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Abstract 

Background: Plums are one of the most important economic crops of the Rosaceae family and are produced all over 
the world. China has many local varieties, but the genomic information is limited for genetic studies. Here, we first 
sequenced, assembled, and analyzed the plastomes of twelve plum cultivars and developed molecular markers to 
distinguish them.

Results: The twelve plastomes of plum cultivars have a circular structure of 157,863–157,952 bp containing a large 
single-copy region (LSC) of 86,109–86,287 bp, a small copy region (SSC) of 18,927–19,031 bp, and two inverted 
repeats (IR) of 26,353–26,387 bp each. The plastomes of plum cultivars encode 131 genes, including 86 protein-cod-
ing genes, 37 tRNA genes, and 8 rRNA genes. We detected 50, 54, 54, 53, 53, 50, 54, 54, 54, 49, 50, 54 SSRs in the twelve 
analyzed varieties, respectively. For repeat sequences, we identified 553 tandem repeats, 204 direct repeats, and 270 
palindromic repeats. We also analyzed the expansion/contraction of IR regions. The genes rpl22, rps19, rpl2, ycf1, ndhF, 
and the trnH span on or near the boundary of IR and single-copy regions. Phylogenetic analysis showed that the 
twelve cultivars were clustered with the P. salicina and P. domestica. We developed eight markers LZ01 to LZ08 based 
on whole plastomes and nuclear genes and validated them successfully with six repetitions.

Conclusions: The results obtained here could fill in the blanks of the plastomes of these twelve plum cultivars and 
provide a wider perspective based on the basis of the plastomes of Prunus to the molecular identification and phylo-
genetic construction accurately. The analysis from this study provides an important and valuable resource for studying 
the genetic basis for agronomic and adaptive differentiation of the Prunus species.
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Background
Plums are one of the most economically important 
crops of the Rosaceae family and are cultivated all over 
the world. Plums are one of the most important stone 
fruits consumed worldwide because of their high degree 

of acceptance by consumers [1]. Plums are rich in vita-
min C, vitamin E, non-essential and essential amino 
acids, total phenols, flavonoids, and trace elements such 
as potassium, calcium, and magnesium. They have good 
antioxidant activity, and the active peptide extracted 
from it can effectively resist ABTS (2, 2’-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid)) free radical and 
inhibit angiotensin-converting enzyme [2]. As a result, 
plums are widely recognized for their nutritional and 
economic value.

There are about 19 to 40 species of plums distributed 
across Asia, Europe, and North America [3, 4]. China is 
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the original distribution center of Chinese plums, which 
are widely used. There are local varieties that have been 
cultivated for a long time in various regions of the coun-
try, such as the Wushan plum [5], the Fendai plum [6] 
and the Wanshuang plum [7] in Chongqing, the Sanhua 
plum [8] in Guangdong, Cuihong plum [9] and Jiangan 
plum [10] in Sichuan, the Fengtang plum [11] in Guizhou, 
Hongxin plum [12] in Zhejiang, among other regions. 
These fruits are mostly consumed while fresh because of 
their characteristic taste [13].

In recent years, the development of genomics and high-
throughput sequencing technology has provided strong 
support for the study of plant plastomes. The interest in 
plant plastomes has increased since 1986, when the first 
whole plastomes were published for Nicotiana tabacum 
[14] and Marchantia polymorpha [15]. Compared with 
the nuclear genome, the plastome is characterized by 
small molecular weight, single copy, simple structure, 
highly conserved gene structure order and gene content, 
and low gene substitution rate [16, 17]. The plastome is 
uniparental, with gymnosperms inherited on the paternal 
line and angiosperms on the maternal line, therefore it 
will not be disturbed by genetic recombination; the evo-
lutionary path of the plastome is relatively independent, 
and does not depend on other data to construct a phy-
logenetic tree [18]. So, the plastome is widely used in 
plant phylogeny and evolution, species identification, and 
taxonomy.

Lately, DNA markers were developed to authenticate 
Prunus genus. For example, Yamamoto T (2003) has 
analyzed peach germplasm resources using SSR mark-
ers and found that Japanese peaches are closely related 
to Chinese peaches [19]. Ortiz used the RAPD technique 
to detect hexaploid and diploid plum cultivars, and only 
three random primers were used to distinguish 31 plum 
varieties [20]. Twenty four Chinese plum varieties are 
proved from three types of production areas using 16 
SSR primer pairs [21].

