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Abstract
Background  Recurrent selection is a foundational breeding method for quantitative trait improvement. It typically 
features rapid breeding cycles that can lead to high rates of genetic gain. Usually, generations are discrete in recurrent 
selection, which means that breeding candidates are evaluated and considered for selection for only one cycle. 
Alternately, generations can overlap, with breeding candidates considered for selection as parents for multiple cycles. 
With recurrent genomic selection but not phenotypic selection, candidates can be re-evaluated by using genomic 
estimated breeding values without additional phenotyping of the candidates themselves. Therefore, it may be that 
candidates with true high breeding values discarded in one cycle due to underestimation of breeding value could 
be identified and selected in subsequent cycles. The consequences of allowing generations to overlap in recurrent 
selection are unknown. We assessed whether maintaining overlapping and discrete generations led to differences 
in genetic gain for phenotypic, genomic truncation, and genomic optimum contribution recurrent selection by 
stochastic simulation.

Results  With phenotypic selection, overlapping generations led to decreased genetic gain compared to discrete 
generations due to increased selection error bias. Selected individuals, which were in the upper tail of the distribution 
of phenotypic values, tended to also have high absolute error relative to their true breeding value compared to the 
overall population. Without repeated phenotyping, these individuals erroneously believed to have high value were 
repeatedly selected across cycles, leading to decreased genetic gain. With genomic truncation selection, overlapping 
and discrete generations performed similarly as updating breeding values precluded repeatedly selecting individuals 
with inaccurately high estimates of breeding values in subsequent cycles. Overlapping generations did not 
outperform discrete generations in the presence of a positive genetic trend with genomic truncation selection, as 
individuals from previous breeding cycles typically had truly lower breeding values than candidates from the current 
generation. With genomic optimum contribution selection, overlapping and discrete generations performed similarly, 
but overlapping generations slightly outperformed discrete generations in the long term if the targeted inbreeding 
rate was extremely low.

Conclusion  Maintaining discrete generations in recurrent phenotypic selection leads to increased genetic gain, 
especially at low heritabilities, by preventing selection error bias. With genomic truncation selection and genomic 
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Background
Quantitative trait improvement is achieved by cyclically 
increasing mean genetic value of breeding populations 
via recurrent selection. Recurrent phenotypic selection, 
reviewed by Hallauer & Darrah [1], is a breeding strategy 
in which top-performing individuals are selected from a 
population and crossed to generate a new population for 
selection in the subsequent breeding cycle [1–3]. Recur-
rent phenotypic selection likely began with the invention 
of agriculture and is widely used to this day for quanti-
tative trait improvement [1, 4–7]. The advantage of this 
breeding strategy is that the breeding cycle length is 
short, as individuals can be selected as parents soon after 
they are born. Shorter cycle length leads to faster genetic 
gain, which is the rate of increase in mean genetic value 
due to selection in a population over time [8].

The main disadvantage of phenotypic selection is that 
selection accuracy tends to be low, because individu-
als are selected based on a single phenotypic observa-
tion, and selection accuracy directly impacts the rate of 
genetic gain [1]. This disadvantage is exacerbated at low 
trait heritabilities, as phenotypes are less indicative of 
true breeding values [5]. Different breeding schemes to 
improve the accuracy of phenotypic selection have been 
developed which involve testing families of progeny of 
selection candidates (e.g. half-sibs, full-sibs, or inbred 
lines) across multiple replicates or environments [1]. 
Most applied breeding programs of cereal crops are cur-
rently practicing some form of recurrent selection among 
families, especially inbred families. While recurrent 
selection by family improves accuracy, it also increases 
the breeding cycle length, which limits the rate of genetic 
gain that can be realized.

With the availability of genomic selection, recurrent 
selection schemes are being modified to use genomic 
estimated breeding values (GEBVs) rather than single 
phenotypic observations for parent selection [9–14]. This 
is often referred to as “rapid-cycling genomic selection” 
[14]. This approach can improve selection accuracy with-
out increasing the breeding cycle length, thus increas-
ing the rate of genetic gain. Recurrent phenotypic and 
genomic selection fundamentally differ in that estimates 
of breeding value based on phenotype are defined at the 
individual level, whereas GEBVs are defined at the marker 
or population level [10]. In recurrent phenotypic selec-
tion, individuals are phenotyped once prior to selection, 

and this comprises the only assessment of the individuals’ 
breeding values. In genomic selection, observations of 
marker effects or genetic relationships increase in num-
ber as new relatives are phenotyped. Thus, the accuracy 
of estimates of individual breeding values increases with 
genomic prediction even in absence of additional pheno-
typic data for evaluated individuals [10]. For example, an 
individual with a high true breeding value may have a low 
estimated breeding value in a given genomic selection 
cycle due to error, but in a subsequent cycle its breed-
ing value estimate may be higher—in better agreement 
with its true breeding value—as the prediction model is 
updated with information from relatives.

This raises the question: if possible, should individu-
als from previous selection cycles be considered again as 
selection candidates in subsequent cycles? Or, in other 
words, should generations be allowed to overlap in phe-
notypic and genomic recurrent selection programs? Con-
ventionally, individuals are only considered as candidates 
for selection during the cycle when they are evaluated. 
However, in clonally propagated or perennial species, 
non-inbred individuals could be selected directly as 
parents for multiple seasons. In self-compatible species 
with multiple inflorescences, selected individuals could 
be self-pollinated and the resultant seed could be used 
for crossing in multiple selection cycles, even though 
the selfed progeny would not be identical to the parent 
genotype. In line breeding, inbred lines can be re-used 
indefinitely. In practice, it is common for plant breed-
ers to recycle favored parents across cycles of selection, 
leading to overlap, even if the parent has not been phe-
notyped and statistically evaluated alongside the cur-
rent selection candidates. The effect on genetic gain of 
maintaining discrete or overlapping selection genera-
tions has not been formally evaluated or reported. Given 
that selection accuracy may vary with cycle in breeding 
individuals from previous generations in genomic but 
not phenotypic selection, we hypothesized that allowing 
overlapping generations may be more favorable for rapid 
recurrent genomic selection compared to rapid recur-
rent phenotypic selection. Unexpectedly, we found that 
overlapping generations decreased the rate of genetic 
gain under phenotypic selection compared to discrete 
generations.

