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Abstract 

Background:  Mytilidae, also known as marine mussels, are widely distributed in the oceans worldwide. Members of 
Mytilidae show a tremendous range of ecological adaptions, from the species distributed in freshwater to those that 
inhabit in deep-sea. Mitochondria play an important role in energy metabolism, which might contribute to the adap-
tation of Mytilidae to different environments. In addition, some bivalve species are thought to lack the mitochondrial 
protein-coding gene ATP synthase F0 subunit 8. Increasing studies indicated that the absence of atp8 may be caused 
by annotation difficulties for atp8 gene is characterized by highly divergent, variable length.

Results:  In this study, the complete mitochondrial genomes of three marine mussels (Xenostrobus securis, Bathy-
modiolus puteoserpentis, Gigantidas vrijenhoeki) were newly assembled, with the lengths of 14,972 bp, 20,482, and 
17,786 bp, respectively. We annotated atp8 in the sequences that we assembled and the sequences lacking atp8. The 
newly annotated atp8 sequences all have one predicted transmembrane domain, a similar hydropathy profile, as well 
as the C-terminal region with positively charged amino acids. Furthermore, we reconstructed the phylogenetic trees 
and performed positive selection analysis. The results showed that the deep-sea bathymodiolines experienced more 
relaxed evolutionary constraints. And signatures of positive selection were detected in nad4 of Limnoperna fortunei, 
which may contribute to the survival and/or thriving of this species in freshwater.

Conclusions:  Our analysis supported that atp8 may not be missing in the Mytilidae. And our results provided evi-
dence that the mitochondrial genes may contribute to the adaptation of Mytilidae to different environments.
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Introduction
Mitochondria are essential eukaryotic organelles, they 
play important role in ATP (the universal currency 
of biological energy) production through oxidative 

phosphorylation (OXPHOS) [1]. The typical mitochon-
drial genome of animals is a small (16 kb) circular mol-
ecule, which includes 13 OXPHOS-related genes, 22 
transfer RNA (tRNA) genes and 2 ribosomal RNA 
(rRNA) genes [1, 2], and it usually follows a strictly 
maternal inheritance. In bivalves, some species of Myti-
lidae [2, 3], Donacidae [4] and etc. showed a unique 
Doubly Uniparental Inheritance (DUI) model. In this 
model, there are two highly divergent male (M-type) 
and female (F-type) mitochondrial genomes (M-type vs 
F-type DNA divergence exceeds 20%) [1, 5]. Females with 
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DUI possess only F-type, and males possess two types, 
but transmit only M-type to their sons. The mitochon-
drial genomes of bivalve species are also characterized 
by extraordinary variability in gene arrangement, tRNA 
gene number, and genome size. And some bivalve spe-
cies are thought to lack the mitochondrial protein-coding 
gene ATP synthase F0 subunit 8 (ATP8) [6–8]. The pres-
ence and absence of atp8 were mainly studied in Mytili-
dae, and atp8 gene has been identified and proved to be 
actively transcribed and translated in Mytilus spp. [6, 9, 
10]. However, the atp8 gene of Limnoperna fortunei was 
presumed to be a pseudogene. Whether atp8 gene was 
actually “missing” in some species has become a concern 
for researchers [5].

Mytilidae, also known as marine mussels, are widely 
distributed in the oceans worldwide. Some mussels are 
important economic species, for instance, Mytilus chil-
ensis, Mytilus. edulis, Mytilus coruscus, Perna viridis [11, 
12]. According to the Fishery and Aquaculture Statistics 
2018 reported by Food and Agriculture Organization, 
the total production of M. chilensis (major species) in 
2018 was 365,595 tonnes. Members of Mytilidae show 
a tremendous range of ecological adaptions, from the 
species distributed in freshwater to those that inhabit in 
deep-sea. The deep-sea environment is one of the most 
extreme environments on Earth, with limited food, low 
oxygen, high hydrostatic pressure, toxic chemicals and 
extreme temperature [13]. The species of Mytilidae that 
invaded deep-sea environments are mainly in the sub-
family Bathymodiolinae. The evolutionary stepping stone 
hypothesis believes that the ancestors of Bathymodioli-
nae progressively adapted to deep-sea environments by 
exploiting sunken wood and whale carcasses [14]. Bathy-
modioline species usually have reduced digestive systems 
[15] and rely instead on endosymbiotic bacteria, trans-
mitted horizontally from the environment to gill tissues, 
which produce organic carbon with energy from hydro-
gen sulfide oxidation. [16]. L. fortunei, golden mussel, is 
a species of Mytilidae with freshwater independent colo-
nization [6, 17]. In freshwater, the low levels of ionic con-
centration may force organisms to expend more energy 
regulating osmotic pressure [18]. Given the functional 
importance of OXPHOS, mutations of the mitochondrial 
genes can directly affect metabolic performance. Mount-
ing evidence suggests that some non-neutral mutations 
in mitochondrial genes can contribute to the adaptation 
of animals to different environments [19–21].

