusions:  Together, these data may provide a systemic insight into the pathogenesis of ZIKV infection in distinct 
human tissue-derived cell lines, which is likely to help develop prophylactic and therapeutic strategies against ZIKV 
infection.
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Background
ZIKV is a single-stranded positive-sense RNA Flavivirus 
[1] that is primarily transmitted through the Aedes mos-
quitos [2]. It was first isolated in 1947 from a febrile rhe-
sus macaque caged in Zika forest canopy in Uganda [3]. 
ZIKV is related to other human pathogens transmitted by 

arthropods including dengue virus (DENV), yellow fever 
virus (YFV), West Nile virus (WNV), Japanese encephali-
tis virus (JEV), and tick-borne encephalitis virus (TBEV) 
[2]. During the past decades, ZIKV has re-emerged from 
a relatively unknown status to causing massive epidem-
ics in French Polynesia, South, and Central America. 
Although ZIKV infection causes mild fevers with rash 
and conjunctivitis in most cases, severe neurological phe-
notypes can occur including Guillain–Barre syndrome 
and microcephaly [4–6]. 

Notably, ZIKV exhibits a broad-spectrum tropism 
and persistence in body tissues and fluids, which con-
tributes to the clinical manifestations and epidemiol-
ogy observed during the epidemic [7]. In  vitro studies 
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have demonstrated that human neural progenitor cells, 
cerebral organoids, astrocytes, placental cells, proxi-
mal renal tubular epithelial cells, and peripheral blood 
mononuclear cells are susceptible to ZIKV infection [8–
14]. Considerable efforts have been made to investigate 
the pathogenic features and molecular mechanisms of 
ZIKV infection in human cells through RNA-sequenc-
ing (RNA-seq) technology [15]. In the previous studies, 
the transcription of Toll-like receptor 3 (TLR3), retinoic 
acid-inducible gene I (RIG-I), and melanoma differen-
tiation-associated gene 5 (MDA5), as well as several 
interferon-stimulated genes including OAS2, ISG15, and 
MX1, were strongly increased in human fibroblasts after 
ZIKV infection [16]. While ZIKV infection in human 
neural progenitor cells (hNPCs) [10] particularly inhib-
ited gene expression in cell-cycle-related pathways, 
ZIKV-upregulated genes were primarily enriched in the 
transcription, protein transport, and catabolic processes 
including caspase-3, which were involved in the regula-
tion of the apoptotic pathway.

In addition, ZIKV antigen was found in the chronic villi 
of a human placenta from a mother who gave birth to an 
infant with microcephaly [17], and ZIKV RNA has been 
isolated from the placental tissue of a mother diagnosed 
with ZIKV disease [18]. Vertical transmission of ZIKV 
from an infected mother to the developing fetus in utero 
reflects tropism for placental associated cells, such as pla-
cental macrophages, which are also known as Hofbauer 
cells (HCs) [19, 20]. Analysis of antiviral gene expression 
shows that type I interferon (IFN) signaling pathway, 
including RIG-I-like receptor (RLR) transcription as well 
as downstream antiviral effector genes, was up-regulated 
in HCs after ZIKV infection (24 and 48 h post-infection, 
the late time point) [19]. This delayed antiviral immune 
response may provide a window for drastic ZIKV 
replication.

Prior findings partially explained the high efficiency 
and pathogenicity of ZIKV infection in human placentae 
and developing fetal brains. However, the consequences 
of ZIKV infections in other human organs or tissue cells 
and the difference of host response induced by ZIKV 
infection between these susceptible cells remain elusive. 
More importantly, detailed analyses of the ZIKV infec-
tion-induced gene network disruption, the tissue-specific 
immune responses or associated BPs, and the relation-
ships between regulated signaling pathways are still 
unclear. Therefore, a systematical investigation of BPs 
affected by ZIKV infection in various human organ sam-
ples could be necessary to identify the candidate genes 
for pharmaceutical intervention and potential biomark-
ers for diagnosis.

Previous studies have reported that human choriocar-
cinoma cells (JEG-3) [14], astrocytes (U-251 MG) [13], 

and human renal proximal tubular epithelial cells (HK-2) 
[21] can support ZIKV infection with higher efficiency 
and observable cytopathic effects. In this study, a com-
prehensive RNA-seq analysis was performed to inves-
tigate the effects of ZIKV infection on multiple human 
organs. Moreover, functional pathway enrichment 
analyses of Differentially  Expressed  Genes (DEGs) were 
executed to detect the best candidate signaling pathway 
associated with ZIKV infection by comparing the RNA-
seq data from the above three cell lines. Subsequent 
analysis was focused on the placental infection data from 
indicated timepoints of ZIKV infection in human pla-
cental cells and revealed that delayed INF induction is 
likely to respond to enhanced ZIKV replication in human 
placentae.