However, to date, genetic information is scarce, pre-
venting in-depth molecular breeding. In this study, we 
selected twelve plum varieties that are most consumed in 
China, including Chinese plums: ‘Sanhua plum’, ‘Wansh-
uang plum’, ‘Wuyuecui’, ‘Oishiwase’, ‘Yinhong plum’, ‘Feng-
tang plum’, ‘Cuihong plum’, and ‘No.2 Guofeng’; European 
plums: ‘Richard Early’, ‘Bingtang plum’; Prunus cerasifera 
’Hollywood’ and Prunus simonii ‘Weiwang’. Our goal is to 
understand their taxonomic relationship and to develop 
high-resolution molecular markers for discrimination.

Results
General features of the twelve plastomes
Using Illumina NovaSeq 6000 sequencing platforms, we 
obtained 5.01 – 6.21 G clean data from each plum cultivar 

and the number of clean reads ranged from 16,709,174 to 
20,713,829 (Table S1). The twelve plastomes of plum cul-
tivars have a circular structure of 157,863–157,952  bp 
containing a large single-copy region (LSC) of 86,109–
86,287 bp, a small copy region (SSC) of 18,927–19,031 bp, 
and two inverted repeats (IR) of 26,353–26,387 bp by each. 
In general, there were small differences in the length of 
plastomes of the plants in this study. The GC content anal-
ysis showed that the total GC content ranged from 36.72% 
to 36.76% in the twelve plastomes. The GC contents in 
IR regions (42.58%-42.62%) are significantly higher than 
those in LSC (34.51%-34.59%) and SSC regions (30.36%-
30.54%) (Table 1). Since the cultivars belong to the same 
genus, there is little difference in GC content. The twelve 
plastomes were deposited to NCBI (Accession num-
ber: MW406457, MW406459, MW406460, MW406461, 
MW406463, MW406464, MW406465, MW406466, 
MW406468, MW406470, MW406471, MW406472).

Genome annotation
The plastomes of twelve plum cultivars all encoded 131 
genes, among which, 110 are unique genes, including 78 
protein-coding genes, 28 tRNA genes, and 4 rRNA genes 
(Table S2). An IR region contains 21 genes, four rRNA 
genes, nine tRNA genes, and eight protein-coding genes, 
respectively. The plastomes map is shown in Fig.  1 and 
Figures S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11. Among 
the 78 protein-coding genes annotated, the genes con-
taining two introns were the ycf3 and clpP genes, and 
the genes containing one intron include the trnK-UUU, 
rps16, trnG-UCC, atpF, rpoC1, trnL-UAA, trnV-UAC, 
petB, petD, rpl16, ndhA, and two repeats of rpl2, ndhB, 
trnI-GAU, trnA-UGC (Table S3).

Repeats analysis
In plastomes of twelve plum cultivars, we identified three 
kinds of repeated sequences including tandem repeats, 
direct repeats, and palindromic repeats. The numbers of 
them are 553, 204 and 270, respectively. Among them, P. 
salicina ’Oishiwase’ has the most repeats (95) including 
52 tandem repeats, 19 direct repeats and 24 palindromic 
repeats. On the contrary, P. salicina ’Sanhua plum’ has 
the least repeats (77) including 40 tandem repeats, 15 
direct repeats and 22 palindromic repeats (Fig. 2A).

Simple sequence repeats (SSRs), also known as micro-
satellite sequences, provide a large number of informa-
tion about genetic variation. SSRs have high genetic 
polymorphism and are commonly used to develop 
molecular markers that play an important role in spe-
cies identification. In this study, we detected 50, 54, 54, 
53, 53, 50, 54, 54, 54, 49, 50, 54 SSRs in the twelve ana-
lyzed varieties, respectively (Fig.  2B, Table S4). Most 
SSRs are mononucleotide, particularly A/T motifs, 
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which accounts for more than 80% of the total. Moreo-
ver, P. cerasifera ‘Hollywood’ has the least SSRs, but has 
the most dinucleotide. These SSRs have the potential in 
the identification of Prunus.