Mitochondrial DNA has been one of the most useful 
tools that are widely used in species identification, phy-
logenetic studies [22], comparative genomics [23], and 
management of invasive alien species [24]. Xenostrobus 
securis, L. fortunei, and Mytilus galloprovincialis and 
etc., are regarded as notorious invasive species which 

have caused dramatic and devastating effects on eco-
systems [25, 26]. However, the complete mitochondrial 
genome of X. securis is still unknown. In addition, more 
mitochondrial genomes may contribute to further under-
standing the differentiation and evolution of Mytilidae 
[27, 28]. The emergence of cost-efficient next-generation 
sequencing allows us to quickly obtain mitochondrial 
genomes from various data (genomic data, transcriptome 
data, and metagenomic data) [29, 30]. In the present 
study, the complete mitochondrial genomes of X. securis, 
and two deep-sea mussels (Bathymodiolus puteoserpen-
tis, Gigantidas vrijenhoeki) were newly assembled. We re-
annotated atp8 gene in Mytilidae, which is aim to answer 
whether atp8 is not missing in the whole family. Further-
more, we also performed positive selection analysis of 12 
protein-coding genes. We aim to provide new insights 
into the molecular mechanisms of adaptive evolution 
(to different environments: deep-sea and freshwater) of 
Mytilidae.

Materials and methods
Sequences and annotation
The sequencing data were download from NCBI (X. 
secures SRR7751554, B. puteoserpentis ERR3959529, G. 
vrijenhoeki SRR10802050) and filtered by Trimmomatic 
0.36 [31–33]. The mitochondrial genomes of those spe-
cies were assembled with the NOVOPlasty software [30]. 
The MITOS web server (http://​mitos2.​bioinf.​uni-​leipz​
ig.​de/​index.​py) was used to annotate the mitochon-
drial genomes [34]. tRNA genes were also predicated by 
ARWEN v1.2.3 (http://​130.​235.​244.​92/​ARWEN/) [35]. 
The AT and GC skews were calculated according to the 
following formulae: AT-skew = (A − T)/(A + T) and 
GC-skew = (G − C)/(G + C).

Because of the small size and high variability of atp8, 
it is difficult for automatic annotation tools [5, 36]. The 
atp8 sequences were annotated by manually scanning 
the intergenic regions. ORFfinder (https://​www.​ncbi.​
nlm.​nih.​gov/​orffi​nder/) was used to find the ORFs. The 
start codon of atp8 sequences was corrected according to 
the sequences of related species. TMHMM Server v.2.0 
(http://​www.​cbs.​dtu.​dk/​servi​ces/​TMHMM/) was used to 
identify the transmembrane helices of atp8 sequences. 
The PROTSCALE tool of ExPASy (http://​ca.​expasy.​
org/​tools/) was applied to calculate the hydrophobic-
ity profiles. In addition, we also annotated the atp8 with 
HHblits v3.30 [37] referring to a previous study [38]. In 
brief, A Hidden Markov Model (HMM) was constructed 
for each ORF using HHblits with PDB70. An HMM for 
known atp8 genes was constructed with the latest Uni-
clust30 database. Then, the HMM-HMM alignment was 
run against ORFs with atp8.

http://mitos2.bioinf.uni-leipzig.de/index.py
http://mitos2.bioinf.uni-leipzig.de/index.py
http://130.235.244.92/ARWEN/
https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/orffinder/
http://www.cbs.dtu.dk/services/TMHMM/
http://ca.expasy.org/tools/
http://ca.expasy.org/tools/
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Phylogenetic analyses
In this article, only F-type was included in the analyses. 
The 12 protein-coding genes of 46 sequences were used 

to reconstruct the phylogenetic relationships [39]. The 
Crassostrea gigas (AF177226.1) and Atrina pectinata 
(KC153059.1) served as outgroups (Table  1). atp8 was 

Table 1  Complete mitochondrial genomes of Mytilidae used for phylogenetic analysis in this study

* The sequence (KM655841.1) may from Mytilaster solisianus rather than “Perna Perna”

