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Abstract 

Background:  Potential functional variants (PFVs) can be defined as genetic variants responsible for a given pheno-
type. Ultimately, these are the best DNA markers for animal breeding and selection, especially for polygenic and com-
plex phenotypes. Herein, we described the identification of PFVs for complex phenotypes (in this case, Feed Efficiency 
in beef cattle) using a systems-biology driven approach based on RNA-seq data from physiologically relevant organs.

Results:  The systems-biology coupled with deep molecular phenotyping by RNA-seq of liver, muscle, hypothalamus, 
pituitary, and adrenal glands of animals with high and low feed efficiency (FE) measured by residual feed intake (RFI) 
identified 2,000,936 uniquely variants. Among them, 9986 variants were significantly associated with FE and only 78 
had a high impact on protein expression and were considered as PFVs. A set of 169 significant uniquely variants were 
expressed in all five organs, however, only 27 variants had a moderate impact and none of them a had high impact 
on protein expression. These results provide evidence of tissue-specific effects of high-impact PFVs. The PFVs were 
enriched (FDR < 0.05) for processing and presentation of MHC Class I and II mediated antigens, which are an impor-
tant part of the adaptive immune response. The experimental validation of these PFVs was demonstrated by the 
increased prediction accuracy for RFI using the weighted G matrix (ssGBLUP+wG; Acc = 0.10 and b = 0.48) obtained 
in the ssGWAS in comparison to the unweighted G matrix (ssGBLUP; Acc = 0.29 and b = 1.10).

Conclusion:  Here we identified PFVs for FE in beef cattle using a strategy based on systems-biology and deep 
molecular phenotyping. This approach has great potential to be used in genetic prediction programs, especially for 
polygenic phenotypes.
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Background
Potential functional variants (PFVs) can be defined 
as genetic variants responsible for a given phenotype. 
Ultimately, these are the DNA markers needed for ani-
mal breeding and selection specially for polygenic and 

complex phenotypes [1]. One possibility to detect PFVs 
is the analysis of whole-genome sequencing (WGS), 
an approach that is still very costly. Another possibility 
is the whole-exome (WES) sequencing which is not as 
expensive as the WGS, however, it still lacks information 
regarding the importance of DNA variants within the cell 
and/or tissue architecture related to phenotypes [2]. As 
the phenotype is nothing more than a coordinate set of 
genes being expressed, one should have in mind that a 
complex phenotype is made by contributions of several 
cell types, organs, and their interactions [3]. Therefore, 
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an organ-level systems biology approach should be con-
sidered since it will point out specific DNA variants 
associated with relevant biological processes for specific 
phenotypes. Hence, it is feasible to consider approaches 
that integrate the information of functional genes in rel-
evant organs to find PFVs for future animal breeding and 
selection purposes.

Feed efficiency (FE) in beef cattle is one of the most 
important traits in livestock [4]. While beef cattle pro-
duce high-quality meat from low-quality forage, they are 
one of the least efficient animals at converting feed into 
protein [5], being recognized as one of the largest con-
tributors to greenhouse gas emissions [6]. Therefore, 
more efficient animals are highly needed worldwide 
since their improved productivity and sustainability can 
reduce production costs, which can reach up to 75% of 
the income expenses in feedlot systems [7]. Further such 
efficient animals can also decrease methane production, 
one of the greenhouse gases, reducing the impact on 
the environment [8, 9]. It should be noted that identify-
ing high FE animals is not an easy task as it is a complex 
phenotype that is controlled by several interconnected 
mechanisms [10, 11]. Thus, it is necessary to understand 
the biological basis of FE to define future animal breeding 
programs [12].

Our research group was the first to describe a patho-
physiological mechanism associated with FE in beef cat-
tle: liver inflammation due to altered metabolism and/or 
bacterial translocation/infection [13], which was partially 
corroborated by others [14–16]. We also unraveled the 
metabolic pathways related to FE in Nellore cattle show-
ing an increased bacterial load in low feed efficient ani-
mals, which is in part, responsible for the hepatic lesions 
and inflammation in such animals [17]. Previously, some 
QTLs for FE in Nellore beef cattle were found through 
conventional GWAS [18–22], however only attempts to 
find causal variants were made. Therefore, we propose 
a system-biology strategy to overcome these limitations 
based on the identification of genetic variants from RNA-
sequencing (RNA-seq) data from physiologically pheno-
type-related organs, followed by a classification of the 
PFVs according to their effects on protein expression and 
function. We also validated the potential functional vari-
ants through differential weighting genomic regions har-
boring PFVs for genomic prediction of RFI in a different 
non-related population.

Results
Detection and characterization of potential functional 
variants (PFVs) associated with feed efficiency
The strategy proposed here (Fig.  1) is to detect PFVs 
based on systems biology and deep phenotyping by RNA-
seq of relevant organs for a given phenotype, in this case, 

FE in beef cattle. For this experiment, we used samples 
from nine animals of each group (HFE and LFE), ana-
lyzing 18 samples of liver, hypothalamus, and pituitary 
glands; 17 of muscle and 15 of the adrenal glands, yield-
ing 13,3 million reads per sample, on average (Table  1 
and Additional file 1). Initially, variants were called from 
the five different organs, and the number of unique vari-
ants was 2,000,936 due to the overlap of variant calling 
in such organs (Table  1). After filtering the variants by 
MAF and call rate, a total of 11,35% (n = 227,225 unique 
variants) was used for statistical analysis, in which 4,39% 
(n = 9986 variants) were significantly associated with FE. 
Next, we classified the PFVs according to their impact on 
protein function, in which 20,0% (n = 1995 variants) were 
classified with moderate impact and only 0.78% (n = 78 
variants) with high impact on protein function (Table 1 
and Fig.  2). The majority of the PFVs with moderate or 
high impact are missense SNPs (Table 2 and Fig. 2), how-
ever, there are other relevant protein consequences as 
frameshift INDELs, stop gained INDELs, and inframe 
insertion INDELs which alter protein sequences and 
function.