Results
ZIKV infection induced distinct immune responses 
in diverse tissues‑derived cell lines
Here, transcriptome datasets on three cell lines from 
multiple human tissues, including human placental cho-
riocarcinoma cells (JEG-3), human glioblastoma cells 
(U-251 MG), and human renal proximal tubular epithe-
lial cells (HK-2), were obtained from RNA-sequencing, 
which recorded the gene expression of uninfected con-
trols and ZIKV-infected cells. DEGs in corresponding cell 
lines at 24  h.p.i. were identified by comparing with the 
basic transcriptome of controls, which were not infected 
with ZIKV. The comparison using T-test and Fold 
Change (FC) with defaulted thresholds (see Materials and 
Methods) yields a total of 142 up-regulated genes and 32 
down-regulated genes in JEG-3 cell line. Besides, there 
were 1,261 up-regulated and 165 down-regulated genes 
in U-251 MG cells, while 892 genes were found to be up-
regulated and 638 down-regulated in HK-2 cells (Fig. 1a). 
Detailed information of DEGs in JEG-3, U-251 MG and 
HK-2 cell lines is listed in Supplementary Tables 1, 2 and 
3. All 2,973 DEGs in these three cell lines showed gener-
ally high classification performance, especially in U-251 
MG and HK-2 cell lines, indicating tissue-specificity pat-
terns of expression as well as divergent functions (Sup-
plementary Fig. 1). We observed that only 33 DEGs were 
overlapped in all three cell lines (Fig. 1a), most of which 
were associated with antiviral functions, such as activa-
tion of the complement system (C3), inhibition the viral 
replication (IFIT1, IFIT5, ISG20, OAS1, OAS3, and 
RSAD2), regulation of antiviral innate immune response 
(DDX58, IFIH1), participation in T-cell activation path-
way (HSH2D), regulation of type I interferon production 
(DHX58), and other antiviral activity (DDX60, DDX60L, 
IFIT2, IFIT3, and ISG15). Information of the gene names 
and corresponding functions summarized in NCBI data-
base [22] are described in detail within Supplementary 
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Table  4. Also, Supplementary  Fig.  2 showed that, these 
33 common DEGs displayed distinct expression patterns 
between the uninfected and infected samples in each cell 
line.

The above results showed that most of the common 
genes among all organs were related to general antiviral 
responses. Besides, some of them could also be detected 
in other viral responses. For instance, RSAD2 was found 
to inhibit several viruses including influenza virus and 
HIV-1, and DDX60L could inhibit hepatitis C virus rep-
lication in response to interferon stimulation in cell 
culture. Conversely, tissue-specific DEGs indicate the 
different host responses to ZIVK infections in multiple 
organs or tissues.

It was also revealed that ZIKV infection stimu-
lated fewer DEGs in JEG-3 cells (Fig.  1b) than those 
in U-251 MG cells (Fig.  1c) and HK-2 cells (Fig.  1d), 
either up-regulated (red dot) or down-regulated (blue 
dot) ones. The top 10 up- and down-regulated genes in 
3 cell lines are listed in Table  1. Among them, IFNL1, 
IFNL3, RSAD2, ZBP1, and OAS2 were related to innate 

immune responses. CCL5 and TNFSF14 were associ-
ated with T-cell mediated cell immunity, with the for-
mer encoded one of the major HIV-suppressive factors 
produced by CD8 + T-cells [23], whose upregulation 
induced human placental damage and excessive inflam-
mation after ZIKV infection [24, 25], while the latter 
encoded a ligand for TNFRSF14/HVEM, co-stimulat-
ing T cell proliferation [26]. Also, it’s reported that the 
deletion of TNFSF14 may correlate with a decrease 
in IFN-γ-producing CD4 + T cells, which mediated 
immunopathogenesis of ocular Herpes simplex virus 
1 (HSV-1) infection as the Herpesvirus entry media-
tor (HVEM) binding partner [27]. Besides, CXCL10 
and CXCL11 bonded the receptor CXCR3 and exerted 
a potent chemotactic effect on activated T lymphocytes 
[28–30]. Additionally, CH25H was induced in response 
to ZIKV infection, and its enzymatic product 25HC 
was a critical mediator of host protection against ZIKV, 
which had also been characterized as a broad-spectrum 
antiviral drug that inhibited viruses including ZIKV 
[31–33].

Fig. 1  DEGs stimulated by ZIKV for 24 h. a DEGs in placental cells (JEG-3), nerve cells (U-251 MG), and kidney cells (HK-2). b DEGs stimulated by 
ZIKV for 24 h in JEG-3. c DEGs stimulated by ZIKV for 24 h in U-251 MG. d DEGs stimulated by ZIKV for 24 h in HK-2. Red and blue dots correspond 
to up-regulated and down-regulated genes, respectively. The top 10 up-regulated and down-regulated genes were determined by FC value and 
marked in the figures. Several labeled genes are not shown in the figures due to their overlap with other genes. JEG-3, U-251 MG, and HK-2 cells 
were infected with ZIKV African strain MR766 (MOI = 1). The control samples were the corresponding cells without ZIKV infections. The two-tailed 
student’s t-test was used in the detection of the DEGs between corresponding infected cells and uninfected cells. Each experiment was repeated 
for 3 times
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Specifically, interferon lambda (IFNL) relative genes 
such as IFNL1 and IFNL3, were up-regulated in both the 
JEG-3 cell line and U-251 MG cell line. IFNL has been 
demonstrated to confer protection against HSV-1 and 
ZIKV replication [34, 35]. Differently, ZIKV infection 
tended to up-regulate IFNL3 with FC value of 351-fold 
in the JEG-3 cell line (Fig.  1b) but up-regulated IFNL1 
with FC value of 102.6-fold in U-251 MG cells (Fig. 1c), 
indicating IFNL3 in the placenta may be more sensi-
tive for antiviral effects. For the HK-2 cell line, the IFNL 
related genes were not up-regulated after ZIKV infec-
tion (Fig. 1d), but the innate immune response was sig-
nificantly induced, including ZBP1, which plays a role 
in the innate immune response by binding to foreign 
DNA and inducing type-I interferon production [36], as 
well as OAS2, an essential protein involved in the innate 
immune response to viral infection [37]. Together, these 
results suggested that host immune response to ZIKV 
infection showed tissue specificity.