Species Subfamily Size (bp) Accession number Reference

Limnoperna fortunei Limnoperninae 18,145 KP756905 [6]

Lithophaga curta Lithophaginae 16,580 MK721546 [22]

Bathmodiolus septemdierm Bathymodiolinae 17,069 AP014562 [45]

Bathymodiolus marisindicus Bathymodiolinae 17,138 MT916745 [28]

Bathymodiolus brooksi Bathymodiolinae 17,728 MT916743 [28]

Bathymodiolus azoricus Bathymodiolinae 17,598 MT916742 [28]

Bathymodiolus sp. 5 South Bathymodiolinae 18,376 MT916740 [28]

Bathymodiolus puteoserpentis Bathymodiolinae 20,482 ON128252 This study

“Bathymodiolus” thermophilus Bathymodiolinae 18,819 MK721544 [22]

“Bathymodiolus” manusensis Bathymodiolinae partial KY270856 -

Bathymodiolus aduloides Bathymodiolinae 17,243 MT916741 [28]

Gigantidas japonicus Bathymodiolinae 17,510 AP014560 [45]

Gigantidas securiformis Bathymodiolinae 17,199 KY270857 -

Gigantidas platifrons Bathymodiolinae 17,653 AP014561 [45]

Gigantidas childressi Bathymodiolinae 17,637 MT916744 [28]

Gigantidas haimaensis Bathymodiolinae 18,283 MT916746 [28]

Gigantidas vrijenhoeki Bathymodiolinae 17,786 ON128253 This study

Modiolus modiolus Modiolinae 15,816 KX821782 [46]

Modiolus kurilensis Modiolinae 16.210 KY242717 -

Modiolus nipponicus Modiolinae 15,638 MK721547 [22]

Modiolus comptus Modiolinae 15,591 MN602036 [47]

Modiolus philippinarum Modiolinae 16,389 KY705073 -

Xenostrobus securis Arcuatulinae 14,972 ON128254 This study

Septifer bilocularis Septiferinae 16,253 MK721549 [22]

Perna viridis Mytilinae 16,014 JQ970425 [48]

Perna canaliculus Mytilinae 16,005 MG766134 [49]

Arcuatula senhousia Arcuatulinae 21,557 GU001953 [2]

Gregariella coralliophaga Crenellinae 16,273 MK721545 [22]

Mytilus chilensis Mytilinae 16,765 KP100300 [50]

Mytilus edulis Mytilinae 16,745 MF407676 [10]

Mytilus galloprovincialis Mytilinae 16,780 FJ890849 [51]

Mytilus trossulus Mytilinae 18,628 HM462080 [52]

Mytilus californianus Mytilinae 16,730 GQ527172 [53]

Crenomytilus grayanus Mytilinae 17,582 MK721543 [22]

Mytilus coruscus Mytilinae 16,642 KJ577549 [54]

Geukensia demissa Brachidontinae 15,838 MN449487 [55]

Brachidontes mutabilis Brachidontinae 16,531 MK721541 [22]

Mytilaster solisianus* Brachidontinae 18,415 KM655841 [56]

Brachidontes exustus Brachidontinae 16,600 KM233636 [57]

Perumytilus purpuratus S Brachidontinae 16,986 MH330333 [3]

Perumytilus purpuratus N Brachidontinae 16,963 MH330332 [3]

Semimytilus algosus Brachidontinae 18,113 MT026712 [58]

Mytilisepta keenae Brachidontinae 15,902 MK721542 [22]

Mytilisepta virgate Brachidontinae 14,703 MK721548 [22]
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excluded in the phylogenetic analysis as atp8 was highly 
variable in length and amino acid composition. The 
sequences were aligned with Muscle in MEGA7 [40]. The 
gap and ambiguously aligned sites were recognized and 
removed with Gblocks Version 0.91b [41]. ModelTest-
NG was used to identify the best-fit models for each 
gene based on the Akaike Information Criterion (AIC) 
[42]. Bayesian phylogenetic inference was performed 
with Mrbayes 3.2.7 [43]. Two independent Markov chain 
Monte Carlo (MCMC) simulations were carried out with 
four chains (one cold, three hot) for 1,000,000 genera-
tions, sampling every 1000 generations. The initial 25% 
of sampled trees were discarded as burn-in. Maximum 
Likelihood (ML) inference was performed using RAxML-
NG with 1000 bootstrap replicates [44]. The phylogenetic 
trees were visualized by Figtree. v1.4.4.