Interestingly, we found 169 significant variants 
expressed in all five organs (Fig. 2c), however, only 27 of 
them displayed moderate impact and none high impact 
on protein function. These results provide evidence of 
tissue-specific effects of high-impact functional vari-
ants. In addition, the pituitary glands and the hypothala-
mus ranked as the first and second organs with the most 
significant variants in our study. These 27 variants were 
located close to genes related to the process of apoptosis, 
oxidation, transcription factors, interferons, DNA repair, 
rRNA, and tRNA processing (Table 3).

Functional analysis of the PFVs
Functional enrichment was performed in two scenarios: 
(i) first with all the genes carrying the PFVs grouped, dis-
regarding which tissues they came from, and second (ii) 
by considering the PFVs separately for each tissue. In the 
first scenario, all enriched terms were related to the pro-
cessing and presentation of MHC Class I and MHC class 
II mediated antigens (major histocompatibility com-
plex), which are an essential mechanism of the adaptive 
immune response. In addition to the innate immunity 
system enriched terms, vesicle-mediated transport, cell 
signaling, ubiquitination, double-strand break repair, and 
nucleotide excision were also reported.

The tissue-specific enrichment analysis mainly 
described terms related to the processing and presenta-
tion of MHC Class I and MHC class II antigens, innate 
immune system, vesicle-mediated transport, cell signal-
ing, ubiquitination, and DNA double-strand break repair. 
It should be highlighted that the RNA polymerase III 
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transcription pathway was also indicated in the adre-
nal glands, muscle, hypothalamus, and liver. The simple 
DNA strand repair pathway was enriched in the muscle 
and the nucleotide excision pathway was over-repre-
sented in the adrenal glands, hypothalamus, and liver tis-
sues (Additional  file  2). The list of these 20 genes, their 
potential functional variants and impact on the protein 
sequence, and the frequency in each group can be found 
in Additional file 2.

Validation of the findings using genomic prediction
A total of 144, 252, 413, 416, and 340 PFVs identified in 
the liver, muscle, hypothalamus, pituitary, and adrenal 
glands were adjacent to 223, 422, 694, 697, and 554 SNP 
markers presented in the BovineHD (Illumina), respec-
tively. To carry out the validation and genomic predic-
tions for the validation set, SNP markers adjacent to the 
PFVs were differentially weighted based on the results 
obtained with the ssGWAS using the training dataset. 
The genomic prediction ability for the RFI in the valida-
tion dataset when the PFVs information is not included in 
the analyses is shown in Table 4. The prediction accuracy 
for the RFI using the weighted G matrix (ssGBLUP+wG) 
obtained in the ssGWAS of the training dataset was 
higher than the unweighted G matrix (ssGBLUP). How-
ever, the prediction accuracy enhancement was higher 
when RFI records were added (ssGBLUP+rec) in the val-
idation subset compared to applying a weighted G matrix 
(Table  4). As expected, the highest prediction accuracy 
in the validation dataset was obtained when all available 
information was considered together with the weighted 
G matrix (ssGBLUP+wG + rec), however, more inflated 
predictions for RFI were obtained. By also applying the 
ssGBLUP method [23], (0.45) and [24] (0.22) reported 
higher prediction ability for RFI in Nellore cattle. The less 
inflated predictions for RFI were obtained with the model 
that includes unweighted genomic information and 
records of the validation dataset, however, in this sce-
nario, phenotypic information is necessary. It is impor-
tant to highlight that the more realistic scenario is to use 
the genomic information to predict the GEBV of young 
animals without RFI records at early ages to maximize 

Fig. 1  The pipeline for PFV detection. Step-by-step details of the 
material and methods for obtaining potential causal variants. a 
Selection of animals for feed efficiency and sample preparation; b 
RNA-seq analysis (paired end); c Data treatment and call for variants 
by the GATK tool; d Statistical analysis and genetic association using 
Plink; e Identification of the impact and consequence of variants by 
the Ensembl VEP online; f Functional enrichment using Panther (GO); 
g Validation of results using the GWAS of an independent population
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the genetic progress for RFI and take advantage of the 
genomic selection. It should be noted that the availability 
of phenotypic records for RFI is not common in beef cat-
tle breeding programs since it is expensive to measure.

The prediction ability for each tissue improved in com-
parison to the ssGBLUP+wG by adding the information 
of the PFVs with differentially weighted SNPs (Table 5). 
The prediction ability for RFI using 1-fold, 2-fold, and 
3-fold were almost the same for the different tissues, 
however, the highest prediction accuracy was obtained 

in the 3-fold scenario, in which the prediction accuracy 
increased from 31.03 to 40% compared to the weighted 
G matrix without considering the PFVs. Despite the high 
prediction accuracy for RFI when SNP markers adjacent 
to the PFVs were differentially weighted, more inflated 
predictions were obtained for RFI as the weighted for 
the PFVs increased. However, it is important to highlight 
that the increase of the prediction inflation was lower 
in the liver and muscle tissue compared to the adrenal 
glands, pituitary, or hypothalamus.

