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Abstract 

Background:  It is important to understand the functional impact of somatic mutation and methylation aberration at 
an individual level to implement precision medicine. Recent studies have demonstrated that the perturbation of gene 
interaction networks can provide a fundamental link between genotype (or epigenotype) and phenotype. However, 
it is unclear how individual mutations affect the function of biological networks, especially for individual methylation 
aberration. To solve this, we provided a sample-specific driver module construction method using the 2-order net-
work theory and hub-gene theory to identify individual perturbation networks driven by mutations or methylation 
aberrations.

Results:  Our method integrated multi-omics of breast cancer, including genomics, transcriptomics, epigenomics and 
interactomics, and provided new insight into the synergistic collaboration between methylation and mutation at an 
individual level. A common driver pattern of breast cancer was identified from a novel perspective of a driver module, 
which is correlated to the occurrence and development of breast cancer. The constructed driver module reflects the 
survival prognosis and degree of malignancy among different subtypes of breast cancer. Additionally, subtype-spe-
cific driver modules were identified.

Conclusions:  This study explores the driver module of individual cancer, and contributes to a better understanding 
of the mechanism of breast cancer driven by the mutations and methylation variations from the point of view of the 
driver network. This work will help identify new therapeutic combinations of gene mutations and drugs in humans.

Keywords:  Sample-specific driver module, 2-order network theory, Sample-specific network method, Synergistic 
collaboration, Common driver pattern
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Introduction
Cancer is generally thought to be driven by the continu-
ous accumulation of somatic mutations throughout the 
life cycle of an individual, as well as by epigenetic and 
transcriptional changes [1]. Gene regulation is closely 
related to the development of cancer. Gene regulation 
of cell growth can be divided into two types. The first 
is responsible for maintaining the growth of the body’s 
cells at a constant rate of renewal, and the second is 

responsible for slowing or stopping cell growth so that 
new cells can take over [2].

Some gene mutations will directly or indirectly lead 
to uncontrolled cell growth, which could promote can-
cer progression. These kinds of genes are called driver 
genes. However, some genes with mutations will not 
cause cell growth, and will not lead to the development 
of cancer. These mutation genes are called passenger 
genes [3–5]. Mutations in driver genes confer selective 
advantages on tumor cells, such as an increased ability 
to divide, which allows cells to evade apoptosis, repro-
duce endlessly, evade the immune system and other 
defenses, spread and invade other tissues, and alter 
the environment for their benefit [3]. It is important 
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to identify driver genes to investigate the drive mecha-
nism of cancer development. There are many methods 
to identify driver genes, which are categorized into 
five types based on their major features [6]: mutation 
frequency-based methods, functional impact-based 
methods, structure genomics-based methods, net-
works- or pathways-based methods, and data inte-
gration-based methods. Currently, the most complete 
panorama of cancer driver genes contains 568 driver 
genes, collected on the integrative OncoGenomics 
(IntOGen) platform [7].

Early cancer research mainly focused on genetics, 
specifically on the activation of proto-oncogenes or the 
inactivation of tumor-suppressor genes [3–5]. However, 
since the 1990s, more and more studies have recognized 
that the regulation of epigenetic variation is crucial in 
the occurrence and progression of human cancer. A 
study by researchers at the USDA/ARS Children’s Nutri-
tion Research Center shows that epigenetic changes 
alone can cause cancer [8]. Epigenetic variations are pre-
sent in almost all human cancers and are now known 
to collaborate with genetic mutations to drive cancer 
phenotypes [9]. However, there are few methods of meth-
ylation-driven gene identification. Differentially methyl-
ated genes that affect gene transcription were identified 
as methylation-driven genes by comparing the methyla-
tion status with that of normal tissues in the MethylMix 
algorithm, which was designed by the Stanford Univer-
sity Biomedical Information Center [10].

Cancer is highly heterogeneous, and there are dif-
ferences in genotype and phenotype between differ-
ent patients [11]. Therefore, it is necessary to clarify the 
sample-specific molecular mechanism of cancer and 
formulate individualized treatment plans according to 
the personalized characteristics of each patient. In addi-
tion, genes do not exist in isolation but interact with each 
other to form an organic biological network [12, 13]. A 
biomolecular interaction network can represent biologi-
cal processes more reliably. By integrating multi-omics 
data, a large number of network methods have been pro-
posed. Variable selection methods have played a major 
role in integrating multi-omics data [14] and the net-
works of omics features can be identified through vari-
able selection. For example, Wu et  al. have constructed 
networks by robustly integrating multi-platform omics 
features and using penalization to accommodate the high 
dimensionality [15]. Similarity network fusion is another 
method that can integrate multiple omics data and opti-
mize visualization results [16]. It constructs a sample 
similarity network for each of the data types (such as 
mRNA expression data, DNA methylation, and image 
data), and then iteratively integrates these networks using 
a novel network fusion method. These network methods 

using multi-omics integration account for the heteroge-
neity of cancer data.