The divergence time was estimated using the program 
MCMCtree in PAML4.9 [59]. Two nodes were used as 
calibrations, one of which was from the fossil recode 
data of Modiolinae (393–408 Mya) and the other was 
from previous studies [28, 60, 61], the time of divergence 
between B. themophilus and G. childressi was approxi-
mately 21.1–33.0 Mya.

Selection analyses
Comparing the nonsynonymous/synonymous nucleo-
tide substitution ratios (ω = dN/dS) has been widely used 
to evaluate the adaptive molecular evolution of protein-
coding genes. The values of dN/dS mean changes in selec-
tive pressure, where the dN/dS < 1, = 1, > 1 correspond to 
negative purifying selection, neutral evolution and posi-
tive selection, respectively. The program CODEML in 
PAML4.9 was applied to calculate the values of dN/dS 
[59]. The phylogenetic tree of 12 protein-coding genes 
inferred with Mrbayes was used for selection analyses. 
The outgroups were not included in selection analy-
ses. For branch model, One-ratio model (model = 0, 
NSsites = 0, icode = 4) and Three-ratios model 
(model = 2, NSsites = 0, icode = 4) were performed. The 
deep-sea branches (Bathymodiolinae) and freshwater 
branches (L. fortunei) were used as foreground branches 
(two foreground branches) and the remaining were used 
as background branches. In addition, the branch-site 
model (model = 2, NSsites = 2) was used to determine 
whether positive selection acted on specific sites on fore-
ground branches. The sites under positive selection were 
identified with Bayes empirical Bayes posterior probabili-
ties (> 0.95). The likelihood ratio tests were carried out to 
identify if the alternative model provided a significantly 
better fit than the null model.

To explore the possible effects of positive selection sites 
on protein function, the three-dimensional structure 
of protein was predicted with phyre2 [62]. The protein 

structure of NuoM in Escherichia coli [63]was used as a 
template [21, 64]. The positive sites were marked using 
PyMOL.

Results and discussion
General features
We have successfully obtained the complete mitochon-
drial genomes of X securis, B. puteoserpentis, and G. vri-
jenhoeki, with lengths of 14,972 bp, 20,482, and 17,786 bp, 
respectively. The genomes we assembled showed high 
similarity with the known sequences of each species 
(100% for X. securis; 100% for B. puteoserpents; 99.42% 
for G. vrijenhoeki). It should be pointed that X. secures 
might be a cryptic species complex, and we cannot rule 
out the possibility that the mitochondrial genome of X. 
securis may belong to the M-type [65, 66]. The base com-
position analysis showed that three assembled genomes 
were biased toward A and T, with AT content of 59.08% 
in X securis, 63.55% in B. puteoserpentis, and 66.96% in G. 
vrijenhoeki. The assembled genomes are all characterized 
by negative AT skew and positive GC skew (Table 2). The 
base composition and skewness are consistent with most 
studies in bivalves [8, 67, 68].

For these three species, all genes encoded on the heavy 
strand (H-strand) except tRNA Gly in Light (L-strand). 
Each genome has 13 protein-coding genes and 2 riboso-
mal RNA genes (Fig. 1). However, the number of tRNAs 
is varied. Twenty-two typical tRNAs were identified in 
X securis. 27 tRNAs (four more tRNAHis and one more 
tRNALeu) and 23 tRNAs (one more tRNALeu) were identi-
fied in B. puteoserpentis and G. vrijenhoeki, respectively. 
The lengths of intergenic region between tRNAHis were 
470  bp, 441  bp, 455  bp and 468  bp, respectively, which 
leads B. puteoserpentis to have the largest mitochon-
drial genome among Bathymodiolinae. In the assem-
bled genomes of X securis, B. puteoserpentis, and G. 
vrijenhoeki, the total lengths of protein-coding genes 
were 11,060, 10,947, and 10,993, accounting for 73.87%, 
53.45%, 61.81% of the whole genome, respectively. The 
protein-coding genes of X securis started with ATG 
and ATA, while both of B. puteoserpentis and G. vrijen-
hoeki started with ATG, ATA, ATT, and GTG. For these 
three species, the protein-coding genes mainly started 
with codon ATG. The stop codons of all species were 

Table 2  AT content, GC content, and compositional asymmetry 
of three mitogenomes

Species AT% GC% AT skew GC skew

Xenostrobus securis 59.08 40.92 -0.225 0.231

Bathymodiolus puteoserpentis 63.55 36.45 -0.247 0.270

Gigantidas vrijenhoeki 66.96 33.04 -0.225 0.294
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Fig. 1  Linearized mitochondrial gene arrangement patterns of 44 Mytilidae sequences. Genome and gene size are not in scale. * Note: The 
sequence (KM655841.1) may from Mytilaster solisianus rather than “Perna Perna” 
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either TAA or TAG except nad1 and cox3 of X. securis 
which had an incomplete stop codon of T. The pres-
ence of incomplete stop codons is a common feature of 
the mitochondrial genes among animals [5, 69, 70]. The 
incomplete stop codon is thought to be completed by 
polyadenylation of the transcript.