This study had two primary objectives: (1) to deter-
mine if generations should be overlapping or discrete in 

optimum contribution selection, genetic gain does not differ between discrete and overlapping generations 
assuming non-genetic effects are not present. Overlapping generations may increase genetic gain in the long term 
with very low targeted rates of inbreeding in genomic optimum contribution selection.



Page 3 of 15Labroo et al. BMC Genomics          (2022) 23:736 

phenotypic and genomic recurrent selection programs, 
and (2) to determine in what selection scenarios over-
lapping and discrete generations can be recommended 
for recurrent selection. The effects of overlapping and 
discrete generations on average parental age, genomic 
inbreeding, genetic variance, and the selection accuracy 
were also examined.

Methods
Stochastic simulations in the R package AlphaSimR were 
conducted to examine various recurrent selection sce-
narios [15]. All simulations were run on the Biocluster 
High Performance Computing system housed in the Carl 
R. Woese Institute for Genomic Biology at the Univer-
sity of Illinois at Urbana-Champaign and maintained by 
the Computer Network Resource Group. Two main trait 
and pipeline architectures were considered: (1) recur-
rent selection on a purely additive trait in a single cohort 
per breeding cycle (RS-A), and (2) recurrent selection 
on a trait with additive, year, and additive x year effects 
with multiple cohorts per breeding cycle (RS-AY). For 
both architectures, an outbred, diploid, hermaphroditic 
founder population was generated with the runMacs 
function. Individuals had ten chromosomes with 1000 
segregating sites per chromosome.

RS-A scenarios
For the RS-A scenarios, with the purely additive trait, 
100 sites per chromosome were assigned additive 
effects and 50 sites per chromosome were genotyped 
by a simulated SNP-chip. As such, the same 50 sites per 
chromosome were genotyped every cycle, with random 
distribution of the sites on the chromosome. The sites 
were assigned additive effects by drawing effects from a 
normal distribution and scaling the effects to achieve an 
additive genetic variance of 1; for further details, please 
see Gaynor, 2021 [15, 16]. All remaining segregating 
sites were neutral and ungenotyped. Supplementary File 
1 contains the script used to generate the base founder 
population. To start each simulation replicate, 100 indi-
viduals were drawn from the founder population. Starting 

mean genetic value was 0, genetic variance was 1, and 
starting narrow-sense heritabilities were either 0.1, 0.5, 
or 0.9. To form phenotypes for a given genotype, random 
error was added to the true breeding value. The random 
error was drawn from a normal distribution with the 
appropriate error variance to achieve the scenario nar-
row-sense heritability. In the first year, 20 parents were 
selected phenotypically. See Supplementary File 2 for the 
script used to start each simulation. After the first year, a 
breeding cycle consisted of crossing the selected parents, 
phenotypic evaluation and parent selection before flow-
ering, then restarting the cycle by making 100 random 
crosses of the selected parents which produced 1 progeny 
per cross (Fig. 1). The number of crosses and progeny per 
cross were arbitrary and unlikely to affect the comparison 
of overlapping and discrete generations.

Several factors were considered in the RS-A scenario 
(Fig.  2). Parents were selected from either discrete or 
overlapping generations. For discrete generations, par-
ents were only selected from the current breeding cycle. 
For overlapping generations, parents were selected from 
any breeding cycle. Then, the selection on either pheno-
typic value, true breeding value, or GEBV as estimated 
by ridge regressed best linear unbiased prediction (RR-
BLUP) was used. In phenotypic selection only, selection 
on either unreplicated phenotypes or thrice-replicated 
phenotypes was considered; in all other cases, phe-
notypes were unreplicated. To replicate phenotypes, 
the cycle error variance used to draw error values was 
divided by the number of replicates (3), and the pheno-
type was created by adding the true breeding value and 
the error value. In the case of genomic selection only, 
truncation vs. optimum contribution selection (OCS), 
as well as training the model on all generations (allGen) 
vs. training on the most recent previous five generations 
(fiveGen) to mimic what may occur in practical situations 
were also considered (Fig.  2). If selection occurred on 
phenotype or true breeding value, truncation selection of 
the top 20 individuals was always used. In the genomic 
selection scenarios, either truncation selection of the top 
20 individuals was used or OCS was used with minimum 

Fig. 1  Overview of recurrent mass selection scheme for RS-A scenarios. For the RS-A scenarios, only the parental selection units varied in this study. For 
an overview of the RS-AY scenarios, see the Conventional scenario in Gaynor et al., 2017 [18]
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effective population sizes (Ne) of 10, 45, and 90. Higher 
minimum effective population size implied stricter con-
trol of inbreeding. OCS was implemented with the R 
package optiSel [17]. All RS-A scenarios were run for 50 
breeding cycles and replicated across 10 simulations. See 
Supplementary File 1 for custom optiSel functions used 
in the study, and see Supplementary File 3 for the core 
script used to run the RS-A simulations.