ZIKV infection induced profound IFNs production
To analyze the molecular mechanism underlying ZIKV 
infection in cells from different tissues, correspond-
ing DEGs were enriched through Gene Ontology Bio-
logical  Process (GO BP) (Fig.  2, Supplementary Fig.  3, 
Supplementary Tables  5, 6, 7, 8, 9, 10, 11, 12 and 13) 
and pathways from KEGG (Kyoto Encyclopedia of 
Genes and Genomes) pathway database [38–40] (Fig. 3, 

Supplementary Tables  14, 15 and 16). The enrichment 
results on GO BP showed that the up-regulated genes 
in these three cell lines were preferentially enriched in 
defense response to virus, regulation of viral genome rep-
lication, type I IFN signaling pathway, etc. (Fig.  2a,c,e). 
These data indicated that ZIKV infection was likely to 
induce massive viral defense processes, in particular, the 
type I IFN signaling pathway (Supplementary Table  6, 
9, 12), which might lead to the downstream antiviral 
immune response.

Furthermore, ZIKV down-regulated multiple met-
abolic-related BPs such as the arachidonic acid meta-
bolic process in the JEG-3 cells (Fig. 2b, Supplementary 
Table 7), amine metabolic process in the U-251 MG cells 
(Supplementary Table  10), and cholesterol metabolic 
process in HK-2 cells (Fig. 2f, Supplementary Table 13), 
respectively. These results indicated that ZIKV infec-
tion could also disturb the host metabolic system, which 
is consistent with previous studies that ZIKV infec-
tion could trigger the host metabolic reprogramming 
[41, 42]. Besides, ZIKV infection also inhibited the pro-
cess of cornification in U-251 MG (Fig. 2d, Supplemen-
tary Table 10). While in HK-2 cell line, ZIKV peculiarly 
restrained sterol biosynthetic process, secondary alco-
hol biosynthetic process, etc. (Fig.  2f, Supplementary 
Table 13).

The KEGG pathway enrichment further supports the 
above results and revealed that ZIKV infection is apt to 

Table 1  The top 10 up/down-regulated DEGs in 3 cell lines

Ranking/cell line JEG-3 U-251 MG HK-2

Up-regulated genes 1 IFNL3 CXCL10 DHRS2

2 CCL5 RSAD2 IFI27

3 IFNL1 XAF1 LOC100133669

4 IFIT2 IFNL1 ZBP1

5 RTL9 TNFSF14 OAS2

6 TNF CXCL11 FBXO39

7 DHX58 CHRNA1 KLHDC7B

8 IFIT3 OASL VGF

9 IL1A MX2 MX2

10 EGR1 CH25H TAC1

Down-regulated genes 1 POTEG CGB5 IL33

2 HPN KRT19 SPSB4

3 CATSPERE NTF4 LMOD1

4 CD22 CGB2 REN

5 INPP5J KRT75 KIAA1210

6 CTAGE8 RGS8 ENPP3

7 ZNF221 CNGA3 LOC100129518

8 CYP1A1 ALPP KCNK2

9 AC136616.1 KRT13 ZCCHC5

10 ZNF846 ACKR3 GMNC
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regulate the IFN-related biological pathways (Fig. 3, Sup-
plementary Tables  14, 15 and 16). For example, ZIKV 
infection induced the RIG-I-like receptor (retinoic acid-
inducible gene I-like receptors, RLR) signaling pathway 
in the JEG-3 cell line (Fig. 3a, Supplementary Table 14), 
where RIG-I could detect viral RNAs and activate the 
type I IFN-mediated antiviral immune response dur-
ing infection [43]. Similarly, ZIKV-infected U-251 MG 
could specifically affect the JAK-STAT signaling pathway 
(Fig.  3a, Supplementary Table  15), including IFN-stim-
ulating gene 15 (ISG15), which was reported to restrict 
viral replication and spread [44]. The IFN-related antivi-
ral effects are owing to the contest between ZIKV virus 
infection and host antiviral immune response.

It is further observed that ZIKV infection also induced 
a strong inflammatory response, immune regulatory and 
virus-related pathways. Typically, DEGs in JEG-3 cells 
were significantly enriched in other RNA virus-related 

pathways, such as Influenza A viruses, Coronaviruses, 
Epstein-Barr viruses infection, indicating a series of 
immune effects were evoked by ZIKV infection (Fig. 3a, 
Supplementary Table 14). In addition to the IFN-related 
pathways, ZIKV infection in U-251 MG also specifically 
regulates the Arrhythmogenic Right Ventricular Cardio-
myopathy (Fig. 3b) and Phenylalanine metabolism path-
way, where the latter was reported to be associated with 
vector control of Blood-feeding arthropods upon ZIKV 
infection [45] (Supplementary Table  15). The pathway 
analysis of HK-2 cell line indicated different regulation 
patterns in kidney by initiating pathways, such as Influ-
enza A, Viral myocarditis, and Leukocyte transendothe-
lial migration (Fig. 3c), the latter was reported to enhance 
monocyte adhesion and transmigration favoring viral 
dissemination to neural cells during ZIKV infection [46]. 
Also, other signaling pathways, such as MAPK signaling 
pathway and PPAR signaling pathway (Supplementary 

a b

c d

e f

Fig. 2  The enriched GO BP of up-regulated and down-regulated genes in JEG-3, U-251 MG, and HK-2 cells. a-b The enriched GO BP of up-regulated 
and down-regulated genes in JEG-3 cells. c-d The enriched GO BP of up-regulated and down-regulated genes in U-251 MG cells. e–f The enriched 
GO BP of up-regulated and down-regulated genes in HK-2 cells. Enrichment analyses were performed by clusterProfiler package of R software. 
Hypergeometric tests were used to screen enriched GO BPs, and P-values were further adjusted by the default “Holm” method. Those GO BPs with 
an adjusted P-value < 0.05 were considered significant. Here, the top 20 significant GO BPs ranked by adjusted p-value were displayed
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Table  16), were stimulated to combat ZIKV infection. 
Just as previous studies indicated, PPAR signaling path-
way was dysregulated in ZIKV infected neural progeni-
tor cells [47], and its down-regulation might dysregulate 
sertoli energy supplies and adversely affect spermato-
genesis [48]. Together, ZIKV infection usually triggered 
IFN responses to combat virus replication or invasion. 
In addition to common mechanisms, each infected 

organ also simulated tissue-specific immune responses 
or other BPs.