In the process of cancer occurrence and development, 
mutations or methylation aberrations will disturb the 
interactions between genes, affecting the orderly bio-
logical system and the phenotype of the patient. The 
perturbation of gene interaction networks connects the 
cancer genotype and epigenotype to the phenotype [17]. 
As such, the construction of the individual specific gene 
interaction perturbation network is extremely important 
for explaining the cancer mechanism driven by the muta-
tions and methylation aberrations. This work integrates 
somatic mutation data, gene expression data, methyla-
tion and gene interactions network data to identify the 
sample-specific mutation and methylation aberration 
driver modules (i.e., cancer-related perturbed biological 
network driven by mutation or methylation aberration 
genes) using a multi-omics data mining method.

Materials and methods
Data sources
Gene expression data
The RNA-Seq data in the form of Fragments Per Kilobase 
Million (FPKM) and clinical data of breast cancer, includ-
ing 1097 breast cancer samples and 113 tumor-adjacent 
breast tissue samples, were downloaded from The Can-
cer Genome Atlas (TCGA) database (http://​tcga-​data.​nci.​
nih.​gov/​tcga/ accessed on 24 June 2020) using TCGA-
Assembler 2 (version 2.0.6, http://​www.​compg​enome.​
org/​TCGA-​Assem​bler/). Additional clinical data of all 
samples were downloaded using the R package RTCGA 
(version 1.22.0). The expression data of breast cancer 
samples and tumor-adjacent breast tissues were assigned 
to a case group and reference group, respectively. The 
downloaded expression matrices were directly used as 
inputs in our method.

Somatic mutation data
Genome-wide nonsynonymous somatic mutations on 
18,847 significantly mutated genes of 986 breast cancer 
tumors in TCGA were downloaded from UCSC Xena 
(version 07–18-2019, https://​tcga-​xena-​hub.​s3.​us-​east-1.​
amazo​naws.​com/​downl​oad/​mc3_​gene_​level%​2FBRCA_​
mc3_​gene_​level.​txt.​gz). Only nonsynonymous mutations 
were used for the following analysis.

Methylation data
The DNA methylation data (level three) in TCGA gen-
erated on the HM450 platform including 485,577 total 
probes [18], were downloaded from the UCSC Xena (ver-
sion 07–19-2019, https://​gdc-​hub.​s3.​us-​east-1.​amazo​
naws.​com/​downl​oad/​TCGA-​BRCA.​methy​latio​n450.​tsv.​
gz) for 794 breast cancer samples and 96 tumor-adjacent 
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breast tissue samples. The methylation level of each 
probe was measured by its beta value, which ranges from 
0 (unmethylated) to 1 (completely methylated). The CpG 
probe annotation file was downloaded from the UCSC 
Xena database (https://​gdc-​hub.​s3.​us-​east-1.​amazo​naws.​
com/​downl​oad/​illum​inaMe​thyl4​50_​hg38_​GDC).

Background network
Synthetic lethality (SL) is a phenomenon that was first 
observed in drosophila melanogaster experiments more 
than 100 years ago. Synthetic lethality is a type of genetic 
interaction between two genes where the simultaneous 
perturbations of the two genes will result in cell death or 
a dramatic decrease in cell viability, though a perturba-
tion of either gene alone is not lethal [19].

In the saccharomyces cerevisiae experiment, most of 
the genes were found to have this SL effect with each 
other, and the SL relationship between these genes 
could also be applied to human tumor genes [20]. Pas-
senger mutations that do not directly contribute to 
tumorigenesis, as well as mutations that disrupt cellular 
networks and promote a cancerous state of cells, could 
be candidates for SL cancer therapies. A novel compre-
hensive map of synthetic-lethal interactions between 
genes that are mutated in cancer may have significant 
clinical potential [21]. Multiple studies have indicated 
that SL is a promising form of gene interaction for can-
cer therapy, and can identify specific genes to target 
cancer cells without disrupting normal cells [22, 23]. In 
addition, an SL will help functionally interpret the 
vast number of mutations identified in cancer genome 
sequencing studies [21].

Consequently, the SL interactions built by Jing et  al. 
from the Synthetic Lethality genes interactions Data-
base (SynLethDB) [24], which consists of 6513 genes and 
19,955 synthetic lethal gene pairs for human tumors, 
were downloaded as the background Network (v1.0, the 
last accessed date, 20–04-2021, http://​synle​thdb.​sist.​
shang​haite​ch.​edu.​cn/#/).