ATP8 annotation
Some species are thought to lack atp8 gene that encodes 
a subunit of mitochondrial ATP synthase [6, 7]. Increas-
ing studies indicated that the absence of atp8 may be 
caused by annotation difficulties for atp8 gene is char-
acterized by highly divergent, variable length. Some-
times, atp8 gene could not be detected by automatic 
annotation software, the annotation of atp8 gene usu-
ally requires manual inspection and comparison to atp8 
sequences from other species. In this study, we manually 
annotated atp8 in the sequences that we assembled and 
the sequences lacking atp8. Twelve atp8 sequences were 
manually annotated in the intergenic region (Table  3). 
The results of manual annotation were highly consist-
ent with the results of HMM. However, HMM method 
was unable to detect atp8 in some species (e.g. L. for-
tunei, X. secures and Modiolinae,), probably due to the 
lack of atp8 sequences from related species and the low 
sequence similarity with known atp8 genes. For newly 
annotated atp8, start codons were ATG or GTG or ATC, 
and stop codons were either TAG or TAA. ATP8 usually 
has higher conservation of the secondary structure com-
pared to the primary sequence [71]. The newly annotated 
atp8 sequences all have one predicted transmembrane 

domain, a similar hydropathy profile, as well as the C-ter-
minal region with positively charged amino acids (R, H, 
and K). (Table 3, Figs. 2 and 3) [72].

In this study, all species of Mytilidae possessed an 
annotated atp8 gene, which allows us to further under-
stand the features of atp8 gene in a family. The lengths 
of atp8 in Mytilidae were short and variable, ranging 
from 37 – 139 aa (Table 3 and Fig. 3). The longest atp8 
was from Mytilaster solisianus (KM655841.1), and the 
shortest atp8 was from P. canaliculus. It should be noted 
that the annotation of the start codons and stop codons 
might be inaccurate in some species due to the lack of 
additional data. The atp8 sequence of M. solisianus was 
much longer than that of related species. We are not sure 
whether this sequence used an incomplete stop codon 
(TA or T), which caused the fact that the real length was 
shorter than the current length. The alignment of atp8 
gene indicated that atp8 sequences were highly divergent 
that they showed similarity only in related species. The 
conserved ‘MPQL’ amino acid signature at the N-termi-
nus, the typical characteristic for metazoan ATP8 pro-
teins [71], was only found in L. fortunei (VPQL) (Fig. 3). 
However, the conserved ‘PQ’ amino acid signature was 
found in many species, for instance, Bathymodiolinae, 
Limnoperninae, Lithophaginae, P. viridis, P. canaliculus, 
Arcuatula senhousia and some species of Modiolinae 
[72]. Although not all species of Mytilidae have this fea-
ture, it still can contribute to identifying atp8 gene from 
ORFs in some species of Mytilidae.

Given the characteristics of atp8 gene, it is not sur-
prising that atp8 gene was once presumed to have lost 

Table 3  Annotation of atp8 gene in Mytilidae

a  Intergenic region used for annotation of atp8
b  TM Transmembrane
c  Annotation methods. M Manual annotation, HMM hhblits annotation