ZIKV infection induced delayed IFN induction 
in placenta‑derived cells
Further, to explore the anti-ZIKV response in placen-
tae, infected JEG-3 cells were harvested for determin-
ing host RNA levels by RNA-seq analysis at different 

a

b c

Fig. 3  The enriched KEGG pathway of DEGs and PPI network analysis in JEG-3, U-251 MG, HK-2 cell lines. a The enriched KEGG pathway of DEGs 
in JEG-3, U-251 MG, and HK-2 cells. Here, the total top 30 significant pathways ranked by adjusted p-value in 3 cell lines were displayed. b The 
example enriched KEGG pathway of DEGs in U-251 MG cells. c The example enriched KEGG pathway of DEGs in HK-2 cells. Here, the lines represent 
the interactions in the PPI network. Node colors represent DEGs annotated on different pathways. DEGs on JEG-3 cells sporadically map to the PPI 
network, so their PPI network is not shown. Enrichment analyses were performed by clusterProfiler package of R software. Hypergeometric tests 
were used to screen enriched KEGG pathways, and P-values were further adjusted by the default “Holm” method. Those KEGG pathways with an 
adjusted P-value < 0.05 were considered significant
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post-infection times (3 h, 12 h, and 24 h). By comparing 
with un-infected control, DEGs for three time points 
were detected (Fig. 4a). It can be found that, 287 DEGs 
were detected at 3 h post-ZIKV infection, which includes 
108 up-regulated and 179 down-regulated genes (Sup-
plementary Table 17). After 12 h.p.i., the whole number 
of DEGs decreased to 82, of which 55 were up-regulated 
and 27 were down-regulated (Supplementary Table  18). 
Later, the DEGs increased to 174 at 24 h.p.i., which con-
tains 142 up-regulated and 32 down-regulated ones (Sup-
plementary Table 1).

Intriguingly, results in Fig.  4a showed that there are 
only 2 overlapped DEGs among three time points post-
infection on the JEG-3 cell line, indicating placenta cells 
were at different antiviral states overtime after ZIKV 
infection. Notably, there were fewer genes differentially 
expressed at 12  h.p.i. than those at 3 or 24  h.p.i., both 
up-regulated (red dots) and down-regulated genes (blue 
dots). It might be caused by compensation reactions after 
12 h of ZIKV infection. The top 10 up- and down-regu-
lated genes at 6 h.p.i. and 12 h.p.i. are listed in Table 2, 
while DEGs at 24 h.p.i. were already shown in Table 1.

Specifically, only a few top up-regulated genes at 3 h.p.i. 
and 12 h.p.i. are associated with anti-viral infection, such 
as IRF8 (3 h.p.i.) which could regulate the expression of 
IFN-stimulating genes (ISGs), and FCGR1A (12  h.p.i.) 
that encodes Fc-gamma receptors, which is essential for 
immune response (Table  2). On the other hand, most 
of the top up-regulated genes at 24  h.p.i. were closely 
related to anti-viral responses. Of the top 3 up-regulated 
genes, IFNL1 and IFNL3 are related to innate immune 
response, while CCL5 is associated with T-cell-mediated 
cell immunity (Table 1). Moreover, IFIT2 and IFIT3 are 
IFN-stimulating genes targeted directly by IRF3, which 
mediated antiviral response [49]. DHX58 (LGP2) is also 
the up-regulated antiviral signature involved in cyto-
plasmic recognition of RNA viruses. Besides, as one of 
the cytosolic viral RNA sensors, LGP2 belongs to the 
RLR family and mediated the production of type I IFNs, 
antiviral effector genes, and pro-inflammatory cytokines 
[50]. Also, IL1A has been reported to involve in various 
immune responses [51].

Upon ZIKV infection, the expressions of IFN-related 
genes (such as IFNL1 and IFNL3) and ISG-related genes 
(such as ISG15 and ISG20) were only marginally elevated 
until 24  h.p.i. (Fig.  1b, Supplementary Table  1). These 

observations showed that ZIKV infection may stimulate 
substantial but delayed IFN production, suggesting that 
this flavivirus attenuated host antiviral response.

Furthermore, DEGs at the above three time points were 
annotated to GO BPs (Fig. 5, Supplementary Tables 5, 6 
and 7, 19, 20) and pathways (Fig.  6, Supplementary 14 
and 21). As shown in Fig. 5, DEGs at 3 h and 24 h post 
infection are enriched in completely different top 20 BPs 
(Fig. 5a-b), while DEGs of 12 h after ZIKV infection failed 
to enrich at any BPs and pathways. This may be because 
the rapid response to placental infection has faded before 
an advanced response would be triggered.

As shown in Fig. 5a, ZIKV infection mainly regulated 
the process of embryonic organ development, neuron 
fate commitment, and digestive system development at 
3  h.p.i. (Supplementary Table  19). Whereas changes at 
24 h.p.i. were the regulation of viral life cycle, viral pro-
cess, type I IFN, etc. (Fig.  5b, Supplementary Table  5). 
In the enriched GO BP of up-regulated genes, only the 
process of positive regulation of smooth muscle cell pro-
liferation was common at 3  h.p.i. and 24  h.p.i. (Supple-
mentary Table 6 and 20). BPs such as regulation of lipid 
metabolic process, negative regulation of osteoblast dif-
ferentiation, and circadian regulation of gene expression 
were induced by ZIKV infection at 3 h.p.i. (Supplemen-
tary Table 20). While at 24 h.p.i., processes such as regu-
lation of viral genome replication, regulation of viral life 
cycle, type I IFN signaling pathway, etc. were particularly 
up-regulated (Fig.  5c, Supplementary Table  6). It’s indi-
cated that significant activation of the type I interferon 
pathway occurs until the late stage of ZIKV infection, 
mainly because virus hijacked the host protein such as 
AXL to interfere in the activation of IFN signaling path-
way [13]. In addition, down-regulated genes at 24  h.p.i. 
were primarily enriched in some metabolic-related pro-
cesses, such as drug metabolic process, arachidonic acid 
metabolic process, exogenous drug catabolic process 
(Fig. 5d, Supplementary Table 7).