Overview of the sample‑specific driver module 
construction approach
We constructed sample-specific driver modules in three 
steps (see Fig.  1). First, the sample-specific network 
(SSN) for each breast cancer sample was constructed 
based on the gene expression profiles and background 
network by the SSN method introduced in [28]. Second, 
the somatic mutation profiles of all breast cancer sam-
ples were constructed by the somatic mutation data. In 
addition, based on the methylation data we obtained the 
aberrantly methylated genes for each tumor sample using 
the outlier detection method of the Hampel filter, which 
make up the methylation aberration profiles for breast 

cancer samples. Finally, the sample-specific mutation 
driver module (ssMutat-DM) and the sample-specific 
methylation aberration driver module (ssMethy-DM) 
were constructed using the 2-order network theory and 
hub-gene theory.

Construction of the sample‑specific network
In the following, the SSN for each breast cancer sam-
ple was constructed based on gene expression profiles 
by using the SSN method introduced in reference [25] 
(Fig.  1A). First, using the gene expression profiles of n 
normal samples, (all tumor-adjacent breast cancer tis-
sues), the reference network was constructed by cal-
culating the correlation coefficient pccn(the Pearson 
correlation coefficient (PCC)) of each gene pair con-
nected in the background network. The weights of the 
edges in the reference network are the PCC of the cor-
responding gene pairs. Then, the perturbed network of 
the single breast cancer sample d was constructed by 
calculating the new correlation coefficient pccn+1 using 
the expression profiles of all the reference samples and 
sample d. The difference between the reference and per-
turbed network of d is due to the expression profile of 
sample d. The differential network for the single breast 
cancer sample d was constructed by the differential cor-
relation coefficients of the corresponding edge between 
the reference and perturbed networks in terms of PCC:

for each edge. In reference [25], Liu et  al. have dem-
onstrated that �pccn follows a normal distribution with 
a mean value of 0 and a variance of (1− pccn

2)/(n − 1) , 
when n is large enough. The significance level of each 
edge ( �pccn ) was calculated by the two-tailed Z-test (or 
the U-test). The SSN for sample d is constituted by those 
edges with significant edges (P-value < 0.01). The robust-
ness of the SSNs results against the different choices of 
the reference samples and different reference sample 
sizes on breast cancer data from TCGA in [25]. These 
ensure the stability and reproducibility of the sample-
specific driver modules.

Construction of the mutation and methylation matrices
The somatic mutation matrix and the methylation matrix 
can be constructed by the somatic mutation data and the 
methylation data (see Fig. 1B).

We first constructed somatic mutation profiles of all 
cancer samples. Each patient was represented as a profile 
of binary (0, 1) states on genes, where rows represented 
genes and columns corresponded to cancer samples. The 
elements Mij in the matrix was defined as follows:

�pccn = pccn+1 − pccn

https://gdc-hub.s3.us-east-1.amazonaws.com/download/illuminaMethyl450_hg38_GDC
https://gdc-hub.s3.us-east-1.amazonaws.com/download/illuminaMethyl450_hg38_GDC
http://synlethdb.sist.shanghaitech.edu.cn/
http://synlethdb.sist.shanghaitech.edu.cn/
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Fig. 1  Flowchart of the three-step procedure used to identify the sample-specific driver module. A The sample-specific network (SSN) for each 
breast cancer sample was constructed based on the expression matrix and gene interaction network. For a group of reference samples (n samples), 
a reference network was first constructed by the correlation analysis. A new sample d was added to the group, and the perturbed network with 
this additional sample was constructed based on the combined expression data. The SSN for sample d was constructed by using the SSN theory. 
B The somatic mutation profile for each breast cancer sample was constructed using the somatic mutation data. The methylation aberration 
profile for each breast cancer sample was calculated by the outlier detection method of the Hampel filter based on the methylation data. C The 
sample-specific mutation driver module (ssMutat-DM) and the sample-specific methylation aberration driver module (ssMethy-DM) for each breast 
cancer patient were constructed based on the 2-order network theory and hub-gene theory. Subsequent analysis of the driver modules was 
performed including the structure of driver modules, a synergistic collaboration of mutation and methylation, identification of the common pattern 
of driver modules for breast cancer, identification of subtype-specific driver modules, and encoding of the functional consequences of mutations 
and methylation aberrations
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For the methylation matrix, we identified the aber-
rantly methylated genes for each cancer sample. First, 
probes with ‘NA’ values among > 10% samples were 
removed, and we imputed the remaining ‘NA’ values 
using the 10-nearest neighbors imputation procedure 
with the ‘impute.knn’ function in the R package ‘impute’ 
[26]. The information in the CpG probe annotation file 
includes the corresponding gene and the genomic region, 
among others. Using the median of the methylation val-
ues [27] of the CpG probes mapped at promoter regions 
(including 1500  bp upstream to the transcription start 
site TSS1500; 200 bp upstream to the transcription start 
site TSS200; 5’UTR; and 1stExon), a single methylation 
value was consolidated for each gene in the HM450K 
platform. We used the outlier detection method of the 
Hampel filter to identify the aberrantly methylated genes 
(i.e., hypermethylation and hypomethylation genes) for 
each sample. Specifically, each patient was represented as 
a profile of ternary (−1, 0, 1) states on genes, where rows 
represented genes and columns corresponded to cancer 
samples. The elements MTij in the methylation matrix 
were defined as follows:

where v was the methylation value of gene i in patient 
j, MED and MAD were the median and median absolute 
deviation of methylation value of gene i in all samples, 
respectively.

Construction of the sample‑specific driver module
The ssMutat-DM and ssMethy-DM were constructed 
according to the following two theories. The first is the 
2-order network theory [28], which states that genes with 
mutation or methylation aberrations could affect both 
their neighbors and their neighbors’ neighbors. The sec-
ond is the hub-gene theory. Model biology studies have 
demonstrated that hub genes (genes with a high degree 
in a biological network) have extremely important bio-
logical functions, and also play important role in the reg-
ulation of other genes in related pathways [29, 30]. In the 
gene regulatory network related to human disease, hub 
genes tend to be cancer drivers. Based on the above two 
theories, we used two principles to select the subnetwork 
in the SSN for each breast cancer sample: i) the 2-order 

Mij =

1, if gene i mutates in sample j,

0, if gene i does not mutate in sample j.

MTij =



















−1, represents hypomethylation, if v < MED − 3 MAD,

1, represents hypermethylation, if v > MED + 3 MAD,

0, otherwise,

subnetwork centered on mutation genes, ii) the mutation 
genes’ neighbors and their neighbors’ neighbors should 
be hub genes, where the hub genes were regarded as the 
top 20% of genes with higher degrees in the SSN. The 
subnetwork was then considered to be the ssMutat-DM 
for the breast cancer patient, and edges in ssMutat-DM 
were considered to be mutation-driven edges. Similarly, 
we constructed the ssMethy-DM for each patient by cen-
tering on aberrantly methylated genes (see Fig. 1C). The 
union of the ssMutat-DM and ssMethy-DM constituted 
the sample-specific co-driver module (ssCo-DM) for 
each breast cancer sample.

Structural analysis of the driver modules
To measure the importance of different genes in the 
driver modules, the degree, betweenness and eigenvec-
tor centrality of genes in the constructed driver mod-
ules were analyzed. Degree  centrality was determined 
by the number of connections. Betweenness centrality is 
a measure of the importance of a node by assessing the 
number of shortest paths through it. Eigenvector central-
ity is a measure of a node by assessing the importance of 
its adjacent nodes in a network. In addition, the similarity 
of ssMutat-DM and ssMethy-DM of each breast cancer 
sample was measured by the Jacobi similarity as follows:

where SMutat and SMethy represent the gene set or edge 
set of ssMutat-DM and ssMethy-DM, respectively.

Identifying the driver modules for breast cancer and its 
subtypes
A Monte Carlo simulation test was used to evaluate 
whether a specific edge was significantly included in the 
driver modules of more breast cancer samples. This pro-
cess was repeated 10,000 times and 10,000 edges were 
selected randomly each time. We derived the statistical 
significance of the frequency of occurrence in the ssMu-
tat-DM of all breast cancer samples based on empirical 
NULL distribution generated by 10,000 random shuf-
fling. A cutoff of P-value = 0.05 was obtained. All edges 
with a frequency greater than the mean of the cutoff 
values made up the mutation driver module for breast 

Similarity score (SMutat, SMethy) =

∣

∣∩(SMutat, SMethy

)

|
∣

∣∪(SMutat, SMethy

)

|
,
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cancer. Similarly, we constructed the methylation aberra-
tion driver module for breast cancer.

Furthermore, the driver modules for the PAM50 sub-
types of breast cancer were analyzed. We computed 
the edge number of driver modules for each subtype of 
breast cancer, and the differential analysis for the edge 
numbers of different subtypes was performed using the 
Kruskal–Wallis sum test. In addition, pairwise  compari-
sons between subtypes used the Nemenyi test. Edges that 
are present in more than 60% ssCo-DMs of breast cancer 
subtype samples constituted the subtype-specific driver 
module. The unique genes involved in each subtype-
specific driver module were used to perform pathway 
enrichment analysis by Metascape (http://​metas​cape.​org). 
The pathways with P-values less than 0.01 were retained. 
Finally, the subtype-specific pathways were identified.