Species Position (bp) Size (bp) Intergenic region 
(bp)a

Start codon Stop codon TMb GenBank Annotation 
Methodsc

Modiolus modiolus 3240–3419 180 194 ATG​ TAA​ 7–29 KX821782 M

Modiolus kurilensis 676–861 186 191 ATG​ TAA​ 7–29 KY242717 M

Modiolus nipponicus 3409–3636 228 304 ATG​ TAA​ 13–35 MK721547 M

Modiolus comptus 3106–3276 171 670 ATG​ TAG​ 13–35 MN602036 M

Modiolus philippinarum 16,113–16,304 192 209 ATG​ TAA​ 4–26 KY705073 M

Xenostrobus securis 3119–3238 120 120 ATG​ TAG​ 7–29 ON128254 M

Limnoperna fortunei 157–273 117 271 ATA​ TAA​ 10–32 KP756905 M

Mytilisepta keenae 15,718–15,882 165 186 ATG​ TAA​ 10–32 MK721542 M & HMM

Lithophaga curta 10,543–10,659 117 899 GTG​ TAA​ 7–29 MK721546 M & HMM

Bathymodiolus puteoserpentis 3193–3324 132 241 GTG​ TAG​ 7–29 ON128252 M & HMM

Gigantidas vrijenhoeki 3304–3435 132 157 GTG​ TAA​ 7–29 ON128253 M & HMM

Crenomytilus grayanus 17,320–17,571 251 279 ATG​ TAA​ 5–27 MK721543 M &HMM

Mytilaster solisianus 13,905–14,324 420 574 ATC​ TAA​ 13–32 KM655841 M & HMM
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Fig. 2  Hydropathy profile of candidate atp8 gene identified in this study, in comparison with the previously inferred atp8 gene (Syndesmis 
echinorum, MT063058; Cristaria plicata, KM233451)
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in many species. Although atp8 gene of L. fortunei has 
the ‘MPQL’ amino acid signature at the N-terminus, it 
was still annotated as a pseudogene in an incorrect posi-
tion [6]. In almost all lineages of animals, there has been 
strong selection to maintain a minimal set of 37 genes [5]. 
Researchers need to be cautious of assertions that a mito-
chondrial gene is missing [73]. Our results supported that 
atp8 gene may not be missing in the Mytilidae. Although 
we have no right to claim that whole Bivalvia class pos-
sesses an atp8 gene, we provided further evidence that a 
family possesses the atp8 gene. In the future, studies of 
transcriptional activity and function of these atp8 genes 
may be necessary. Moreover, we strongly encourage 
researchers to identify whether atp8 gene was not miss-
ing in other families.

Phylogenetic relationship within Mytilidae
To further examine the relationship among the Myti-
lidae species, the phylogenetic trees were reconstructed 
using Maximum Likelihood and Bayesian inference 
methods with a concatenated alignment. The tree topolo-
gies resulting from these two methods were consistent. 
The results supported that the Mytilidae is subdivided 
into two major clades [22]. The clade 1 contained the 

subfamilies Bathymodiolinae, Modiolinae, Limnoperni-
nae, and Lithophaginae and the genus Xenostrobus 
(Arcuatulinae), and clade 2 included subfamilies Brachi-
dontinae, Mytilinae, Crenellinae, Septiferinae, and genus 
Arcuatula (Arcuatulinae) (Fig.  4). The estimated diver-
gence time between the two clades was around 399.37 
Mya (95% HPD interval 392.74- 407.65 Mya), which is 
close to the estimated time in other analyses (Fig. 5) [22, 
74].

The subfamily Bathymodiolinae was monophyletic, 
which is the same with previous studies [28, 60]. In this 
study, the Bathymodiolinae were divided into three sepa-
rate clades, corresponding to the Gigantidas, Bathymodi-
olus, and “Bathymodiolus”. The Gigantidas was clustered 
with “Bathymodiolus” and then sister to Bathymodiolus, 
which is consistent with previous analysis [60], but dif-
ferent from zhang’s study [28]. It should be noted that 
although the Gigantidas clustered with “Bathymodiolus”, 
the node was not supported enough according to boot-
strap value and posterior probability. Our results indi-
cated that the subfamily Arcuatulinae was polyphyletic 
as genera Xenostrobus and Arcuatula were divided into 
the clade1 and clade2, respectively. In clade1, the genus 
Xenostrobus and (Modiolinae + Bathymodiolinae) were 

Fig. 3  Alignment of atp8 gene. The first column shows the species name. Red border: “MPQL” amino acid signature of Limnoperna fortunei; Green 
box: the “PQ” amino acid signature; Grey box: positively-charged amino acids
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grouped in a subclade with high supporting values (100% 
BP and 1.00 BPP). The placement of Genus Xenostrobus 
was different between our results and a previous study 
based on 5 genes [74]. The tree of the previous study 
showed that Xenostrobus was clustered with Bathymo-
diolinae and then sister to Modiolinae. However, the gene 
order of 13 protein-coding genes and 2 rRNA (excepting 

tRNA) between Modiolinae and Bathymodiolinae was 
consistent, which supported our result (Fig.  1). Further 
increasing the sequences of Xenostrobus may contribute 
to resolving the phylogenetic relationship among Genus 
Xenostrobus, Modiolinae, and Bathymodiolinae.