Table 1  Number of variants called for feed efficiency in Nellore beef cattle from the five different organs

The results of the Total variant number, Filter, and Significant variants are in quantities, in other words, the number of variants that can be SNPs or/and INDELs. a This 
data reports the number of uniquely variants since there are variants detected in more than one tissue. b Variants were filtered for MAF and call rate

Organ Total variant calling Variants after filteringb Significant variants Impact on protein function

Moderate High

Liver 484,589 46,268 1110 263 6

Muscle 459,057 80,818 2540 501 25

Hypothalamus 1,037,253 143,540 4586 834 24

Pituitary 846,809 125,141 3782 847 21

Adrenal 745,878 130,738 3575 657 10

Total 3,573,586 526,505 15,593 3102 86

Uniquely variantsa 2,000,936 227,225 9986 1995 78

Fig. 2  Variants overlay (SNPs and INDELs). a Number of SNPs and INDELs variants (insertions and deletions), b Variants filtered according to maf 
< 0.40 and call rate 0.50 and associated with the genotype; c Significant variations associated with feed efficiency; d Potential functional variants 
with moderate impact, in other words, a non-disruptive variant that can alter the effectiveness of the protein; e Potential functional variants with 
high impact, causing protein truncation and loss of function
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Discussion
Determination of the PFVs of complex phenotypes in 
livestock species is scarce and imperative. Some research 
groups have been trying to find the best way to identify 
PFVs, but they weren’t able to state whether these vari-
ants were causal or not and what were their full biological 

consequences for the phenotype [25–28]. Herein, we 
identified PFVs considering their biological effects and 
validated these findings by demonstrating the increased 
prediction accuracy for genomic selection by using such 
information in an independent population. Our approach 
used a systems biology rationale coupled with multi-tis-
sue deep phenotyping and the effects on protein conse-
quences of the PFVs for a given phenotype, in this case 
the feed efficiency in beef cattle.

The strategy used in this study consists of two major 
stages. The first is the identification of the PFVs using a 
systems biology approach, and the second is their vali-
dation through genomic selection. In the first stage, the 
GATK was used to call the variants: it compares the case 
RNA sequencing data with the control (bovine reference 
genome) using powerful filtering and statistical tools. 
This tool is widely used in several research to identify 
variants [29–32], and it is commonly used with the Hap-
lotypeCaller algorithm, which improves performance by 

Table 3  Variants with moderate impact on protein function described in all five tissues

Twenty-seven functional variants with moderate impact associated with feed efficiency in Nellore cattle presented in five tissues studied (liver, adrenal, hypothalamus, 
pituitary glands, and muscle). These variants are non-disruptive that can alter the effectiveness of proteins

Symbol ID Genes Variant Name Protein Position SNP Protein 
Alteration

COL4A1 ENSBTAG00000012849 ENSBTAT00000076567 932 C T/A

COL4A1 ENSBTAG00000012849 ENSBTAT00000035335 1013 C T/A

ECHS1 ENSBTAG00000017710 ENSBTAT00000079039 171 C F/L

ECHS1 ENSBTAG00000017710 ENSBTAT00000044947 106 C F/L

ECHS1 ENSBTAG00000017710 ENSBTAT00000082162 155 C F/L

ERCC5 ENSBTAG00000014043 ENSBTAT00000046365 1132 C V/A

ERCC5 ENSBTAG00000014043 ENSBTAT00000046365 1132 G P/A

ETS2 ENSBTAG00000009214 ENSBTAT00000012144 231 C I/L

ETS2 ENSBTAG00000009214 ENSBTAT00000074510 231 C I/L

FAM207A ENSBTAG00000017010 ENSBTAT00000022620 150 C W/R

FAM207A ENSBTAG00000017010 ENSBTAT00000022620 155 G P/R

IRF3 ENSBTAG00000006633 ENSBTAT00000031869 162 C N/K

MTCH2 ENSBTAG00000018742 ENSBTAT00000024956 82 C I/V

MTCH2 ENSBTAG00000018742 ENSBTAT00000084129 82 C I/V

NBN ENSBTAG00000013225 ENSBTAT00000017598 709 G M/V

NBN ENSBTAG00000013225 ENSBTAT00000017598 693 T P/S

NBN ENSBTAG00000013225 ENSBTAT00000017598 686 C V/L

NUBP1 ENSBTAG00000009560 ENSBTAT00000012576 224 A V/I

OSGIN2 ENSBTAG00000013678 ENSBTAT00000018177 245 C N/D

RPL7L1 ENSBTAG00000018478 ENSBTAT00000005214 121 C G/R

RPL7L1 ENSBTAG00000018478 ENSBTAT00000073451 108 C G/R

RPL7L1 ENSBTAG00000018478 ENSBTAT00000005214 48 A R/K

RPL7L1 ENSBTAG00000018478 ENSBTAT00000073451 35 A R/K

RPP30 ENSBTAG00000002973 ENSBTAT00000003871 252 AGC​ E/EA

RPP30 ENSBTAG00000002973 ENSBTAT00000084821 250 AGC​ E/EA

SCAND1 ENSBTAG00000005573 ENSBTAT00000007322 75 T V/I

UTP3 ENSBTAG00000009310 ENSBTAT00000012263 305 A R/K

Table 4  Prediction ability (Acc) and regression coefficient (b) for 
residual feed intake in the validation set

a ssGBLUP ssGBLUP using unweighted G matrix, ssGBLUP + wG ssGBLUP using 
weighted G matrix, ssGBLUP + records ssGBLUP using unweighted G matrix and 
records, ssGBLUP + wG + records ssGBLUP using weighted G matrix and records