Statistical analysis
Unless stated otherwise, comparisons of two groups on 
one variable were determined using a Wilcoxon rank sum 
test with continuity correction, two-sided or one-sided, 
unpaired or paired, as appropriate, and multiple group 
comparisons using a Kruskal–Wallis rank sum test. 
Results with P < 0.05 were considered significant. Statis-
tical analyses were performed with R (version 4.05) The 
Pearson correlation coefficients used for the construc-
tion of SSNs were calculated by parallel operation on the 
server with 48 cores.

Results
The constructed driver modules
Statistical analysis of the proportion of aberrantly meth-
ylated genes in each sample demonstrated that the 
proportion of genes with alteration methylation is sig-
nificantly higher in breast cancer samples than in normal 
samples (see Figure S1A). In addition, the hypermeth-
ylation frequency and hypomethylation frequency for 
each gene were calculated for breast cancer samples. 
The result shows that the hypermethylation frequencies 
are significantly higher than those of hypomethylation 
(P-value < 2.2e-16, Wilcoxon rank sum test with conti-
nuity correction, see Figure S1B), i.e., methylation aber-
rations in the promoter region of breast cancer samples 
tend to be hypermethylation.

The SSN was constructed for all samples using the 
above method (see the section on the construction of 
the sample-specific network for details). The probabil-
ity density distribution of the edge number in SSN for 
breast cancer samples and normal samples is shown 
in Fig. 2A. The number of edges in SSN for each breast 
cancer sample is significantly greater than that in normal 
samples (P-value < 2.2e-16, Wilcoxon rank sum test with 

continuity correction), that is, the gene co-expression 
perturbations in breast cancer samples are more serious.

Each breast cancer sample has a ssCo-DM. The degree 
of distribution of five different kinds of genes (includ-
ing mutation genes, aberrantly methylated genes, other 
genes besides these two classes, 1-order neighbor of 
mutation genes, and 1-order neighbor of aberrantly 
methylated genes) in ssCo-DM is shown in Fig. 2B. The 
degree of mutation genes and aberrantly methylated 
genes was significantly lower than that of others, but 
the degree of their neighbors was significantly greater 
(P-value < 0.0001, Kruskal–Wallis rank sum test). In addi-
tion to the degree of genes, a similar result was found in 
the betweenness and eigenvector centrality of the above 
five kinds of genes in ssCo-DM (see Fig. 2C and Fig. 2D). 
This indicates that mutation genes or aberrantly methyl-
ated genes affect their neighbors, which could be the key 
genes with important regulatory functions in the networks.

Synergistic collaboration between methylation 
and mutation at the individual level
The Jacobi similarity of ssMutat-DM and ssMethy-DM 
in terms of edges, and the mutation genes and aberrantly 
methylated genes for each sample were computed. The 
boxplot in Fig. 3A shows that the similarity between the 
aberrantly methylated genes and the mutation genes is 
extremely low in each sample, but the similarity between 
the ssMethy-DM and the ssMutat-DM is significantly 
higher (P-value < 2.2e-16, Wilcoxon rank sum test with 
continuity correction).

For each breast cancer sample, the mutation frequency 
and methylation aberration frequency were calculated 
respectively. The boxplot in Fig. S2A shows that there is 
no significant difference in mutation frequency between 
genes with methylation aberration and all other genes, 
and Fig. S2B also shows that there is also no significant 
difference in methylation aberration frequency between 
genes with mutation and all other genes.

This means that genes with alteration methylation have 
no tendency to mutate at the individual level. Similarly, 
the boxplot in Fig. S2B shows that mutation genes have 
no tendency to be methylation aberration either.

We computed the proportion of edges in the muta-
tion driver module per sample to the edges in the overall 
background network, and the proportion of mutation-
driven edges in the methylation aberration driver mod-
ule for each breast cancer sample. Figure 3B shows that 
the proportion of mutation-driven edges in the methyla-
tion aberration driver module is significantly greater than 
that in the background network (P-value < 2.2e-16, Wil-
coxon rank sum test with continuity correction), that is, 
edges in the methylation aberration driver module tend 

http://metascape.org
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to be mutation-driven. Conversely, edges in the mutation 
driver module also tend to be methylation-alteration-
driven (see Fig.  3C). This indicates that the interaction 
could exist between mutation and methylation.

The above results indicate that the synergistic relation-
ship between methylation and mutation at the individual 
level of breast cancer can be explained from the network 
perspective but not the gene perspective.