RS-AY scenarios
For the RS-AY scenarios, with selection on an additive, 
year, and additive x year trait and multiple cohorts per 
cycle, a modification of the general breeding scheme of 
the Conventional Program described in Gaynor et al., 
2017, was used [18]. As in the RS-A scenarios, 100 seg-
regating sites per chromosome were assigned additive 
effects, and 50 sites per chromosome were genotyped 

by a simulated SNP-chip; all other sites were neutral and 
ungenotyped. To start each simulation replicate, 100 indi-
viduals were drawn from the founder population. Start-
ing mean genetic value was 0, and genetic variance was 1. 
Supplementary File 4 contains the script used to start the 
RS-AY scenarios, and Supplementary File 5 contains a 
script to store the year effects. Phenotypes in subsequent 
stages were simulated using a custom R script according 
to the assumptions of a compound symmetry model, i.e. 
uniform genetic variances and covariances across envi-
ronments (Supplementary File 4). Compound symmetry 
was assumed rather than the default AlphaSimR Finlay-
Wilkinson model because compound symmetry allowed 
perhaps more intuitive tracking of year and additive x 
year effects. The Finlay-Wilkinson additive x year effect 
of a genotype is considered the product of the mean 
value of genotypes in a given year and a genotype-specific 

Fig. 2  Overview of the RS-A scenario factors. Shaded boxes indicate factors and unshaded boxes indicate levels of factors. Solid lines connecting shaded 
boxes indicate that all combinations of factor levels were tested, while solid lines connecting unshaded factor levels to shaded factors indicate the sub-
sequent shaded factors only apply to the connected factor level
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slope, where the genotype-specific slope is essentially 
another additive trait value. Therefore, error bias due to 
additive x year and year effects under the Finlay-Wilkin-
son model would be tracked as an overall genotype x 
year error bias. This is acceptable, but it is less clear to 
see the separate impacts of bias due to phenotyping in 
a good year and bias due to a genotype’s comparative 
advantage in a given year. Year effects were drawn from a 
normal distribution with mean 0 and variance 0.2. Addi-
tive x year effects for each site were drawn from a normal 
distribution with mean 0 and variance scaled to achieve 
the targeted total additive x year variance of 0.2. As such, 
the variance of the distribution from which the additive 
x year effects were drawn was the variance of the addi-
tive marker effects (σ2

a ) times the targeted additive x year 
variance (σ2

ay ) of 0.2 divided by the genetic variance of 1 
(σ2

G ) in the base population, or σ2
a∗σ2

ay

σ2
G

. Plot error effects 
were drawn from a normal distribution with mean 0 and 
variance scaled to achieve variable broad-sense heritabil-
ities (H2) at each stage in the breeding cycle. Phenotypes 
were the sum of the additive, year, additive x year, and 
plot error effects.

For the RS-AY scenario, 30 selected parents entered the 
breeding pipeline at stage 1 and were crossed randomly 
into 100 biparental crosses with 97 progeny each. In stage 
2, doubled haploid lines were produced from each of the 
year 1 progeny. In stage 3, the doubled haploid lines were 
phenotyped in headrows at initial H2 = 0.1 from which 
500 individuals are advanced. In stage 4, the 500 individ-
uals advanced from stage 3 were then phenotyped at ini-
tial H2 = 0.2 in a preliminary yield trial, and 50 individuals 
were advanced. In stage 5, the 50 individuals advanced 
from stage 4 entered an advanced yield trial with pheno-
typing at initial H2 = 0.5, from which 10 individuals were 
advanced. In stage 6, the 10 individuals advanced from 
stage 5 were phenotyped in an elite yield trial at initial 
H2 = 0.8, and all individuals were advanced. In stage 7, all 
individuals from stage 6 were reevaluated in the second 
year of the elite yield trial at initial H2 = 0.8. In stage 8, a 
single variety was chosen from the varietal means of the 
elite yield trials. In RS-AY scenarios with discrete genera-
tions, the 20 top-ranked individuals from stage 4 and all 
individuals from stage 5 of the most recent cycle were 
selected as parents (modified from the scheme in Gaynor 
et al., 2017, which implicitly allowed overlapping genera-
tions) [18]. In scenarios with overlapping generations, the 
20 top-ranked individuals from stage 4 and the 10 top-
ranked individuals from stage 5 were selected as parents 
from all cycles conducted in the breeding program. In the 
genomic selection scenarios, all records from stages 4–7 
from all cycles conducted in the breeding program com-
prised the training set, regardless of whether generations 
were overlapping or discrete. Each stage was assumed 
to take one year. The breeding program was run for 40 

years. The scripts to run each RS-AY scenario are located 
in Supplementary Files 6–9.

Responses and statistical analysis
For each parent selection scenario in RS-A, mean 
genetic value was always recorded in the current gen-
eration of individuals in a given cycle to examine the 
genetic trend due to selection. For RS-AY, mean genetic 
value was recorded in the current generation of parents 
in a given year. For both situations, selection error bias, 
mean genomic inbreeding, selection accuracy, and aver-
age parental age were also recorded in the selected par-
ents of the current generation only. Selection error bias 
per cycle was the ratio of absolute error in the selected 
parents to absolute error in all selection candidates, 
where error was the deviation of the phenotype or GEBV 
from the true breeding value. For RS-AY, selection error 
bias was decomposed into component error due to year, 
additive x year, and plot error. The ratio of each absolute 
component error in the selected parents to absolute com-
ponent error in all selection candidates was the selection 
error bias for the component. Mean genomic inbreeding 
per cycle was the average probability of allelic identity-
by-descent between pairs of individuals, where identity-
by-descent was tracked directly via the setTrackRec() 
function and pullIbdHaplo() function rather than esti-
mated. Mean genomic inbreeding was estimated using all 
of the 1000 segregating sites per chromosome. Selection 
accuracy was Pearson’s correlation of GEBV or pheno-
type and the simulated true breeding value. By definition, 
selection accuracy was one for scenarios with selec-
tion on true breeding value. See Supplementary File 10, 
Table S1 and Supplementary File 10, Table S2 for the raw 
response variables from each simulation replicate and 
cycle (for RS-A) or year (for RS-AY).

To test for differences in responses by scenario for 
RS-A, time points representing the short-term, medium-
term, and long-term were chosen as cycle 5, cycle 25, and 
cycle 45 respectively. For RS-AY, differences in responses 
were only interrogated at the terminal year 40. The RS-A 
and RS-AY scenarios were considered separate experi-
ments. The RS-AY experiment was conceived subse-
quently to RS-A in order to explore additional sources of 
selection error bias (i.e. year and genotype x year effects).