In clade 2, Brachidontinae were divided into three 
well-supported clades: [1] Geukensia [2] Brachidontes 

Fig. 4  Phylogenetic relationships of Mytilidae species based on 12 protein-coding genes using Bayesian inference and maximum likelihood 
methods. * Note: The sequence (KM655841.1) may from Mytilaster solisianus rather than “Perna Perna” 
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[3] Mytilisepta + Perumytilus + Semimytilus, which was 
similar to the results of nuclear genes18S and 28S [75]. 
However, the placement of Geukensia was inconsist-
ent. Moreover, a previous study [22] and our result indi-
cated that Perna perna (KM655841.1) had an unusual 
phylogenetic status, which showed high similarity with 
two Brachiodontes species rather than P. viridis and 
Perna canaliculus according to gene order and phyloge-
netic trees (Figs. 1 and 4) [22]. The sequence of P. perna 

(KM655841.1) showed 99.83% sequence identity with 
cox1 sequences of M. solisianus, which suggested that 
the sequence may belong to M. solisianus rather than P. 
perna.

Positive selection analyses
Purifying selection has been widely recognized as the 
predominant force acting on the molecular evolution 
of mitochondrial genomes. However, some studies have 

Fig. 5  Divergence time estimation of Mytilidae inferred with MCMCtree in Paml. Shaded bars on nodes indicate 95% highest posterior density 
(PHD) intervals for each node
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demonstrated that relaxation of purifying selection or 
episodic positive selection on mitochondrial genomes 
may occur in species that have different types of loco-
motion [76] or species living in extreme environments 
[77–79]. The One-ratio model analysis the ω values of 
these 12 genes ranged from 0.0024 to 0.0435, where cox1-
3 have lower ω values than other genes (Table 4). All the 
ω values were less than 1, indicating that the 12 genes of 
Mytilidae experienced constrained selection pressure to 
maintain their function. Members of Mytilidae show a 
tremendous range of ecological adaptions. To examine 
whether heterogeneous selective pressures act on the 
branches living in different environments (freshwater, 
deep-sea, and shallow sea), the Three-ratios model analy-
sis was implemented. The likelihood ratio tests showed 
that the Three-ratios models have significantly better fit 
than the null models at cox1, atp6, cob, nad2, and nad5 
(Table  4), suggesting divergence in selective pressure 
among the branches. In deep-sea branches, the ω val-
ues of those genes excepting cox1 are higher than those 

of other branches, suggesting those genes experienced 
relaxation of purifying selection. Relaxation of purifying 
selection in deep-sea branches has been found in many 
studies including deep-sea sea cucumbers and Boudemos 
sp. (Calamyzinae) [77, 80]. The relaxed purifying selec-
tion may be beneficial for deep-sea species to adapt to the 
reduction of oxygen levels and metabolic rates in extreme 
environments. In freshwater branches, only the ω value 
of atp6 was higher than that of shallow-sea branches, but 
still lower than the ω value of deep-sea branches.

To identify whether positive selection acts on a few 
sites in freshwater branches or deep-sea branches, the 
branch-site model analysis was carried out. In deep-sea 
branches, although several sites of the genes (atp6, cob, 
nad2, nad4, nad5, and nad6) were recognized as positive 
sites according to BEB analysis (> 95%), the p-values of 
likelihood ratio tests were > 0.05 (Table S1). In freshwater 
branches, sites of nad2, nad4, and nad5 were identified as 
positive sites with BEB analysis (> 95%), however, only the 
p-value of nad4 was significant, which means nad4 may 

Table 4  Branch model analyses in Mytilidae

Genes One-ratio (lnL) ω Three-ratios (lnL) Shallow sea (ω) Deep-sea (ω) Freshwater (ω) p-value

atp6 -9059.97 0.0147 -9048.60 0.0051 0.0227 0.1179 0.000

cox1 -25,065.71 0.0047 -25,058.99 0.0061 0.0024 0.0050 0.001

cox2 -8952.85 0.0024 -8952.57 0.0025 0.0019 0.0175 0.756

cox3 -15,865.81 0.0131 -15,863.72 0.0163 0.0102 0.0031 0.124

cob -21,708.21 0.0207 -21,677.83 0.0109 0.0344 0.0028 0.000

nad1 -15,212.85 0.0244 -15,212.24 0.0236 0.0262 0.0107 0.543

nad2 -17,841.44 0.0433 -17,831.67 0.0336 0.0591 0.0048 0.000

nad3 -5483.56 0.0225 -5482.37 0.0186 0.0284 0.0025 0.304

nad4 -21,382.34 0.0370 -21,381.96 0.0366 0.0376 0.0024 0.684

nad4L -4847.06 0.0312 -4846.12 0.0283 0.0371 0.0035 0.391

nad5 -35,424.55 0.0435 -35,414.81 0.0366 0.0528 0.0028 0.000

nad6 -6775.67 0.0255 -6772.78 0.0213 0.0333 0.0034 0.056

Table 5  Branch-site model analyses in freshwater branches

Genes Model lnL 2△lnL Parameter estimates Positive sites P-value

nad2 Alternative -17,791.53 0 P0 = 0.648 P1 = 0.009 P2a = 0.339 P2b = 0.004
ω0 = 0.042 ω1 = 1.000 ω2 = 1.000