Fig. 2  The neighbors of mutated or aberrantly methylated genes are the key genes in the networks. A The probability density plot of the edge 
number in SSN for breast cancer samples and normal samples. B, C, and D, The degree, betweenness and eigenvector centrality distribution of five 
different groups of genes (including mutation genes, aberrantly methylated genes, other genes besides these two classes, 1-order neighbor of 
mutation genes, and 1-order neighbor of aberrantly methylated genes) in ssCo-DM
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The common patterns of driver modules for breast cancer
To show the power of ssMutat-DM to characterize the 
personalized features from a network viewpoint, we 
analyzed the subnetworks of ssMutat-DM related to 
gene PARP1. The subnetwork of PARP1 is composed 
of genes directly connected to PARP1. Figure  4 shows 
four subnetworks of four breast cancer samples, which 
clearly characterize personalized features. However, the 
connections between PARP1 and genes TP53, RRM1, 
RAD50, CHEK2, and BRCA2 exist in all four subnet-
works. Actually, we found that 66% of breast cancer 
samples include a connection between PARP1 and 
TP53, 70.14% of breast cancer samples include a con-
nection between PARP1 and RRM1, and more than 50% 
of breast cancer samples include a connection between 
PARP1 and the other 3 genes RAD50, CHEK2, and 
BRCA2. These results show that these connections are 
the common network pattern for breast cancer related 
to PARP1. The five genes TP53, RRM1, RAD50, CHEK2, 
and BRCA2 are closely related to the occurrence and 
development of breast cancer. In addition, similar results 
could be found in the subnetworks of ssMethy-DM from 
the four breast cancer samples in Fig. S3.

Edge co-driver frequency (i.e., the frequency of occur-
rence of edges in ssCo-DM), gene methylation aberra-
tion frequency, and gene mutation frequency are shown 
in Fig. 5A. There are few genes with mutation frequency 
or methylation aberration more than 0.5, so it is difficult 
to identify the common pattern of breast cancer from 
the perspective of the mutation gene. However, there 
are 214 edges with a co-driver frequency of more than 

75%, which indicates that it could be possible to find the 
common occurrence and development pattern of breast 
cancer from the perspective of the network. All of the 
117 genes in the network constructed by the 214 edges 
were used for pathway enrichment analysis. Most of the 
enriched pathways were closely related to breast cancer 
(see Fig. 5B), such as cell cycle (checkpoint), pathway in 
cancer, transcriptional regulation by TP53, P53 signaling 
pathway, and breast cancer.

The mutation driver module for breast cancer is com-
posed of 736 edges and 203 genes (Fig.  5C). The two 
genes with the highest mutation frequency in breast can-
cer are TP53 and PIK3CA.There are only two genes that 
are connected to both of them in the mutation driver 
module for breast cancer: CASP3 and PARP1. CASP3 is 
a hub gene in the mutation driver module for breast can-
cer, which is involved in the signaling pathways of apop-
tosis, necrosis, and inflammation [31]. Some studies have 
shown that the down-regulated expression of CASP3 
could represent an important cell survival mechanism 
in breast cancer and overexpression in breast cancer 
cells exerts an independent adverse effect on patients’ 
overall survival [32]. And PARP1 is a hub gene with the 
second-highest degree in the mutation driver module 
for breast cancer. Indeed, PARP1 inhibitors are currently 
one of the most promising therapeutic agents for several 
cancers, especially breast cancer, and can selectively tar-
get tumor cells with BRCA1 or BRCA2 tumor suppres-
sor gene mutations through synthetic lethality [33, 34]. 
In the mutation driver module for breast cancer, both 
BRCA1 and BRCA2 are exactly connected to PARP1. 

Fig. 3  Synergistic collaboration between methylation and mutation at the individual level from the network perspective. A The Jacobi similarity 
of ssMutat-DM and ssMethy-DM in terms of edges, and the mutation genes and aberrantly methylated genes for each sample. B The proportion 
distribution of mutation-driven edges in ssMethy-DM for each breast cancer sample and that in the background network respectively. C The 
proportion distribution of methylation-aberration-driven edges in ssMutat-DM and that in the background network, respectively
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Fig. 4  Sample-specific mutation driver modules characterize personalized features and reveal common network patterns for breast cancer. The 
four sample-specific mutation driver subnetworks of gene PARP1 from four samples of breast cancer are displayed here. The numbers of the 
connections with PARP1 for the four samples are respectively 23, 52, 30 and 72, and the genes linked to PARP1 are differ across the four breast 
cancer samples. However, TP53, RRM1, RAD50, CHEK2 and BRCA2 (the yellow color) are common genes appearing in the four subnetworks