It can be observed from KEGG pathway analysis that 
ZIKV-infected JEG-3 cells at 3  h.p.i. and 24  h.p.i. up-
regulated these three common pathways, namely AGE-
RAGE signaling pathway in diabetic complications, 
GnRH signaling pathway, and Pertussis (Fig.  6a,b, Sup-
plementary Tables 14 and  2

1). Typically, DEGs at 3  h.p.i. were enriched in some 
canonical signaling pathways such as Estrogen signaling 

(See figure on next page.)
Fig. 4  DEGs induced by ZIKV infection in JEG-3 cells at different time points. a DEGs in JEG-3 cells at 3 h, 12 h, and 24 h post ZIKV infection. b DEGs 
in JEG-3 cells induced at 3 h.p.i.. c DEGs in JEG-3 cells at 12 h.p.i.. The up-regulated genes were labeled as red points, and down-regulated genes 
were labeled as blue points. The top 10 up-regulated and down-regulated genes were detected by FC value and were labeled on the figures. 
Several labeled genes are not shown in the figures due to their overlap with other genes. JEG-3 cells were infected with ZIKV African strain MR766 
(MOI = 1) at 3 time points (3 h, 12 h, 24 h). The control samples were the corresponding cells without ZIKV infections. The two-tailed student’s t-test 
was used in the detection of the DEGs between corresponding infected cells and uninfected cells. Each experiment was repeated for 3 times
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Fig. 4  (See legend on previous page.)
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pathway, MAPK signaling pathway, etc. (Fig. 6a, Supple-
mentary Table 21). As reported previously, the estrogen 
receptor modulators quinestrol and raloxifene effectively 
inhibited ZIKV, DENV, and WNV infection at low micro-
molar concentrations [52]. Moreover, ZIKV was reported 
to damage many typical astrocyte signaling pathways, 
including axon guidance signal, FGF signal, STAT3 sig-
nal, AMPK, and ERK/MAPK signal, etc. [53]. Besides, 
some immune-related processes are also specifically initi-
ated after 3 h of ZIKV infection, such as antigen process-
ing and presentation pathways.

After 24  h of ZIKV infection, more IFN-related bio-
logical pathways were stimulated, such as RIG-I-like 
receptor signaling pathway (Fig.  6b, Supplementary 
Table  14). Besides, other viral infection-related path-
ways are also stimulated, such as Coronavirus disease-
COVID-19 and Epstein- Barr virus infection, indicating 
induced sufficient immune response at 24 h post-ZIKV 
infection (Fig.  6b, Supplementary Table  14). These 
observations show that ZIKV induced overt but delayed 
type I IFN responses when infecting placenta, which 
was similar to SAR-COV-2 in the airway epithelial cell 
line [54–56], suggesting that ZIKV infection perturbed 
host immune responses and provided mechanistic 
insights into the immune evasion.

Discussion
In this study, the DEGs between control and ZIKV 
infection were detected in JEG-3, U-251 MG, and HK-2 
cell lines via RNA-seq technology. Particularly, some 
DEGs in invading tissues were reported to play antiviral 
effects not only in combating ZIKV infection, but also 
in SARS-CoV-2 infection. For example, except for sup-
pressing ZIKV infection, CH25H as one of the ISGs, was 
reported to be induced by SARS-CoV-2 infection in vitro 
and COVID-19-infected patients. Also, its product 
25HC showed broad anti-coronavirus activity by block-
ing membrane fusion, which also inhibited SARS-CoV-2 
infection in lung epithelial cells and viral entry in human 
lung organoids [57, 58].

The above analysis detected 33 common DEGs 
among three cell lines in 24  h.p.i. (Fig.  1a), which were 
involved in multiple antiviral functions (See Results 
part). Moreover, we detected tissue-specific DEGs for 
JEG-3 cells (Supplementary Table  22), U-251 MG cells 
(Supplementary Table  23), and HK-2 cells (Supplemen-
tary Table 24), respectively. Among 98 specific DEGs in 
JEG-3 cells, IFNL3 encodes a cytokine distantly related 
to type I interferons, and can be induced by viral infec-
tion [59]. Also, TNF has been reported for its involve-
ment in coronavirus biology, and is involved in cytokine 
storm inflammatory response [60]. Moreover, targeting 
TNF was proved to alleviate Zika virus complications in 
mouse models [61]. Besides, among 1,057 specific DEGs 
in U-251 MG cells, IL15 regulates T and natural killer 
cell activation and proliferation [62]. MYD88 encodes a 
cytosolic adapter protein that plays a central role in the 
innate and adaptive immune response, which functions 
as an essential signal transducer in the interleukin-1 
and Toll-like receptor signaling pathways [63]. Also, 
among 1,166 DEGs in HK-2 cells, IL33 is involved in the 
maturation of Th2 cells and the activation of mast cells, 
basophils, eosinophils and natural killer cells [64]. Also, 
IFNB1 encodes a cytokine that belongs to the interferon 
family of signaling proteins, which is released as part 
of the innate immune response to pathogens. The pro-
tein encoded by this gene belongs to the type I class of 
interferons, which are important for defense against viral 
infections [65]. These results indicated that when zika 
virus infects different cells or tissues, it not only stimu-
lates the differential expression of the same genes, but 
also exhibits tissue specificity.