Validation without PFVsa Acc b (SE)

ssGBLUP 0.10 0.48 (0.02)

ssGBLUP+wG 0.15 0.85 (0.03)

ssGBLUP+records 0.23 1.00 (0.03)

ssGBLUP+wG + records 0.29 1.10 (0.02)
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making the tool more accurate [33]. To select a variant 
calling tool, one needs to have a good combination of 
processing time, precision, and sensitivity (call quality) 
of the genotyping. When comparing GATK with other 
tools (i.e., Findvar, SAMtools, and Graphtyper) that dis-
play similar functions and considering the processing 
time, the GATK is at a disadvantage [33, 34]. However, 
when comparing the number of polymorphic sites found 
by the tools (homozygous and heterozygous), the GATK 
is of great advantage [34, 35]. Regarding the call for false 
positives, the tool with the lowest percentages was Find-
var, followed by GATK, and SAMtools [34]. Although 
the GATK has a long processing time, it can be compen-
sated by the number of polymorphic sites and the median 
filtering of false positives, making it a balanced tool for 
identifying the PFVs.

The second stage, on the other hand, involves vali-
dating the results obtained in the first stage using the 
genomic prediction in an independent population by 
including differential weighting in genomic regions 
harboring such PFVs on the prediction accuracy and 
inflation for RFI. The GWAS is generally used to find 
DNA variants associated with phenotypic variation of 
complex traits, however, it does not identify whether 
the variant is causal or not. Studies [36–39] point out 
that the use of expression quantitative trait loci (eQTL) 
mapping can help identify causal variants and also in 
the distinction between pleiotropic and binding effects 
[38]. It should be highlighted that a denser SNP panel 
is needed to accurately locate mutations and the genes 
involved, making eQTL studies very expensive. A viable 
alternative is a methodology that we performed herein: 
a systems biology-based characterization of the pheno-
type to detect the PFVs and further use as additional 
information for genomic prediction. Most importantly, 
several livestock phenotypes already have RNA-seq 
data publicly available. In this study, we used data from 
the PFVs from an RNA-seq analysis, which can serve 
as a tool to improve genetic predictions. Thus, the two 
factors (GWAS + PFVs) differentially weighted and 
added together increase the ability of genomic pre-
diction. Adding external information from the PFVs 

identified through analysis of RNA-seq as well as those 
from the WssGWAS contributes to reducing selec-
tion risk by improving the GEBV accuracies, however, 
more inflated predictions were obtained as the weight 
for genomic information and PFV increased. The pre-
diction ability for RFI was close to those obtained in 
previous studies using taurine [40, 41] and indicine [23, 
24] cattle breeds. By comparing the prediction inflation 
from different tissues, it was possible to observe that 
the liver and muscle displayed less inflated predictions 
when compared to the adrenal glands, pituitary, and 
hypothalamus. These results indicate that the PFVs pre-
sent in the liver and muscle contribute to more inform-
ative DNA variants than the other tissues. Although 
RNA-seq is not recommended for genotyping, this sys-
tems-biology approach using RNA-seq data detected 
DNA functional variants that improved genomic selec-
tion, showing the benefits to select the most predictive 
variants in coding regions, where MAF is often low and 
LD between mutations within a gene is high.

Gains in prediction accuracy are expected when widely 
known candidate regions identified by the GWAS are 
included and weighted in the prediction models [42]: (i) 
a total of 1623 variants from different cattle breeds where 
added to a custom SNP chip, and an accuracy gain of 2% 
was found when more weight was assigned to the QTN 
(Quantitative Trait Nucleotide) [43]; (ii) the addition of 
selected sequence variants from a multiracial GWAS 
generated an increase of up to 10% in accuracy [44] and; 
(iii) the incorporation of potential causative SNPs and 
removal of adjacent SNPs increased the accuracy by 2.5% 
in … [45]. Thus, the results obtained in our validation 
study pointed out that incorporating data derived from 
the PFVs improved the genomic prediction for RFI and 
increases the probability of pick-up a genetic marker in 
strong linkage disequilibrium with causal mutations. Fur-
ther, it provides higher contribution of these SNP mark-
ers to the additive genetic variance for RFI.

Our analysis also allowed us to perform a functional 
enrichment analysis encompassing the genes with the 
PFVs. Over-represented terms for Class I MHC medi-
ated antigen processing and presentation were described 

Table 5  Prediction ability (Acc) and regression coefficient (b) for RFI differentially (SNPs and PFV)

Prediction ability (Acc) and regression coefficient (b) for weighted single-step GBLUP (ssGBLUP+wG) including selected variants (PFV) in the model and applying 
different weighting approaches for PFV (1-fold, 2-fold and 3-fold the maximum weighted obtained in the ssGWAS)