Contraction and expansion analysis of IR regions
The IR regions of the twelve plum cultivars plasto-
mes are the most conserved regions, being 26,353 to 

26,387 bp in length. However, the expansions and con-
tractions of the IR boundary can cause the diversity of 
plastome length [22]. The LSC/IR and SSC/IR borders 
of the Prunus plastomes were compared (Fig.  3). We 
observed several genes span on or near the boundary 
of IR and single-copy regions. These are mainly the 
genes rpl22, rps19, rpl2, ycf1, ndhF and trnH. Among 
them, rps19 gene span the LSC/IRb boundary, but 

Fig. 1 Genome map of P. salicina ‘Sanhua plum’ plastome. The map has four rings, from the center outward, with red and green arcs on the 
first circle connecting forward and reverse repeats, respectively; the second ring shows tandem repeats marked with dashes; the third ring is a 
MISA-identified microsatellite sequence; and the fourth ring shows the gene structure on the plastome. The colors of these genes are classified 
according to their function, as shown in the lower left corner
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the P. domestica ‘Richard Early’, P. cerasifera ‘Holly-
wood’ and P. domestica ‘Bingtang plum’s’ rps19 gene 
in IRb (174  bp) is shorter than the other nine varie-
ties (186 bp/187 bp). Similarly, in terms of two copies 
of ycf1 gene span the IRb/SSC and SSC/IRa, the above 
three varieties are also shorter than the other nine. It 
can be seen that the genomic structure has changed in 
Prunus.

Hypervariable Region Analysis
Hypervariable regions can be used to resolve phylog-
enies and to discriminate closely related plant species 
[23]. The pairwise comparison of intergenic spacer 
regions was conducted to identify divergence hotspot 
regions among the twelve plum cultivars using the 

Kimura 2-parameter (K2p) model. The average K2p 
distance ranged from 0.00 to 2.463. The IGS regions 
of rpl33-rps18, ndhC-trnV-UAC, rpl16-rps3, trnF-
GAA-ndhJ, and petG-trnW-CCA showed the largest 
distances of 2.463, 1.915, 1.772, 1.64 and 1.615, respec-
tively (Fig. 4).

Phylogenetic analysis based on plastome data
To examine the phylogenetic position of the twelve 
plum cultivars, we constructed maximum likelihood 
(ML) trees based on complete plastome sequences 
(Fig.  5) and 71 common protein-coding genes shared 
among 32 species from Prunus (Figure S12A), includ-
ing the twelve sequenced in this study (Table S5). Two 
trees had a similar topological structure. However, the 

Fig. 2 Comparison of the Repeats in the plastomes of 12 plum cultivars. A. Types and numbers of the interspersed repeats in the 12 plastomes; B. 
Types and numbers of SSRs detected in the 12 plastomes
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Fig. 3 Comparison of the borders among LSC, SSC, and IR regions of twelve analyzed plums. The genes around the borders are shown above or 
below the mainline. The JLB, JSB, JSA, and JLA represent junction sites of LSC/IRb, IRb/SSC, SSC/IRa, and IRa/LSC, respectively
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varieties in this study have the same structure between 
the two results. They are distributed in three clades. 
The first clade is formed by ‘Hollywood’, Richard Early’ 
and ‘Bingtang plum’ with P. domestica. Besides, ‘Oshi-
wase’, Wuyuecui’ and ‘No.2 Guofeng’ were clustered 
with P. salicina. The other six are grouped into another 
clade. It indicated that these varieties are a most likely 
hybrid between P. domestica and P. salicina. Most 
nodes of the phylogenetic tree have high bootstrap 
support, indicating the reliability of the phylogenetic 
analysis.

Identification and validation of plastome-based markers
To distinguish the twelve cultivars, we selected six hyper-
variable regions manually based on plastome to develop 
six molecular markers named LZ01 to LZ06. The prim-
ers used for validation are shown in Table S6. All of PCR 
amplification results have single and bright band. The 
DNA fragments were extracted from each band and then 
sent for Sanger sequencing. The sequencing results were 
identical to the previous sequences.

Marker LZ01 can divide the twelve varieties into five 
groups, named Group1 to Group5 (Group1: ‘Sanhua 
plum’ (SH), ‘Wanshuang plum’ (WS), ‘Weiwang’ (WW), 
‘Yinhong plum’ (YH), ‘Fengtang plum’ (FT) and ‘Cui-
hong plum’ (CH); Group2: ‘Oishiwase’ (OW); Group3: 

‘Wuyuecui’(WY) and ‘No.2 Guofeng’ (GF); Group4: 
‘Hollywood’ (HW); Group5: ‘Richard Early’ (RE) and 
‘Bingtang plum’ (BT)). And two varieties: ‘Oishiwase’ 
(OW) and ‘Hollywood’ (HW) can be distinguished with 
three Indels (Fig.  6A). For the Group1, Marker LZ02, 
LZ03,LZ04, LZ05 and LZ06 can distinguish ‘Fengtang 
plum’ (FT) (Fig.  6B), ‘Cuihong plum’ (CH) (Fig.  6C), 
‘Weiwang’ (WW) (Fig. 6D), ‘Sanhua plum’ (SH) (Fig. 6E) 
and ‘Yinhong plum’ (YH) (Fig.  6F), respectively. Unfor-
tunately, for the Group3 and Group5, their plastome 
sequences are the same as another. As a result, we further 
developed markers for these cultivars based on nuclear 
genome.