For time series analysis, the DEGs of JEG-3 cells in pla-
centa tissue after infection for 3  h, 12  h and 24  h were 
evaluated, which involved only 2 overlapped DEGs 
including DLG4 and CACNA1S (Fig. 4a). Among them, 
DLG4 encodes a member of the membrane-associated 
guanylate kinase (MAGUK) family, and is involved in 

Table 2  The top 10 up/down-regulated DEGs in different time 
points of JEG-3 cells

Ranking/cell 
line

3 h 12 h

Up-regulated genes 1 ANKRD1 ADAM11

2 BTBD19 ANKDD1B

3 ART4 EHD2

4 NPIPA2 FCGR1A

5 EDN1 ZBED6

6 THBS1 FITM1

7 EGR1 APOD

8 IQUB ZEB2

9 IRF8 ROPN1L

10 ZAR1L ITPKB

Down-regulated genes 1 ZNF221 CD22

2 REPS2 REPS2

3 INO80B ASPHD1

4 ITGA10 DPPA4

5 TIMD4 COLQ

6 HIC1 DLG4

7 HOXA5 HSF2BP

8 ALKAL2 NLRP1

9 ARHGEF25 CATSPERE

10 C11orf52 CLEC18A
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receptor tyrosine kinase signaling [66]. CACNA1S is 
previously reported to be associated with hypokalemic 
periodic paralysis, thyrotoxic periodic paralysis and 
malignant hyperthermia susceptibility [67]. In addition, 
there are 255 specific DEGs after 3 h of infected placenta 
cells (Supplementary Table 25). Among them, IRF8 con-
trols the expression of IFNα- and IFNβ-regulated genes 
that are induced by viral infection [68]. Also, 62 genes 
were specifically differentially expressed after 12  h of 
treatment in JEG-3 cells (Supplementary Table  26). For 
example, IFITM1 is a member of interferon family that 
induced antiviral proteins, which restricts cellular entry 
by diverse viral pathogens, such as influenza A virus, 
Ebola virus and SARS-CoV-2 [69]. Besides, 148 genes 
were specifically differentially expressed in placenta cells 
after 24  h of infections (Supplementary Table  27). For 
example, IFIT3 is involved in defense response to virus, 
negative regulation of viral genome replication, and 
positive regulation of IκB/NFκB signaling [70]. Also, IL6 
encodes a cytokine that functions in inflammation and 
the maturation of B cells, contributing to host defense 
during infection and tissue injury [71].

The above result illustrated that the anti-infection 
mechanisms triggered by the placenta tissues varied con-
siderably during the different periods of ZIKV infection. 

In particular, during the early stage of placental infec-
tion (3 h), the highest number of DEGs among all three 
time points are detected, which were stimulated to resist 
ZIKV invasion and replication. During the middle stage 
of infection (12 h), the anti-viral infection was decreased. 
In contrast, during the late stage of infection (24 h), the 
antiviral intensity regained, particularly in triggering the 
response of interferon-related pathways, which meant a 
delayed action of interferon in the placental tissue.

Furthermore, GO BP enrichment and KEGG pathway 
analysis of three cell lines facilitated the discovery of 
highly significant genes and pathways during ZIKV infec-
tion. Collectively, the up-regulated DEGs of all three cells 
were enriched into multiple IFN-related signaling path-
ways, from the RLR pathway and NF-κB pathway related 
to the production of type I interferon, to the JAK-STAT 
pathway and ISGs production which were activated 
after the recognition of type I interferon. Meanwhile, 
the NOD-like receptor (NLR) signaling pathway, which 
was crucial in innate immune response, was observed 
to be enriched in all three cell lines (Fig. 3a, Supplemen-
tary Table 14, 15 and 16). This result suggests that ZIKV 
infection in these tissues can activate the up-stream pat-
tern recognition molecules NLRs in innate immunity. 
While some NLRs recruit and activate inflammatory 

a b

c d

Fig. 5  The enriched GO BP of DEGs in placental cells at different time points. a The enriched GO BP in JEG-3 cells at 3 h post-ZIKV infection. b 
The enriched GO BP in JEG-3 cells at 24 h post-ZIKV infection. c-d The enriched GO BP of up-regulated and down-regulated DEGs at 24 h.p.i.. The 
DEGs at 12 h.p.i. failed to enrich at any GO BP, thus not shown. The enriched GO-BP of up-regulated DEGs at 3 h post-ZIKV infection was shown in 
Supplementary Table 20, while down-regulated DEGs at 3 h.p.i. failed to enrich at any GO BP, thus not shown. Enrichment analyses were performed 
by clusterProfiler package of R software. Hypergeometric tests were used to screen enriched GO BPs, and P-values were further adjusted by the 
default “Holm” method. Those GO BPs with an adjusted P-value < 0.05 were considered significant. Here, the top 20 significant GO BPs ranked by 
adjusted p-value were displayed
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caspases into inflammasomes, others trigger inflamma-
tion via alternative routes including the NF-κB, MAPK, 
and regulatory factor pathways [72–74]. The critical role 
of NLRs and their downstream signaling components in 
development and physiology is demonstrated by their 
clear implications in human diseases. Recently, Ting et al. 
has found acute kidney injury induced in ZIKV infection 

was caused by activation of NLRP3 inflammasome and 
thereby suppression of BCL2 [75], which was consist-
ent with our analysis above. Interestingly, the results 
of KEGG pathway analysis showed that NLR signal-
ing pathway was enriched at 24 h.p.i. but not at 3 h.p.i. 
(Fig. 6, Supplementary Tables 14 and 21), suggesting that 
endogenous damage-related molecular pattern (DAMP) 