For each time point, and for all responses studied 
except mean parental age and year error bias, the fol-
lowing linear model was constructed with the R package 
nlme:

Yij = µ + Si + Rj(i) + εij.
Yij was the response of interest for the ith scenario and 

the jth simulation replicate, µ was the grand mean, Si was 
the fixed effect of the ith scenario, Rj(i) was the random 
effect of the jth simulation nested in the ith scenario with 
N(0, σj(i)

2), and εij was the random residual error with 
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N(0, Rσε
2) where σε

2 was the error variance, and R was 
a matrix whose diagonal was a weighting factor used to 
model unique error variances for each scenario [19]. Dif-
ferences in means by scenario were tested by the anova.
lme function in nlme [19]. Pre-planned contrasts of dif-
ferences in responses by scenario were made at α = 0.05 
with the pairs function in the R packages emmeans for 
the discrete vs. overlapping variations of otherwise iden-
tical scenarios [20, 21]. Contrasts for OCS at Ne = 10 were 
not possible in the long term because the optimization 
of GEBV and mean genomic inbreeding ceased to solve 
around cycle 35.

Because mean parental age in the selected individuals 
was uniformly one with no variance in the RS-A discrete 
scenarios, Student’s t test was conducted with the t.test 
function in R to test whether mean parental age at each 
timepoint significantly differed from µ = 1 for each over-
lapping scenario at α = 0.05 subject to Bonferroni cor-
rection given the number of tests in the family. Because 
mean parental age for the RS-AY discrete scenarios was 
uniformly 3.67, Student’s t test was conducted as above 
to test whether mean parental age significantly differed 
from µ = 3.67. Similarly, because year error bias was uni-
formly one with no variance in the RS-AY discrete sce-
narios, Student’s t test was used to examine whether 
mean year error bias significantly differed from µ = 1 for 
the RS-AY overlapping scenarios at α = 0.05 subject to 
Bonferroni correction given the number of tests in the 
family. (Year error bias was 1 in the discrete scenarios 
because all candidates were evaluated in the same year 
and therefore had the same year value.)

Results
Genetic trends
In the RS-A case, significant differences in mean genetic 
value by scenario were observed (see Supplementary File 
11, Table S3). In terms of mean genetic value, unrepli-
cated discrete phenotypic selection outperformed unrep-
licated overlapping phenotypic selection in the long term 
for all heritabilities, and in the medium term if h2 = 0.1 
or 0.5 (Fig. 3; see Supplementary File 12, Table S4). Per-
formance of unreplicated discrete and overlapping phe-
notypic selection did not significantly differ in the short 
term (Fig. 3; see Supplementary File 12, Table S4). If phe-
notyping was replicated three times, then discrete phe-
notypic selection outperformed overlapping in the long 
and medium term if h2 = 0.1 or 0.5, and in the short term 
if h2 = 0.1 only (Fig.  3; see Supplementary File 12, Table 
S4). In contrast, if true breeding value was used for selec-
tion, then mean genetic value of discrete vs. overlapped 
selection did not differ significantly at any timepoint.

Discrete and overlapping generations appeared to per-
form similarly with genomic selection in the RS-A sce-
narios (Fig.  3; see Supplementary File 12, Table S4 and 

Supplementary File 13, Figure S1). The exceptions were 
that overlapping generations always outperformed dis-
crete generations with OCS at Ne = 100 and h2 = 0.5 or 
0.9 regardless of training set used, and in the long term 
discrete generations outperformed overlapping with 
OCS at Ne = 45 and h2 = 0.9 with training on the previ-
ous five generations (see Supplementary File 12, Table 
S4 and Supplementary File 13, Figure S1). Also, in the 
short term, overlapping generations outperformed dis-
crete with OCS at Ne = 100 at h2 = 0.5 or 0.9 with train-
ing on the previous five generations as well as training on 
all generations (see Supplementary File 12, Table S4 and 
Supplementary File 13, Figure S1).

In the RS-AY case, significant differences in mean 
genetic value by scenario were observed at year 40 (see 
Supplementary File 11, Table S3). Discrete genomic 
selection outperformed overlapping genomic selection, 
and discrete phenotypic selection outperformed overlap-
ping phenotypic selection (Fig. 4; see Supplementary File 
12, Table S5).

Selection error bias
For the RS-A cases, significant differences in mean selec-
tion error bias by scenario were observed (see Supple-
mentary File 11, Table S3). For unreplicated phenotypic 
selection, selection error bias was always higher in over-
lapping selection scenarios, except in the short- and 
medium-term for h2 = 0.9 (Fig. 5; see Supplementary File 
12, Table S4). Notably, this pattern mirrors the observed 
trend in mean genetic value. If phenotyping was repli-
cated three times, selection error bias remained higher in 
overlapping generations in the same scenarios as unrep-
licated phenotypic selection (Fig.  5; see Supplementary 
File 12, Table S4). With selection on true breeding value, 
by definition selection error bias did not differ between 
overlapping and discrete generations, as error for all can-
didates was zero (Fig.  5). For genomic truncation selec-
tion, selection error bias also did not differ between 
overlapping and discrete scenarios at any point if the 
training set was composed of all generations (Fig. 5; see 
Supplementary File 12, Table S4). However, if the train-
ing set was composed of the previous five generations, 
then selection error bias in overlapping scenarios was 
significantly higher than discrete in the long-term with 
genomic truncation selection (see Supplementary File 12, 
Table S4, and Supplementary File 14, Figure S2).