Validation for functional mutations Adrenal Pituitary Hypothalamus Muscle Liver

Acc b (SE) Acc b (SE) Acc b (SE) Acc b (SE) Acc b (SE)

ssGBLUP + wG + QTN:1-fold 0.16 0.74 (0.03) 0.16 0.723 (0.03) 0.15 0.73 (0.03) 0.15 0.85 (0.03) 0.15 0.82 (0.03)

ssGBLUP + wG + QTN:2-fold 0.18 0.67 (0.03) 0.18 0.65 (0.03) 0.18 0.66 (0.03) 0.18 0.75 (0.03) 0.18 0.79 (0.03)

ssGBLUP + wG + QTN:3-fold 0.20 0.62 (0.03) 0.19 0.60 (0.03) 0.19 0.61 (0.03) 0.20 0.71 (0.03) 0.20 0.77 (0.03)

ssGBLUPrecords + wG + QTN:1-fold 0.31 1.02 (0.02) 0.31 1.00 (0.02) 0.31 1.02 (0.02) 0.29 1.11 (0.2) 0.30 1.08 (0.02)
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for all organs, along with the DNA double-strand break 
response specifically in the hypothalamus. An overrep-
resentation of the BOLA family genes and its polymor-
phisms (BOLA-DQA5, BLA-DQB, BOLA-DQA1, BoLA 
(ENSBTAG00000005182), JPS.1 (also known as BoLa), 
and BOLA-NC1) was found. These genes are mainly 
involved in the MHCclass I (JSP.1, BOLA, BoLA (ENS-
BTAG00000005182), and BOLA-NC1) and class II (BLA-
DQB, and BOLA-DQA5). The MHC is a fundamental 
mechanism of the immune system, which has several 
functions and the response against infectious diseases 
is the most important [46, 47]. The MHC is divided into 
three groups: class I, class II, and class III. Class I mole-
cules have as their main function to introduce peptides 
to CD8 + T lymphocytes, which in turn kill cells infected 
with viruses and neoplasms [48]. Class II molecules have 
direct and indirect functions, which include participa-
tion in antigen-presenting cells (APCs), such as dendritic 
and macrophage cells. These APCs have antigens derived 
from extracellular CD4 + T cell pathogens, which in turn 
activate macrophages and B cells to generate inflamma-
tory and antibody responses, respectively. Indirectly, class 
II molecules participate in the immune process through 
steroid 21-hydroxylase enzymes and tumor necrosis fac-
tors [48]. In the MHC class I there are two subclasses: 
classic MHC-I (MHC-Ia) and non-classic (MHC-Ib). 
The BOLA-NC1 gene participates in the non-classical 
pathway, responsible for generating membrane isoforms 
from alternative splicing (differential splicing) [49–51]. In 
humans, the BOLA-NC1 gene is responsible for secret-
ing molecules that interact with inhibitory receptors 
expressed by natural killer cells (NK), T lymphocytes, and 
APC to inhibit cells [52–60]. The MHC Class II can also be 
classified in two groups: DR and DQ [61]. BLA-DQB and 
BOLA-DQA5 participate in the DQ group, which is highly 
polymorphic and mainly acts in decreasing the response 
in CD4 helper T cells [62, 63]. These genes have already 
been reported in other studies such as bovine leukemia 
virus [61], comparison of MHC class II diversity between 
different cattle breeds [64], how the bovine MHC influ-
ences disease function and susceptibility [65], and bacte-
rial infection and inflammation in dairy cattle [66, 67].

An increasing number of studies have demonstrated 
the link between the immune system and FE in different 
livestock species. In one of our previous studies [13], the 
transcriptomic analysis indicated that LFE animals had 
more periportal liver lesions and pronounced inflamma-
tory response, which is mediated by the immune system. 
We also demonstrated that LFE animals have increased 
bacterial load, which is at least, in part, responsible for 
the hepatic lesions and inflammation in such animals [17]. 
Therefore, the identification of PFVs for FE in beef cat-
tle in genes related to immune response is very plausible 

and opens the possibility for fast improvement through 
genetic selection of this important phenotype in cattle.

Conclusion
In conclusion, the identification of PFVs by a systems 
biology based on multi-organ deep phenotyping by RNA-
seq data increased the accuracy of the prediction for 
young animals without phenotypic records. The study 
also identified that variants existent in the liver and mus-
cle have more impact on genomic predictions for young 
animals, highlighting the importance of these two organs 
for feed efficiency. The PFVs identified herein were found 
to be mainly involved in the processing and presenta-
tion of MHC class I and II mediated antigens, an impor-
tant mechanism of the innate immune system. It did not 
escape our attention that this strategy for detecting PFVs 
for genetic selection can be used for other livestock spe-
cies since the main biological pathways of feed efficiency 
are similar for other species, such as pigs, poultry, and 
dairy cows.

Methods
Phenotypic data and biological sample collection
All animal protocols were approved by the Institutional 
Animal Care and Use Committee of Faculty of Food 
Engineering and Animal Sciences, University of São 
Paulo (FZEA-USP – protocol number 14.1.636.74.1). All 
procedures to collect the phenotypes and biological sam-
ples were carried out at FZEA-USP (Pirassununga, State 
of São Paulo, Brazil). Ninety-eight Nellore bulls (Bos tau-
rus indicus) (16 up to 20 months of age and 376 ± 29 kg 
BW) were evaluated in a feeding trial which comprised 
21 days of adaptation to the feedlot diet followed by a 
70-day period of data collection. Total mixed feed was 
offered ad  libitum and daily dry matter intake (DMI) 
was individually measured. Animals were weighted at 
the beginning, at the end, and every 2 weeks during the 
experiment period. Feed efficiency was estimated by 
residual feed intake (RFI) [68]. Forty animals selected 
either as high feed efficiency (HFE) or low feed efficiency 
(LFE) groups were slaughtered on 2 days with a 6-day 
interval. Samples from liver, muscle, hypothalamus, and 
pituitary and adrenal glands were collected from each 
animal at the slaughter and were quickly frozen in liquid 
nitrogen and stored at − 80 °C. Further information about 
the management and phenotypic measures of the animals 
used in this study can be found elsewhere [13].