a

b

Fig. 6  The enriched KEGG pathway of DEGs in placental cells at different time points. a The enriched KEGG pathway of DEGs in JEG-3 cells at 3 h 
post ZIKV infection. b The enriched KEGG pathway of DEGs in JEG-3 cells at 24 h post ZIKV infection. The DEGs at 12 h.p.i. failed to enrich at any 
KEGG pathway, thus not shown. Enrichment analyses were performed by clusterProfiler package of R software. Hypergeometric tests were used 
to screen enriched KEGG pathways, and P-values were further adjusted by the default “Holm” method. Those KEGG pathways with an adjusted 
P-value < 0.05 were considered significant. Here, the top 30 significant pathways ranked by adjusted p-value were displayed
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generated during the replication process of ZIKV virus 
in placental cells may be recognized by NLR to activate 
NLR signaling pathways [76]. Furthermore, in placen-
tal cells, we found that IFN induction and ISG response 
were significantly delayed until 24 h after virus infection. 
It is well known that IFN signaling is the first line for anti-
viral defense, thus making ZIKV develops strategies to 
counteract the IFN signaling [77–79]. However, the fast 
induction of type I IFN production by astrocytes plays 
an important role in self-protection of astrocytes and 
suppression of ZIKV replication in the Central Nervous 
System (CNS). Moreover, primary human trophoblasts 
(PHTs) constitutively release the type III interferon-
IFNL1, which may protect trophoblast and non-tropho-
blast cells from ZIKV infection [34]. These results further 
confirm that delayed IFN induction is likely to respond 
for rapid ZIKV replication in human placentae.

Moreover, the ZIKV infection could also provoke some 
extent host adaptive immune response based on GO BP 
enrichment analysis. The enriched GO BPs in the JEG-3 
cells mainly included activated T cell proliferation and 
T-helper 2 cell cytokine production (Supplementary 
Table  6), whereas in U-251MG and HK-2 cell lines, the 
enriched GO BPs are mainly involved in interferon-
gamma response, regulation of T cell proliferation, 
positive regulation of T cell-mediated cytotoxicity, and 
antigen processing and presentation of peptide antigen 
via MHC class I (Fig.  2c,e, Supplementary Tables  9 and 
12). Notably, the placenta has been reported as a major 
tissue for ZIKV replication, and its infection in preg-
nant women could cause intrauterine growth restric-
tion, spontaneous abortion, and microcephaly [80]. The 
GO-BP enrichment verified that the placenta mostly 
up-regulated the process of T cell activation and prolif-
eration, rather than stimulating down-stream immunity 
response, such as positive regulation of T cell-mediated 
cytotoxicity, antigen processing, and presentation of 
endogenous peptide antigen in astrocytes, which may 
contribute to the serious harm of nervous infection and 
vibrant viral replication in human placenta.

We further uncovered that the DEGs induced in U-251 
MG cells were also enriched in Arrhythmogenic Right 
Ventricular Cardiomyopathy (Fig.  3a-b, Supplementary 
Table  15), which was consistent with prior data present 
in ZIKV infected neonatal non-human primate preg-
nancy model, accompanied by microencephaly, seizures, 
and cardiomyopathy [81]. For other stimulated pathways, 
our KEGG enrichment analysis was also consistent with 
previous studies. For example, the enriched Leukocyte 
transendothelial migration pathway in HK-2 cells can 
enhance monocyte adhesion and transmigration favoring 
viral dissemination to neural cells (Fig. 3c) [46]. Besides, 

there are also reports that interpreted ZIKV infection 
interferes with or changes the astrocyte proteins involved 
in synaptic control and axon guidance [53, 82], verifying 
the regulatory effect of ZIKV infection on the Axon guid-
ance pathway (Fig. 3a, Supplementary Table 16).

In addition, it’s shown that ZIKV infection in each 
cell line also specifically down-regulated certain BPs via 
enrichment analysis. For example, JEG-3 cell line specifi-
cally down-regulated the process of unsaturated fatty acid 
metabolic process, long-chain fatty acid biosynthetic pro-
cess, long-chain fatty acid metabolic process, etc. (Fig. 2b, 
Supplementary Table  7). It is consistent with previous 
studies that ZIKV infection reprogrammed placental lipi-
dome by impairing the lipogenesis pathways [42]. The 
metabolic alterations induced by ZIKV provided the basis 
for lipid droplet biogenesis and intracellular membrane 
rearrangements to support viral replication. Furthermore, 
lipidome reprogramming caused by ZIKV is accompanied 
by mitochondrial dysfunction and inflammatory immune 
imbalance, which contribute to placental damage [42].

Note that, different ZIKV strains might illustrate vari-
ous effects on infected cells or tissues. For example, ani-
mal model experiments showed that African ZIKV strains 
could induce short but severe neurological symptoms 
followed by lethality in mice, and the Asian strain mani-
fested prolonged signs of neuronal dysfunction and occa-
sionally caused the death of mice. Moreover, viral RNA 
levels in different organs seem not associated with the 
pathogenicity of the different strains [83]. Another study 
showed dramatic differences in the inflammatory response 
elicited by the American ZIKV strain from Brazil and its 
Asian ancestral strain isolated from Cambodia. Compared 
with Asian strain, the experimental infection of human-
induced neuroprogenitor stem cells (hiNPCs) with Ameri-
can ZIKV resulted in a diminished induction of IFNs 
stimulated genes (ISGs) and lower induction of several 
cytokines including IFN-α, IL-1α/β, IL-6, IL-8, and IL-15, 
which consequently favoring virus replication [84]. Based 
on the above observations, we speculated that the African 
ZIKV strain used in our study may induce higher levels of 
inflammatory cytokines and markers associated with cel-
lular infiltration in DEGs than Asian or American strains, 
which may explain exacerbated pathogenesis compared to 
those of the Asian or American lineage.