For genomic OCS with the training set composed of 
all generations, discrete and overlapping selection error 
bias did not significantly differ except in the short and 
medium term if Ne = 100 and h2 = 0.5 or 0.9, in which case 
overlapping selection error bias was significantly higher 
(see Supplementary File 12, Table S4 and Supplementary 
File 14, Figure S2). If the training set was composed of the 
previous five generations, then in the short term selection 
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error bias did not significantly differ except at Ne = 100 
for h2 = 0.5 or 0.9, in which case overlapping selection had 
a higher selection error bias (see Supplementary File 12, 
Table S4 and Supplementary File 14, Figure S2). In the 
medium and long term with training on the previous five 
generations, discrete always had higher selection error 
bias than overlapping (see Supplementary File 12, Table 
S4 and Supplementary File 14, Figure S2).

For the RS-AY cases, significant differences in mean 
selection error bias by scenario were observed (see 
Supplementary File 11, Table S3). Discrete phenotypic 
selection had significantly lower selection error bias 
than overlapping phenotypic selection, but no signifi-
cant difference was observed for discrete vs. overlap-
ping genomic selection (Fig.  6; see Supplementary File 
12, Table S5). Significant differences in additive x year 

error bias and plot error bias were also observed (Fig. 6; 
see Supplementary File 11, Table S3). Discrete pheno-
typic selection had significantly lower additive x year 
error bias than overlapping phenotypic selection, but no 
significant difference was observed for discrete vs. over-
lapping genomic selection (Fig. 6; see Supplementary File 
12, Table S5). On the other hand, plot error bias was sig-
nificantly lower for discrete vs. overlapping phenotypic 
selection and discrete vs. overlapping genomic selection 
(Fig. 6; see Supplementary File 12, Table S5). Year error 
bias significantly differed from 1 with overlapping pheno-
typic selection, but did not significantly differ from 1 with 
overlapping genomic selection (Fig. 6; see Supplementary 
File 13, Figure S1).

Fig. 3  Mean genetic value for selected RS-A scenarios. Mean genetic value per cycle for the RS-A scenarios of phenotypic selection, thrice-replicated 
phenotypic selection, genomic truncation selection with all generations used in the training set (allGen truncation), and selection on true breeding value. 
Values are surrounded by the 95% confidence interval of the cycle mean
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Mean genomic inbreeding
Significant differences in mean genomic inbreed-
ing by scenario were observed in the RS-A cases (see 
Supplementary File 11, Table S3). For unreplicated and 
thrice-replicated phenotypic selection, mean genomic 
inbreeding was significantly higher with discrete selec-
tion at h2 = 0.1 at all time points but did not significantly 
differ for other heritabilites (see Supplementary File 12, 
Table S4; Supplementary File 15, Figure S3; Supplemen-
tary File 16, Figure S4). Mean genomic inbreeding did not 
significantly differ with selection on true breeding value 
(see Supplementary File 12, Table S4 and Supplementary 
File 17, Figure S5). For genomic truncation selection with 
training on all generations, no significant differences in 
mean inbreeding were observed between discrete and 
overlapping scenarios except in the long term at h2 = 0.9, 
for which overlapping generations led to higher inbreed-
ing than discrete (see Supplementary File 12, Table S4 
and Supplementary File 18, Figure S6). With training on 
the previous five generations, overlapping truncation 
genomic selection led to higher inbreeding in the short 
term at h2 = 0.1 and in the medium term at h2 = 0.5 and 
0.9, but with no significant differences in the long term 
(see Supplementary File 12, Table S4 and Supplementary 
File 19, Figure S7).

With genomic OCS, discrete selection sometimes led 
to higher inbreeding than overlapping selection despite 
optimization of the inbreeding rate. With training on 
all generations, this occurred for h2 = 0.1 in the medium 
term for Ne = 10 and the short and medium terms for 
Ne = 45, but did not occur for Ne = 100 (see Supplemen-
tary File 12, Table S4; Supplementary File 20, Figure S8; 
Supplementary File 21, Figure S9; Supplementary File 
22, Figure S10). For h2 = 0.5, this occurred in the medium 
term for Ne = 10, and the medium and long term for Ne 
= 45 (see Supplementary File 12, Table S4; Supplemen-
tary File 20, Figure S8; Supplementary File 21, Figure 
S9). However, in the short and medium term at h2 = 0.5 
with training on all generations, overlapping led to higher 
inbreeding than discrete at Ne = 100 (see Supplementary 
File 12, Table S4 and Supplementary File 22, Figure S10). 
For h2 = 0.9, discrete selection led to higher inbreeding 
in the short and medium term at Ne = 10, the medium 
term at Ne = 45, and the short term only at Ne = 100 (see 
Supplementary File 12, Table S4; Supplementary File 20, 
Figure S8; Supplementary File 21, Figure S9; Supplemen-
tary File 22, Figure S10).

With genomic OCS and training on the previous five 
generations, discrete selection led to higher rates of 
inbreeding in the medium and long term at h2 = 0.1 for all 
levels of Ne, and additionally in the short term for Ne = 
45 (see Supplementary File 12, Table S4; Supplementary 
File 23, Figure S11; Supplementary File 24, Figure S12; 
Supplementary File 25, Figure S13). At h2 = 0.5, discrete 
selection again led to higher inbreeding in the short term 
if Ne = 45 and the medium term for Ne = 45 and 100 only 
(see Supplementary File 12, Table S4; Supplementary File 
24, Figure S12; Supplementary File 25, Figure S13). At 
h2 = 0.9, discrete selection led to higher inbreeding rates 
in the short term for Ne = 10, lower inbreeding rates in 
the short term if Ne = 100, higher inbreeding rates in the 
medium and long term for Ne = 45, and higher inbreeding 
rates in the short and long term for Ne = 100 (see Supple-
mentary File 12, Table S4; Supplementary File 23, Figure 
S11; Supplementary File 24, Figure S12; Supplementary 
File 25, Figure S13).