RNA‑seq data
Samples of nine animals from each FE group (high and 
low) were selected for RNA-seq using RFI [13]. The total 
RNA from liver, muscle, adrenal, pituitary, and hypothala-
mus samples was extracted by using the RNeasy mini 
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kit (QIAGEN, Crawley, West Sussex, UK) according to 
the instructions provided by the manufacturer. The total 
RNA quality and quantity were assessed using automated 
capillary gel electrophoresis on a Bioanalyzer 2100 with 
RNA 6000 Nano Labchips according to the manufactur-
er’s instructions (Agilent Technologies Ireland, Dublin, 
Ireland). Samples that presented RNA integrity number 
(RIN) less than 8.0 were discarded. The mRNA libraries 
were constructed using the TruSeq™ Stranded mRNA LT 
Sample Prep Protocol and sequenced on Illumina HiSeq 
2500 equipment in a HiSeq Flow Cell v4 using HiSeq SBS 
Kit v4 (2x100pb). FastQC software (Babraham Institute, 
Cambridge, UK, http://​www.​bioin​forma​tics.​babra​ham.​ac.​
uk/​proje​cts/​fastqc/) was used to visualize the sequencing 
quality. The removal of Poly A/T tails and adapters was car-
ried out using the Seqyclean software (University of Idaho: 
Institute of Bioinformatics and Evolutionary Studies, Mos-
cow, USA, https://​bitbu​cket.​org/​izhba​nnikov/​seqyc​lean), 
and bases with quality ≥20 and complete reads with at least 
50 bp were considered for subsequent analysis. Alignment 
of the reads was done using the STAR software version 2.7 
[69] with the reference genome Bos taurus ARS-UCD1.2 
(Ensembl, ftp://​ftp.​ensem​bl.​org/​pub/​relea​se-​98/​fasta/​bos_​
taurus/​dna/), allowing two mismatches per read.

Protocol to call the potential functional variants associated 
with FE
Genome Analysis Toolkit (GATK) software version 
4.0.11.0 [70] was used to call the variants. The Haplo-
typeCaller command was applied to identify the variants 
(Single Nucleotide Polymorphism - SNPs) and insertions 
and deletions (INDELs). The variants underwent quality 
control on the GATK software as follows: (Variant Qual-
ity Score - QUAL) > 30, depth of sequencing (Deph Plot 
- DP) > 4, amount of available coverage (QualByDepth - 
QD) > 3, polarization trend (FisherStrand - FS) > 30, and 
the general mapping quality of readings that support a 
variant call (RMSMappingQuality- MQ) < 35. Statistical 
analysis was carried out using Plink software [71] consid-
ering MAF “SNP with” < 40% and a call rate “>” 50%. For 
the allele frequency test between HFE and LFE groups 
“without assuming the Hardy-Weinberg equilibrium”, the 
Cochran-Armitage “allelic test” was used considering sig-
nificant differences when P < 0.05.

Characterization of the effects of variants on protein 
sequence and function
The PFVs were analyzed in the Variant Effect Predic-
tor (VEP) online tool release 98 [72], which predicts the 
functional effects of the variants. VEP indicates the type 
of impact, which can be “high”, causing protein trunca-
tion and loss of function; “moderate” as a non-disruptive 
variant that can alter the protein’s effectiveness; or “low”, 

unlikely to alter the behavior of proteins; “type modifier”, 
non-coding variants or variants that affect non-coding 
genes, in which predictions are difficult or there is no evi-
dence of impact. In this strategy, only high and moderate 
impacts were considered.

Functional enrichment analysis
The functional enrichment analysis was carried out using 
DAVID version 6.8 [73] to identify over-represented bio-
logical pathways in the set of genes with PFVs. The type 
of analysis was the “overrepresentation test” using the list 
of genes (n = 5857) with PFVs identified from the RNA-
seq of the five selected tissues (liver, muscle, pituitary 
gland, hypothalamus, and adrenal gland). For the statisti-
cal analysis, the bonferroni, benjamini and False Discov-
ery Rate (FDR) test was carried out. Significant pathways 
were considered when FDR < 0.05.

Validation of the potential functional variants by genomic 
prediction
General information about the data
The validation of the PFVs for the RFI obtained in dif-
ferent five tissues was performed in an independent 
Nellore cattle population. The influence of differential 
weighting in genomic regions harboring the PFVs on 
the prediction accuracy and inflation for the RFI was 
evaluated. The validation of the PFVs was performed 
by including differential weighting in genomic regions 
associated with RFI identified by the weighted single-
step GWAS (WssGWAS) analysis, together with can-
didate regions harboring PFVs obtained in this study. 
To calculate the genetic merit and the SNP effects, the 
SNPs weights were estimated by performing a Wss-
GWAS. In this methodology, the SNP weights are 
obtained iteratively. The iterative process increases 
the weights of the SNP with large effects and decrease 
those with small effects, essentially regressing them 
to the mean [74]. Such methodology leads to gains in 
QTLs detection by revealing genomic regions that 
accounted for a higher portion of the additive genetic 
variance [74, 75].