4S(0.954) 74 N(0.997) 110G(0.989) 1

Null -17,791.53 P0 = 0.648 P1 = 0.009 P2a = 0.339 P2b = 0.004
ω0 = 0.042 ω1 = 1.000 ω2 = 1.000

nad4 Alternative -21,314.63 9.38 P0 = 0.799 P1 = 0.030 P2a = 0.165 P2b = 0.006
ω0 = 0.039 ω1 = 1.000 ω2 = 209.31

41Y(0.956) 49S(0.979) 55L(0.975) 
63 V(0.963) 115L(0.966) 281F(0.974)

0.002

Null -21,319.32 P0 = 0.796 P1 = 0.037 P2a = 0.159 P2b = 0.007
ω0 = 0.039 ω1 = 1.000 ω2 = 1.000

nad5 Alternative -35,070.30 3.10 P0 = 0.806 P1 = 0.074 P2a = 0.110 P2b = 0.010
ω0 = 0.044 ω1 = 1.000 ω2 = 13.12

346 N(0.982) 462Q(0.982) 0.078

Null -35,071.85 P0 = 0.793 P1 = 0.073 P2a = 0.123 P2b = 0.011
ω0 = 0.044 ω1 = 1.000 ω2 = 1.000
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contribute to the adaptation of L. fortunei in freshwater 
(Table 5). Successful adaption to the freshwater environ-
ment may have required increased demand for energy 
involved in processes such as the osmotic balance [21]. 
NADH dehydrogenase, the largest and the most compli-
cated enzyme of the respiratory chain, receives electrons 
from the oxidation of NADH and provides electrons for 
reduction of quinone to quinol [81]. nad4 together with 
nad2 and nad5 were considered to be the actual proton 
pumping devices as they showed homology with a class 
of Na + / H + antiporters [82]. Mutation in the members 
of NADH dehydrogenase would change the metabolic 
capacity which may further affect the fitness of an organ-
ism. To explore the possible effects of positive selection 
sites on nad4, the protein model was generated using the 
E. coli structure as a template. Most of the positive sites 
were directly located in the TMα7a which plays the most 
important role in the transportation of hydrogen ion 
(Fig. 6a). A positive site was found near the end of TMα9, 

which is adjacent to a positive site located in TMα7a. 
Intriguingly, both positive sites are polar amino acids, 
and these substitutions could change the environment 
between TMα7a and TMα9 (Fig. 6b) [21, 83]. This possi-
ble interaction was similar to a previous study of nad2 in 
freshwater dolphins [21]. We speculated that the muta-
tions in NADH dehydrogenase may contribute to the 
survival and/or thriving of these species in freshwater.

Conclusions
Here, the mitochondrial genomes of three marine mus-
sels (Xenostrobus securis, Bathymodiolus puteoserpentis, 
and Gigantidas vrijenhoeki) were assembled using the 
sequences deposited in NCBI. We annotated atp8 in the 
sequences that we assembled and the sequences lacking 
atp8. The newly annotated atp8 sequences all have one 
predicted transmembrane domain, a similar hydropa-
thy profile, as well as the C-terminal region with posi-
tively charged amino acids. Our results supported that 

Fig. 6  The structure analysis of nad4 (a) The topology diagram of nad4 of Limnoperna fortunei. In transparent blue, representation of N-terminal 
part not similar with Escherichia Coli. The positions of positive sites were indicated in red. b The structure analysis of positive sites. Upper-right side: L. 
fortunei model; Lower-right side: Mytilus edulis model. The positions of positive sites were indicated in red, and the amino acid in close proximity was 
indicated in yellow
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atp8 may not be missing in the Mytilidae. Furthermore, 
we reconstructed the phylogenetic trees of Mytilidae 
and carried out positive selection analysis. The results 
showed that the deep-sea bathymodiolines experienced 
more relaxed evolutionary constraints. And signatures of 
positive selection were detected in nad4 of Limnoperna 
fortunei, which may contribute to the survival and/or 
thriving of this species in freshwater.
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