With RS-AY, significant differences in mean genomic 
inbreeding by scenario were also present at year 40 (see 
Supplementary File 11, Table S3). Discrete phenotypic 
selection led to significantly higher inbreeding than 
overlapping phenotypic selection, and discrete genomic 
selection also led to significantly higher inbreeding than 
overlapping genomic selection (see Supplementary File 
12, Table S5 and Supplementary File 26, Figure S14).

Genetic variance
Significant differences in mean genetic variance by sce-
nario were observed in RS-A (see Supplementary File 
11, Table S3). For unreplicated phenotypic selection, 

Fig. 4  Mean genetic value for RS-AY scenarios. Mean genetic value per 
cycle for the RS-AY scenarios of phenotypic selection and genomic selec-
tion surrounded by the 95% confidence interval of the cycle mean
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significant differences in genetic variance in the current 
generation were only observed at h2 = 0.1 in the medium 
and long term, with overlapping selection maintain-
ing higher genetic variance (see Supplementary File 12, 
Table S4 and Supplementary File 15, Figure S3). For rep-
licated phenotypic selection, genetic variance was signifi-
cantly lower with overlapped selection only in the long 
term at h2 = 0.1 (see Supplementary File 12, Table S4 and 
Supplementary File 16, Figure S4). No significant differ-
ences in genetic variance were observed for selection on 
true breeding value (see Supplementary File 12, Table 
S4 and Supplementary File 17, Figure S5). For genomic 
truncation selection, no significant differences in genetic 
variance were observed regardless of training set or heri-
tability (see Supplementary File 12, Table S4; Supplemen-
tary File 18, Figure S6; Supplementary File 19, Figure S7).

For genomic OCS, no significant differences in genetic 
variance were observed if all generations were used in the 
training set (see Supplementary File 12, Table S4; Supple-
mentary File 20, Figure S8; Supplementary File 21, Figure 
S9; Supplementary File 22, Figure S10). If the previous 
five generations were used in the training set, then at all 
heritabilities overlapping selection maintained greater 
genetic variance than discrete in the medium term if 
Ne = 100 only, while if Ne = 45 overlapping had higher 
genetic variance only if h2 = 0.5 or 0.9 (see Supplemen-
tary File 12, Table S4; Supplementary File 23, Figure S11; 
Supplementary File 24, Figure S12; Supplementary File 
25, Figure S13). In the long term, overlapping selection 
maintained greater genetic variance if Ne = 45 at h2 = 0.1 
or 0.9, and if Ne = 100 at all heritabilities (see Supplemen-
tary File 12, Table S4; Supplementary File 23, Figure S11; 

Fig. 5  Selection error bias for selected RS-A scenarios. Selection error bias per cycle for the RS-A scenarios of phenotypic selection, thrice-replicated 
phenotypic selection, genomic truncation selection with all generations used in the training set (allGen truncation), and selection on true breeding value. 
Values are surrounded by the 95% confidence interval of the cycle mean
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Supplementary File 24, Figure S12; Supplementary File 
25, Figure S13).

For the RS-AY scenarios, significant differences in 
genetic variance were observed among scenarios (see 
Supplementary File 11, Table S3). Discrete genomic 
selection had significantly higher genetic variance than 
overlapping genomic selection, whereas discrete pheno-
typic selection led to significantly lower genetic variance 
than overlapping phenotypic selection (see Supplemen-
tary File 12, Table S5 and Supplementary File 26, Figure 
S14).

Selection accuracy
Significant differences in mean selection accuracy by sce-
nario were observed in the RS-A cases (see Supplemen-
tary File 11, Table S3). Selection accuracy, as measured in 
the selected parents of the current generation per cycle, 
did not significantly differ between overlapping and dis-
crete generations with replicated or unreplicated phe-
notypic selection (see Supplementary File 12, Table S4; 
Supplementary File 15, Figure S3; Supplementary File 16, 
Figure S4). For selection on true breeding value, selection 
accuracy was by definition 1 for both discrete and over-
lapping generations. For genomic truncation selection, 

Fig. 6  Selection error bias for RS-AY scenarios. Selection error bias per cycle for the RS-AY scenarios of phenotypic selection and genomic selection sur-
rounded by the 95% confidence interval of the cycle mean. Overall selection error bias is show as well as error bias due to year, additive x year, and plot 
error
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no differences in accuracy among overlapping and dis-
crete generations were observed regardless of training set 
(see Supplementary 12, Table S4; Supplementary File 18, 
Figure S6; Supplementary File 19, Figure S7).

In genomic OCS, with the training set composed of all 
generations, selection accuracy was higher for overlap-
ping generations in the short term if Ne = 100 and h2 = 0.5 
(see Supplementary File 12, Table S4 and Supplementary 
File 22, Figure S10). Overlapping generations also had 
higher accuracies in the medium term if h2 = 0.5 and Ne = 
45. (see Supplementary File 12, Table S4 and Supplemen-
tary File 21, Figure S9). No significant differences were 
observed in the long term for OCS with training on all 
generations (see Supplementary File 20, Figure S8; Sup-
plementary File 21, Figure S9; Supplementary File 22, Fig-
ure S10). In genomic OCS with training on the previous 
five generations only, overlapping selection had higher 
selection accuracy in the short term only if h2 = 0.5 or 0.9 
and Ne = 100 (see Supplementary File 12, Table S4 and 
Supplementary File 25, Figure S13). In the medium term, 
overlapping selection had higher accuracies at all levels 
of Ne for h2 = 0.1, but only at Ne = 45 or 100 for h2 = 0.5 
or 0.9 (see Supplementary File 12, Table S4; Supplemen-
tary File 23, Figure S11; Supplementary File 24, Figure 
S12; Supplementary File 25, Figure S13). In the long term, 
overlapping selection had higher accuracies at all levels of 
h2 and Ne observed with OCS and training on the previ-
ous five generations (see Supplementary File 12, Table S4; 
Supplementary File 23, Figure S11; Supplementary File 
24, Figure S12; Supplementary File 25, Figure S13).