Records for RFI were obtained from the Nellore Brazil 
breeding program coordinated by the National Associa-
tion of Breeders and Researchers (ANCP, Ribeirão Preto-
SP, Brazil) from feed efficiency tests carried out between 
2011 and 2018. A total of 4653 phenotyped and 5117 
genotyped animals collected in 60 feed efficiency tests in 
the feedlot system using the same protocol as described 
by [22] were used. There were 2065 animals with pheno-
type and genotypic information in the dataset.

The animals were evaluated under similar manage-
ment and environmental conditions in the feedlot with 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://bitbucket.org/izhbannikov/seqyclean
ftp://ftp.ensembl.org/pub/release-98/fasta/bos_taurus/dna/
ftp://ftp.ensembl.org/pub/release-98/fasta/bos_taurus/dna/
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an average of 423 ± 122 days of age at the beginning of 
the tests. During the tests, the animals were exposed to 
a feeding trial which comprised 21 days of adaptation to 
the feedlot diet followed by 70 days of data collection. The 
average weight of each animal was obtained by periodic 
manual weighing or by automated weighing platforms 
(GrowSafe® or Intergado®).

The following feed intake records were not considered 
in the analyses: days when the animals were handled out-
side the facilities for several hours, equipment failure, and 
when no refusals were found. The dry matter percentage 
was determined from weekly samples of the offered diet 
and refusals. The average daily gain (ADG) in each test 
was considered as the linear regression coefficient of the 
body weight on days in the test (DIT):

where, yi is the weight of the ith animal on the jth day; α 
is the intercept of the regression equation which repre-
sents the initial weight; β is the linear regression coeffi-
cient which represents the ADG; DITi is the day in the 
performance test of the ith observation; and ε is the error 
associated with each observation.

The DMI (kg/day) was obtained by calculating the aver-
age daily intake values during the test period. In individ-
ual stalls, this parameter was calculated as the difference 
between the dry matter offered and the refusal. In group 
pens, the DMI was calculated from the amount of indi-
vidually consumed feed automatically recorded by the 
electronic systems.

Metabolic weight MW (kg0.75) was retrieved from the 
liveweight and ADG as follows:

where MWi is the metabolic weight of the ith animal; 
α is the intercept of the regression equation which repre-
sents the initial weight; DIT as described above; and β is 
the linear regression coefficient which represents the ADG, 
as described and obtained above in estimating ADG. RFI 
(kg of DM/day) was estimated within each contemporary 
group (CG) by the residual of the DMI regression as a func-
tion of ADG and MW, using a multiple regression model 
regressing DMI on ADG and MW, in the following model:

where yi is the individual DMI of the ith animal; β1, β2, 
and β3 are the linear regression coefficient of ADG, MW 
and CG, respectively; and εi is the residual error of the ith 
animal (i.e., RFI).

yij = α+ β ∗ DIT+ εi

MWi = α + β ∗
DIT

2

0.75

yi = βo + β1ADG + β2MW + β3CG + εi (RFI)

The relationship matrix used in the WssGWAS and 
prediction analyses was calculated based on pedigree 
information from 19,507 animals with 1809 sires and 
9147 dams through nine generations, provided by the 
Nellore Brazil Breeding Program, coordinated by the 
ANCP. More information regarding the set of animals 
used in this study can be found elsewhere [22].

Genomic information
A total of 963 animals were genotyped using the Illumina 
BovineHD BeadChip (Illumina Inc., San Diego, CA, 
USA), which contains 777,962 SNP markers of an inde-
pendent population. These animals were used as a ref-
erence population to impute genotypes of 5117 animals, 
previously genotyped with a low-density panel (CLARI-
FIDE® Nelore 3.1) encompassing over 27,000 SNP mark-
ers. Genotype imputation was carried out using the 
FImpute 2.2 software [76]. Quality control criteria were 
carried out using the PREGSF90 package [77], remov-
ing animals and markers with a call rate < 0.90 and minor 
allele frequency (MAF) < 0.05. Monomorphic SNPs with 
redundant position and those located on non-autosome 
chromosomes were removed. Additionally, animals and 
SNPs with Mendelian conflicts were excluded.

Weighted single step genome‑wide association study
To carry out the GWAS, the dataset was split into train-
ing (n = 3253 animals) and validation (n = 1864 animals) 
subsets. The validation dataset was composed of young 
animals without progeny records with genotypic and phe-
notypic information. The training dataset was composed 
of genotyped and phenotypes sires with phenotyped prog-
enies. In the training population, a total of 201 genotyped 
and phenotyped animals and 2588 ungenotyped and phe-
notyped animals were described. The phenotypes and gen-
otypes of the validation subset were omitted in the GWAS. 
The GWAS analysis was carried out using the training 
subset and applying the weighted single-step GWAS (Wss-
GWAS) methodology [74]. The WssGWAS was carried out 
to estimate the weights for SNPs markers iteratively (n = 2).

The animal linear model included the fixed effects of 
contemporary group (CG) and the animal age as covar-
iable, and the random direct additive genetic effect. 
The CG were composed of farm, management group, 
sex, feed efficiency test, year, and birth season. Records 
within ±3.5 standard deviations from the CG mean 
were considered in the analysis, and the CG that had at 
least four animals were also considered in the analysis. 
The animal model used was:

y = Xβ+ Zu + e
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where y is a vector of phenotypic records; β is a vector 
of fixed effects, including the CG and age at calving; X 
is the incidence matrix associating β with y; u is a vector 
of random effects of the direct additive genetic effects; Z 
is the incidence matrix associating with y; e is the resid-
ual effect. Assumptions for residual effects are described 
below:

where σ 2
e is the residual variance, and I is an identity 

matrix with a dimension equal to the number of animals. 
The ssGBLUP method was used with a ∼ N

(

0,Hσ2a
)

 , 
where H is defined as in Legarra et  al. (2009) and its 
inverse is the same as in BLUP [78]:

where A−1
22  is the inverse of the numerator relationship 

matrix for the genotyped animals, and 𝐆 is genomic rela-
tionship matrix.