Conclusions
This study reveals the biological response and pathways 
against ZIKV infection in different human organs or tis-
sues, such as GnRH signaling pathway in placental cho-
riocarcinoma JEG-3 cells, MAPK signaling pathway in 
astrocytes U 251-MG cells, PPAR signaling pathway in 
renal-derived HK-2 cell lines and IFN-related pathway 
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activation in all three cell lines. Notably, a delayed inter-
feron response in ZIKV-infected placenta-derived cells 
explains the molecular mechanism why ZIKV replicates 
rapidly in the placenta and prompts a possibility of ZIKV 
vertical transmission. Besides, the above tissue-specific 
immune responses or BPs stimulated by ZIKV infection 
in this transcriptome analysis can guide the investigation 
about the pathogenesis of ZIKV infection in other ZIKV-
tropic tissues.

Methods
Cell lines and viruses
Aedes albopictus C6/36 cells were grown in 30% RPMI-
1640 (Gibco) and 60% Dulbecco’s modified Eagle’s 
medium (Gibco) supplemented with 10% fetal bovine 
serum (FBS, Gibco). U-251 MG cell line was purchased 
from BeNa Culture Collection (BNCC) and authenticated 
by short tandem repeat (STR) as described in the previ-
ous study [13]. HK-2 and JEG-3 cell lines were purchased 
from the American Type Culture Collection (ATCC) 
and were both authenticated by STR authentication. 
U-251 MG cells were cultured in DMEM (Gibco) sup-
plemented with 10% FBS, 100  IU/mL of penicillin, and 
100 µg/mL of streptomycin. JEG-3 cells were cultured in 
MEM (Gibco) supplemented with 10% FBS, 100  IU/mL 
of penicillin, and 100 µg/mL of streptomycin. HK-2 cells 
were cultured in DMEM/F12 (1:1, Gibco) supplemented 
with 10% FBS, 100  IU/mL of penicillin, and 100  µg/mL 
of streptomycin. U-251 MG, JEG-3, and HK-2 cells were 
maintained at 37  °C and C6/36 cells at 28  °C in a fully 
humidified atmosphere containing 5% CO2. All cell lines 
were tested by Saily Bio (Shanghai, China) and are free of 
mycoplasma contamination. The ZIKV MR766 stock was 
purchased from ATCC (ATCC® VR-1838™).

ZIKV infection and samples preparation for RNA‑seq 
analysis
Before ZIKV infection, JEG-3, U-251 MG, and HK-2 
cells were seeded in 10  cm dishes (2 × 106 cells per 
dish). At 24  h (h) after seeding, the cells were rinsed 
once with phosphate-buffered saline (PBS) and were 
then incubated with ZIKV African strain MR766 at 
an MOI of 1 in serum-free medium for 1  h at 37  °C 
unless otherwise noted. The ZIKV-containing medium 
was then replaced with fresh DMEM or MEM supple-
mented with 2% FBS and incubation for the indicated 
time. Cells were rinsed twice with cold PBS and were 
then collected into clean tubes and lysed in RNAzol® 
RT RNA Isolation Reagent for RNA isolation. The 
experiments of controls or ZIKV infected groups were 
conducted in three replicates for both U-251 MG and 
HK-2 cells. Likewise, three replicates were analyzed in 
JEG-3 cells at each time point.

RNA extraction and sequencing assays
RNA extraction and RNA-seq were performed in Bio-
wavelet Co., LTD. RNA was extracted using an RNEasy 
RNA isolation kit (Qiagen) according to the manufac-
turer’s instructions. RNASeq short reads were aligned 
to the human genome (GRCh38) using GSNAP with 
a maximum of two mismatches. Gene expression was 
determined as the number of short reads that fully/par-
tially aligned to the annotated gene model using HTseq. 
Expressed genes were defined as those genes having 
more than 10 total mapped reads in all samples with at 
least two of three replicates having more than two reads.

The detection of DEGs in ZIKV infected cells
The RNA-seq was performed in infected cell lines 
under mock and ZIKV-infected conditions, including 
placental cell line (JEG-3), nerve cell line (U-251 MG), 
and kidney cell line (HK-2). The placental cell line was 
measured at 3  h,12  h, and 24  h post-ZIKV infection, 
while the other two cell lines were uniformly measured 
at 24 h post infection (h.p.i.) merely. To examine inter- 
and intra- differences of ZIKV infection among various 
tissues, DEGs were firstly detected by two-tailed Stu-
dent’s t-test in turn by comparing with corresponding 
mock infection. In each group, those genes with P val-
ues less than 0.05 and FC larger than 2 or less than 0.5 
were detected as DEGs. Then DEGs in each group were 
depicted in volcano plot by EnhancedVolcano package 
of R software. The top 10 up-regulated and down-regu-
lated genes were detected by FC value and were labeled 
on the corresponding figures.

The functional annotation of DEGs in infected cells
To further explore the internal mechanism of ZIKV infec-
tion on different tissues, DEGs in each tissue at different 
infected time points were executed for functional annota-
tions. In detail, GO BP functional annotation analysis and 
KEGG pathway enrichment analysis were performed for the 
screened DEGs, which were performed by clusterProfiler 
package of R software. Those GO-BP and KEGG pathways 
with an adjusted P-value < 0.05 were considered significant.

Moreover, to analyze the gene and function interac-
tion of DEGs, DEGs under different scenarios were anno-
tated into the background PPI network using Cytoscape 
software version 3.4.0 [85], with different colors to dis-
tinguish different functional pathways. Here, the back-
ground PPI network used in this project contained 10,462 
nodes and 55,317 interactions were constructed mainly 
based on three databases, including HPRD version 9 [86], 
Mint version 2012 [87], and IntAct version 4.2.12 [88]. 
Biological pathways for enrichment and analysis were 
integrated from KEGG version 87.0 [89] and GeneCards 
version 4.12 [90].
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