Fig. 5  The mutation driver module for breast cancer is closely related to its occurrence and development. A Edge co-driver frequency, gene 
methylation aberration frequency, and gene mutation frequency in breast cancer. B The enriched pathways for genes in the network are 
constructed by edges with a co-driver frequency of more than 75%. C The mutation driver module for breast cancer. D The expressions of these 
TP53, PIK3CA, PARP1, MAPK8, CDK4, RAD51, MTOR, and UNG between normal and tumor samples. The P-values were obtained by the Wilcoxon rank 
sum test with continuity correction

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Furthermore, the expressions of TP53, PIK3CA, and 
PARP1, as well as 5 random neighbor genes of PARP1 are 
shown in Fig.  5D. The expressions of these 8 genes are 
significantly different between tumor and normal sam-
ples, except TP53. In fact, most of the neighbor genes’ 
expression of PARP1 (64/72) are significantly different 
in tumor and normal tissues per Wilcoxon rank sum test 
with continuity correction (P-value < 0.05).

The methylation aberration driver module for breast 
cancer is composed of 799 edges and 257 genes (see 
Fig.  6A). Similarly, genes MYBL2 and CSE1L with high 
methylation aberration frequency in breast cancer are 
both connected to NAE1 with high degree. It is interest-
ing that, the expressions of MYBL2, CSE1L, and most 
neighbors of NAE1 (59/63) are significantly different 
between tumor and normal tissues (P-value < 0.05, Wil-
coxon rank sum test with continuity correction), but 
as a link gene NAE1 is not differentially expressed (see 
Fig. 6B).

The above results indicate that mutated or aberrantly 
methylated genes could affect their 2-order neighbors 
through 1-order neighbors, which could explain the 
2-order network theory.

The subtype‑specific driver modules for breast cancer
The edge numbers of three kinds of driver modules 
are significantly different among PAM50 subtypes of 
breast cancer by the Kruskal–Wallis rank sum test 
(P-value < 2.2e-16, Fig. 7A). Obviously, the Basal-like sub-
type with a poor prognosis has the most mutation-driven 
edges in ssMutat-DM, while subtypes of LumA and Nor-
mal-like have relatively few mutation-driven edges.

Both LumA and Normal-like are usually correlated 
with a low degree of malignancy and a good prognosis. 
Similar results can be found both in ssMethy-DM and 
ssCo-DM. Table S1 shows the result of pairwise compari-
sons for the number of edges in subtype-specific driver 
modules between subtypes. This means that the size of 
driver modules is closely related to the degree of malig-
nancy and prognosis of breast cancer among subtypes. 
It is unclear where this is due to the number of mutated 
or aberrantly methylated genes in different subtypes. Fig-
ure S4 shows that the Basal-like subtype does not have 
significantly more mutation genes than other subtypes. 
There is no significant difference in the number of aber-
rantly methylation genes between Basal-like and Normal-
like subtypes (P-value = 0.8367, Wilcoxon rank sum test 
with continuity correction). Other pairwise comparisons 
for the number of mutation genes (or aberrantly meth-
ylation genes) between subtypes are displayed in Table 
S2. Therefore, the number of somatic mutations and 
aberrantly methylated genes does not explain the het-
erogeneity and malignancy of breast cancer subtypes 

well. However, the driver module can reflect the survival 
prognosis and degree of malignancy among different sub-
types. The larger the sample-specific driver module is, 
the worse the survival prognosis will be.

Overlapping of genes and edges in the subtype-specific 
driver modules is shown in Fig.  7. There are 47 edges 
shared by all subtypes, and there are 404, 215, 125, 9, 
and 3 subtype-specific edges in Basal-like, LumB, Her2, 
Normal-like, and LumA subtypes, respectively. There are 
57 subtype-shared genes, which were used to perform 
gene enrichment analysis. The enriched pathways are 
closely related to breast cancer, such as cell cycle, breast 
cancer, transcriptional regulation in TP53, and signal-
ing by NOTCH. Subtype-specific pathways are shown 
in Table 1. Signaling by interleukins, signaling by WNT, 
apoptosis, and VEGF signaling pathway are enriched in 
Basal-like subtypes. FCERI mediated MAPK activation, 
and mTOR signaling pathway are enriched in LumB 
subtype.

Discussion
After accounting for the high heterogeneity and the large 
sample size of breast cancer data [35–37], we provided 
a sample-specific driver module construction method 
and applied it to analyze breast cancer data in TCGA. 
This multi-omics analysis method decodes the function 
of somatic mutations and methylation aberrations from 
the point of view of the co-expression perturbation net-
work at the individual level. In this study, the mutation 
driver module and methylation aberration driver mod-
ule for each breast cancer sample were constructed and 
analyzed, and the synergistic collaboration mechanism 
between methylation and mutation of breast cancer at 
the individual level was explored. The common driver 
pattern for breast cancer was identified from the point of 
view of the driver module. This driver pattern is closely 
correlated to the occurrence and development of breast 
cancer. The constructed driver module could reflect the 
survival prognosis and degree of malignancy among 
different subtypes of breast cancer. Finally, we identi-
fied subtype-specific driver modules and decoded the 
function of mutation and methylation in the context of 
subtype-specific networks. This work, as an exploratory 
study on the driver module of individual cancer, reveals 
the mechanism of the occurrence and development of 
individual cancer, explaining the complex (epi) geno-
typic-phenotypic relationship of cancer, assisting clinical 
decision-making, discovering drug combinations, and 
promoting the development of precision medicine.