The G matrix was obtained following [79]:

where M is an allele-sharing matrix with m columns (m 
total number of markers) and n rows (n = total number 
of genotyped individuals), and P is a matrix containing 
the frequency of the second allele (pj), expressed as 2pj. 
Mij was 0 if the genotype of individual i for SNP j was 
homozygous AA, was 1 if heterozygous, or 2 if the geno-
type was homozygous BB. To account for heterogeneous 
SNP weights, a matrix of weights should be included in 
the formula for constructing G, in which var(s) is the vec-
tor containing the variance of the individual SNP effects, 
and di is the ith diagonal element of D, accounting for the 
ith SNP weight:

Based on that, a weighted relationship matrix can be 
defined as:

The 𝜆 is a ratio of variances or normalization constant 
(Vanraden et al., 2009):

e ∼ N
(

0, Iσ2e

)

,

H−1
= A−1

+

[

0 0

0 G−1 − A−1
22

]

G =
(M − P)(M − P)′

2
∑m

j=1pj
(

1− pj
)

var(s) = D =

∣

∣

∣

∣

∣

∣

d1 0 0
0 d2 0
0 0 dn

∣

∣

∣

∣

∣

∣

Gw =
var

(

ag
)

σ2a
=

var (Zu)

σ2a
= ZDZ′

�

where 𝒎 is the number of SNPs and 𝒑𝒊 is the allele fre-
quency of the second allele of the i-th SNP. According 
to Stranden & Garrick [80], the SNPs effect (û) can be 
obtained as follows:

Estimates of the SNP effects can be used to estimate the 
individual variance of each SNP effect ( σ2u,i ), and apply a 
different weight to each SNP as follows:

In summary, the SNP effects and weights obtained in 
the WssGWAS were derived as follows [81]:

1.	 Let D = I in the first step.
2.	 Calculate G = ZDZ′λ.
3.	 Calculate GEBVs for the entire dataset using the ssG-

BLUP.
4.	 Convert GEBVs to SNP effects (û) ∶ û = � DZ

’
(

ZDZ
’
�

)−1

âg , 
where âg is the GEBVs of animals which were also 
genotyped.

5.	 Calculate the weight for each SNP ∶ di = û2
i
2pi

(

1 − pi
) , 

where i is the i-th SNP.
6.	 Normalize the SNP weights to keep the total genetic 

variance constant.

The SNP weights were calculated iteratively (n = 2) 
looping through steps 2–6.

Prediction models
To evaluate the impact of causative PFVs on RFI genomic 
predictions, the same model applied for the WssGWAS 
analyses was applied. The genomic breeding value (GEBV) 
of the validation subset was calculated considering the 
whole population (training + validation subsets) by applying 
the weighted single-step genomic BLUP procedure (WssG-
BLUP). The WssGBLUP is a weighted adaptation proposed 
to predict the genomic values [74], which is based on an 
iterative process with weights to update the SNP solutions.

To evaluate the impact of the causative PFVs on RFI 
genomic predictions, the G matrix was constructed 
using different combinations of SNPs and weights: (a) 
Unweighted G matrix with 460,992 SNPs; (b) weights in 
D calculated based on genome-wide association studies 
(ssGWAS) using iterative WssGBLUP as in [75], updating 
the GEBV and SNPs weights for 2 iterations; c) weighted 
SNPs as b) and also including differential weights for SNPs 
neighboring the causative PFVs for liver, adrenal, pitui-
tary, hypothalamus and muscle tissue, respectively. The 
inclusion of causative PFVs for five tissues were carried 

� =
σ 2
u

σ 2
a

=
1

∑m
i=1 2pi(1− pi)

σ2u,i = u2i 2pi(1− pi)



Page 12 of 14Ribeiro et al. BMC Genomics          (2022) 23:774 

out by weighting the SNPs adjacent to causative PFVs 
since the SNPs in linkage disequilibrium with causal vari-
ants received higher weights. In this sense, the maximum 
weights (lambda values) estimated in the ssGWAS after 
two iterations were used to weight the SNPs adjacent to 
the causative PFVs. Weighting the SNPs adjacent to the 
regions with the highest value of diagonal element of D 
matrix updates the model, in which these regions exhibit 
higher influence for the trait compared to other genomic 
regions. Hence, three levels of weight for SNPs neighbor-
ing the PFVs were tested, 1-fold, 2-fold, and 3-fold the 
maximum weighted (D matrix diagonal element) obtained 
in the ssGWAS after two iterations. The prediction analy-
ses were performed using the BLUPF90 software family 
[82] including the genomic information [81].

The prediction accuracies were calculated according to 
the Beef Improvement Federation (BIF) [83] as follows:

where PEV is the prediction error variance, σ2a the addi-
tive genetic variance, and Fi the inbreeding coefficient. 
The regressions coefficient between the GEBV obtained 
using the complete dataset considering the unweighted G 
and the GEBV estimated for different weighted G scenar-
ios with or without PFVs was used to evaluate the predic-
tion inflation.
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