In the RS-AY cases, significant differences in mean 
selection accuracy were observed by scenario (see Sup-
plementary File 11, Table S3). Discrete phenotypic selec-
tion produced higher selection accuracy than overlapping 
phenotypic selection, and discrete genomic selection 
produced higher selection accuracy than overlapping 
genomic selection (see Supplementary File 12, Table S5 
and Supplementary File 26, Figure S14).

Mean parental age
By definition, the age of the selected parents under dis-
crete generations was always one in the RS-A scenarios. 
Both thrice-replicated and unreplicated overlapping 
phenotypic truncation selection always resulted in mean 
parental age significantly greater than 1 for overlapping 
relative to discrete generations (see Supplementary File 
15, Figure S3; Supplementary File 16, Figure S4; Supple-
mentary File 28, Table S8). Interestingly, selection on 
true breeding value always resulted in mean parental 
age significantly greater than 1 with overlapping genera-
tions in the medium and long term (see Supplementary 
File 17, Figure S5 and Supplementary File 28, Table S8). 
With genomic truncation selection and training on all 
generations, mean parental age was always higher with 

overlapping generations (see Supplementary File 18, 
Figure S6 and Supplementary File 28, Table S8). With 
truncation selection and training on the previous five 
generations, overlapping generations had significantly 
higher mean parental age except in the medium term at 
h2 = 0.1 (see Supplementary File 19, Figure S7 and Supple-
mentary File 28, Table S8). With genomic OCS and train-
ing on all generations, mean parental age in overlapping 
scenarios was not significantly different from discrete at 
Ne = 10 in the medium term only, but was significantly 
higher in the short and long terms (see Supplementary 
File 20, Figure S8; Supplementary File 21, Figure S9; 
Supplementary File 22, Figure S10; Supplementary File 
28, Table S8). Mean parental age was always signficantly 
higher than discrete for Ne= 45 and 100 with genomic 
OCS and training on all generations (see Supplemen-
tary File 21, Figure S9; Supplementary File 22, Figure 
S10; Supplementary File 28, Table S8). With genomic 
OCS and training on the previous five generations, mean 
parental age did not significantly differ between overlap-
ping and discrete generations if Ne = 10 in the short term 
(see Supplementary File 23, Figure S11 and Supplemen-
tary File 28, Table S8). However, at all other timepoints 
and levels of Ne overlapping selection led to significantly 
higher mean parental age than discrete (see Supplemen-
tary File 23, Figure S11; Supplementary File 24, Figure 
S12; Supplementary File 25, Figure S13; Supplementary 
File 28, Table S8).

In the RS-AY scenarios, mean parental age was 3.67 
years under discrete selection. For the overlapping sce-
narios, mean parental age was significantly greater than 
3.67 years with both phenotypic and genomic selection 
(see Supplementary File 26, Figure S14 and Supplemen-
tary File 27, Table S7).

Discussion
The possibility of allowing generations to overlap in 
recurrent selection is not often considered. Although 
recycling a preferred parent across generations is com-
mon in applied breeding programs, nonpreferred indi-
viduals are generally discarded permanently. Here, the 
underlying theoretical basis for practicing discrete as 
opposed to overlapping recurrent phenotypic selection 
is demonstrated. Mean magnitude of error in selected 
individuals is larger than mean magnitude of error in 
the overall population, creating selection error bias. 
Over breeding cycles, selection error bias causes the 
magnitude of selection error to increase in phenotypi-
cally selected populations with overlapping generations. 
This propagation of selection error results in decreased 
genetic gain, whereas with discrete phenotypic selection 
the population recovers each cycle because the magni-
tude of the deviation of observed phenotypic value from 
true breeding value remains random in the selected 
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individuals. Maintaining discrete generations in pheno-
typic selection prevents making the “same old mistakes” 
of selecting individuals erroneously believed to be excep-
tional repeatedly across cycles.

Notably, at higher heritabilities, the propagation of 
error takes more cycles to affect gain because the pheno-
types of selected individuals deviate less from their true 
breeding value compared to lower heritabilities. Discrete 
generations still outperformed overlapping generations 
if phenotypic observations were replicated three times, 
though the relative outperformance was slightly less than 
without replication as phenotypic value deviated less 
from true breeding value. However, with selection on 
true breeding value, no differences in mean genetic value 
were observed between discrete and overlapping genera-
tions, as is expected in absence of selection error.

The propagation of error under overlapping pheno-
typic selection can be thought of as failure to observe 

regression to a mean when individuals are not adequately 
evaluated; phenotypes at the tails of a distribution, far 
from the mean, are on average more likely to have larger 
magnitudes of error (Fig.  7). In breeding for population 
improvement, individuals in the upper tail of the pheno-
typic distribution—and outliers beyond the upper tail of 
the distribution— are inherently of interest. Many phe-
notypes are in the tails of the distribution due to error. 
In selection from discrete generations the total number 
of outliers is small, whereas in selection from overlapping 
generations the total number of outliers grows as breed-
ing cycles are completed and total number of selection 
candidates grows. Thus, the number of highly erroneous 
phenotypes selected as parents is limited under discrete 
selection, and this restriction causes discrete phenotypic 
selection to outperform overlapping phenotypic selec-
tion, particularly at low heritabilities.