Our method is based on the 2-order network theory 
and hub gene theory, which is a powerful method for 
identifying the sample-specific mutation and methyla-
tion aberration driver modules. We applied our method 
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Fig. 6  The methylation aberration driver module for breast cancer is related to its occurrence and development. A The methylation aberration 
driver module for breast cancer. B The expressions of these MYBL2, CSE1L, NAE1, TOP2A, CHEK1, XRCC2, CDK2 and RRM1 between normal and 
tumor samples. The P-values were obtained by the Wilcoxon rank sum test with continuity correction
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to breast cancer and found that methylation aberra-
tions in the promoter region of breast cancer samples 
tend to be hypermethylation, which coincides with pre-
vious  research about methylation and cancer [38–40]. 
The synergistic collaboration between methylation and 
mutation was shown from the perspective of a sample-
specific drive network. The common driver patterns 
for breast cancer were identified, and these driver pat-
terns are correlated to the occurrence and develop-
ment of breast cancer. We identified the gene PARP1 
with the second highest degree in the mutation driver 
module for breast cancer. Indeed, PARP inhibitors 

are currently one of the most promising therapeutic 
agents for breast cancer [39, 40]. Even more inter-
esting, we found that the constructed driver module 
could reflect the survival prognosis and degree of 
malignancy among different subtypes of breast cancer. 
In addition, the identified subtype-shared and subtype-
specific driver modules were enriched in pathways 
related to cancer. These results indicate that our driver 
module construction method provides an effective 
framework for the functional characterization of muta-
tions and methylation aberrations in cancer at the 
individual level.

Fig. 7  The subtype-specific driver modules for breast cancer reveal the degree of malignancy among different subtypes. A The edge numbers 
of ssMutat-DM, ssMethy-DM and ssCo-DM among PAM50 subtypes of breast cancer. B The overlapping of edges in the subtype-specific driver 
modules. C The overlapping of genes in the subtype-specific driver modules
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A growing body of research shows that network-based 
features are more effective and robust compared to sin-
gle-gene features when analyzing noisy high-throughput 
data [41]. Our method is based on the recently proposed 
concept of ‘edgotype’ and can therefore complement 
gene-based methods [42]. In addition, different from 
the perturbation network identified method in [43], our 
method considers the heterogeneity of individual can-
cer patients. However, many sample-specific network 
construction methods are only based on gene expres-
sion profiles [29, 44], but ignore the information about 
mutation and methylation. Based on a samples-specific 
co-expression perturbation network, our method can 
identify sample-specific mutation and methylation aber-
ration driver modules by integrating them with the muta-
tions or methylation aberrations of the individual patient. 
Therefore, this study will improve our understanding of 
the functional consequences of mutations and methyla-
tion aberrations by network perturbations and promote 
the development of personalized precision medicine.

Our driver module construction method can be 
extended in several ways. For example, our experiment 
was carried out on breast cancer, but our method can 
be applied to other types of cancer. Cancers of differ-
ent tissues have high heterogeneity, so the application 
of our method to pan-cancers could be used to explore 
how different cancers yield different perturbation net-
works and decode the function of mutations and meth-
ylation aberrations in the context of pan-cancer. This 
could help us to better understand the different occur-
rence and development mechanisms of different can-
cers from the perspective of the driver module. Second, 

although this study only considers mutations and meth-
ylation aberrations within genes, other genomic and 
epigenomic alterations are also observed in cancer. 
These genetic alterations, such as gene fusions, alterna-
tive splicing and copy number variation, are related to 
the perturbation of pathways [45–47]. Moreover, our 
method was performed on a synthetic lethality genes 
interaction network for identifying driver modules. It 
can be extended to other regulatory networks, such as 
protein–protein interaction networks, signaling path-
ways, transcription regulatory networks, miRNA-gene 
regulatory networks, and so on.

To summarize, we propose a new method that can 
identify sample-specific mutation or methylation aber-
ration driver modules. This method can be used to 
characterize the malignant degree and heterogene-
ity of each patient by the driver network. It is also an 
exploratory method for analyzing the function of can-
cer mutations and methylations with the eventual goal 
of implementing personalized or precision medicine.
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