Fig. 7  Selection error bias illustration. Phenotypic values, true breeding values, and errors of selected and unselected individual candidates at h2 = 0.1 in 
the first cycle of overlapping phenotypic selection for the RS-A pipeline. The magnitude of error is greater at the tails of the phenotypic values, including 
the upper tail from which individuals are selected

 



Page 13 of 15Labroo et al. BMC Genomics          (2022) 23:736 

The effect of overlapping vs. discrete generations in 
genomic truncation selection has not been previously 
evaluated to the authors’ knowledge. Mean genetic value 
does not significantly differ in discrete and overlapping 
genomic truncation selection, in contrast to phenotypic 
selection. Addition of new data to the model with each 
generation of genomic selection eliminates the problem 
of error propagation observed in phenotypic selection, as 
estimates of breeding value are improved by replicated 
observations of allele-phenotype combinations (which 
is synonymous with observations of more relatives). 
Though we hypothesized that overlapping generations 
might lead to more genetic gain than discrete as accuracy 
of GEBVs increased in older individuals with phenotyp-
ing of progeny, this was not the case due to the positive 
genetic trend from selection [22]. In other words, older 
individuals tended to have lower true breeding val-
ues than younger individuals in the presence of effec-
tive selection, so any increase in accuracy did not result 
in selection of older individuals due to their truly lower 
values. Generally, the mean parental age did not substan-
tially increase in overlapping genomic truncation selec-
tion compared to discrete (although the small increase 
observed was significant), indicating that parents with 
the best GEBVs were usually from the most recent gen-
eration or most recently past generations.

It is perhaps worth clarifying that this study does 
not directly explore the optimal generation interval or 
optimal introgression of older material. Although we 
observed that re-use of old, inadequately evaluated 
material as parents decreased genetic gain, this does not 
imply that use of old materials always decreases genetic 
gain (although this would certainly be expected in most 
cases). For example, with use of true breeding values and 
allowance of overlapping generations, the observed mean 
parental age was slightly greater than one. This means 
that parents from on average the most recently past 
breeding cycle were truly competitive with candidates 
from the current breeding cycle. However, our study 
does not fully explore variables (e.g. selection inten-
sity and genetic variance) which affect this observation. 
Our findings are more indicative of the consequences of 
inadequate evaluation than the consequences of select-
ing old material, because if the old material in our study 
had been adequately evaluated, it would never have been 
selected.

Because we observed in previous simulations that 
overlapping truncation selection underperformed dis-
crete selection at high heritabilities in the long term due 
to inbreeding, we tested whether controlling genomic 
inbreeding by OCS led to greater mean genetic values in 
overlapping than discrete OCS scenarios. It is also well-
established that genomic selection requires genomic 
control of inbreeding for maximal long-term gain, and 

at times genomic control of inbreeding can increase 
short-term gain relative to truncation selection [23–26]. 
However, we did not generally observe that overlapping 
selection outperformed discrete selection in OCS sce-
narios except at relatively high effective population size 
and high heritability. Interestingly, there is an explicit 
penalty to use of individuals from past generations in 
OCS due not to their genetic values but rather their addi-
tion to the rate of inbreeding [25]. If overlapping genera-
tions are allowed, control of inbreeding generally results 
from increasing the number of parents selected and not 
from increasing the generation interval in canonical OCS 
[22]. Thus, in contrast to genomic truncation selection, 
the relatively similar performance of overlapping and 
discrete OCS is likely due to the control of inbreeding 
as well as balance of gain per cycle and increased selec-
tion accuracy per cycle. With OCS at high Ne and h2 = 0.5 
or 0.9, overlapping generations always had higher mean 
genetic values than discrete. This may indicate that over-
lapping generations allow more flexibility than discrete 
in balancing increases in inbreeding and genetic gain 
when inbreeding was more strictly constrained, as more 
individuals with more combinations of genetic value 
and relatedness were available to meet the constraints 
imposed. This is in agreement with the observation 
of Villanueva et al. (2000) that the optimal generation 
interval was higher with more stringent restrictions on 
inbreeding, as well as use of fewer parents [22].

As demonstrated in the RS-AY scenarios, error can 
propagate from any source with overlapping phenotypic 
selection— year error, genotype x year interaction error, 
or random plot error. Because we simulated greater plot 
error variance than year or genotype x year variance in 
stages from which parents were selected, we observed 
relatively more selection error bias due to plot error than 
other sources with overlapping phenotypic selection. 
Increasing the variance of the year or genotype x year 
values would likely increase their relative contributions 
to overall selection error; in applied breeding programs, 
the relative contribution of each source of error depends 
on the program. Additionally, we expect that selection 
error bias is not specific to plant breeding and can occur 
in other cyclical systems in which repeated selection 
occurs in the presence of random observational error.

The propagation of error was not restricted by move-
ment of cohorts through advancement stages alone in the 
RS-AY scenario; restriction of propagation of error was 
accomplished by use of a statistical method to estimate 
breeding value. In the RS-AY scenarios, we only tested 
use of RR-BLUP to estimate breeding value, which is 
equivalent to genomic best linear unbiased prediction. 
We expect that methods which use other relationship 
matrices for the random genotypic effect, such as pedi-
gree BLUP, should also restrict propagation of error. Even 
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BLUP with an identity relationship matrix for the random 
genotypic effects and unreplicated phenotypes should 
restrict propagation of error, since unreplicated pheno-
types would be shrunken to the mean by the heritability. 
This highlights the general utility of BLUPs in preventing 
selection error bias.

To build on the conclusions of this study, it would be 
useful to test relative performance of overlapping and 
discrete generations under different genomic selection 
schemes, such as the modified reciprocal recurrent selec-
tion practiced in commercial hybrid breeding programs. 
Testing non-additive genetic architectures may also be 
relevant. Though speculative, it would also be interesting 
to test discrete and overlapping generations with multi-
trait genomic selection. We hypothesize that in cases 
where multiple objectives are to be optimized (e.g. mul-
tiple phenotypic traits with different trait architectures), 
overlapping generations may provide more combina-
tions of traits within genomic selection candidates and 
increase multi-trait gain.

Conclusion
Based on the trends observed, generations should be 
kept discrete under recurrent mass phenotypic selection 
to avoid decreased genetic gain due to selection error 
bias. With genomic truncation selection, we observed no 
advantage to allowing overlapping generations under the 
assumptions used, though with genomic OCS it appeared 
the overlapping generations allowed more effective con-
trol of inbreeding than discrete generations at high effec-
tive population sizes with low targeted inbreeding rates.
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