Identification and validation of nuclear genome-based 
markers
To identify the remaining four cultivars, we extracted 
nuclear genes from sequence data among the Angio-
sperms-mega 353 gene set [24]. Among these genes, 
342, 295, 331, 339 genes had extracted for ‘Wuyuecui’, 
‘Richard Early’, ‘Bingtang plum’ and ‘No.2 Guofeng’, 
respectively. Among these coding sequences, 254 genes 
were shared among the four cultivars. These com-
mon genes were used to construct a phylogenetic tree 
using the same method as that for the complete plas-
tome sequences. The relationships in both the nuclear 
and plastome trees were consistent (Figure S12B). We 

Fig. 4 Comparison of the variability of IGS regions among the plastomes of 12 plums. The X-axis indicates the IGS regions, and the Y-axis shows the 
range of K2p distances between different pairs of species. The diamond shows the average K2p distance of the IGS region, respectively
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selected two hypervariable regions from two genes 
(AT2G45770 and AT4G02790) to develop two molecular 
markers named LZ07 and LZ08. The same method for 
PCR amplification and Sanger sequencing as the above. 
All of the PCR amplification results have single and 
bright band. The sequencing results were identical to the 
previous sequences (Fig. 6G, H).

To verify the reliability of the markers, we also collected 
plant materials for three individuals from another region 
(Table 2). All individuals used the same method for DNA 
extraction, PCR amplification and Sanger sequencing as 

the above. These markers can discriminate all six indi-
viduals from two regions (Figures S13, S14, S15, S16, S17, 
S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28). The 
identification scheme is shown in the Fig. 7.

Discussion
We first reported the plastome sequences of twelve 
plum cultivars. Our assembly results showed that the 
length of twelve plastomes ranged from 157,863  bp to 
157,952 bp. This result is similar to most Rosaceae plant 
plastomes [25, 26]. In our study, the longest and shortest 

Fig. 5 Phylogenetic relationships of species from Prunus (Rosaceae) inferred using Maximum likelihood (ML) method. The phylogenetic tree was 
constructed using the complete plastome sequences among the 32 plastomes. The number at the bottom of the scale, 0.001, means that the 
length of the branch represents the replacement frequency of bases at each site of the genome at 0.001. Bootstrap values were calculated from 
1000 replicates

Fig. 6 The alignment of the sequencing of the PCR products amplified using the primer LZ01 to LZ08. A-H represents the alignment using LZ01, 
LZ02, LZ03, LZ04, LZ05, LZ06, LZ07 and LZ08, respectively. The SNP and Indel regions are highlighted with red squares. The nucleotides identical 
across all plastomes are shaded in black, whereas those conserved in 60% of the sequences are shaded in gray. SH: P. salicina ’Sanhua plum’; WS: 
P. salicina ’Wanshuang plum’; WY: P. salicina ’Wuyuecui’; OW: P. salicina ’Oishiwase’; WW: P. simonii ’Weiwang’; RE: P. domestica ’Richard Early’; YH: P. 
salicina ’Yinhong plum’; FT: P. salicina ’Fengtang plum’; CH: P. salicina ’Cuihong plum’; HW: P. cerasifera ’Hollywood’; BT: P. domestica ’Bingtang plum’; 
GF: P. salicina ’No.2 Guofeng’. Arabic numerals represent different individuals

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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plastome sequences were 158,955 bp (Prunus padus) and 
157,395  bp (Prunus domeatica), respectively. This sug-
gests that the plastomes of Prunus may be evolutionar-
ily different. The plastome of angiosperms evolves faster, 

with inversions and gene loss occurring during evolution 
[27]. Among our study, the longest genome sequence 
was found in P. cerasifera ‘Hollywood’ (157,952  bp) 
and the shortest was that of P. salicina ‘Sanhua plum’ 

Table 2 Summary information of the plant samples

Sample Collection places1 Geospatial coordinate1 Collection places2 Geospatial coordinate2

P. salicina ’Sanhua plum’ Qianpai, Xinyi, Guangdong N22.36357/E111.26705 Qianpai, Xinyi, Guangdong N22.36325/E111.11401

P. salicina ’Wanshuang plum’ Fenshui, Wanzhou, Chongqing N30.71991/E108.08268 Xikou, Wanzhou, Chongqing N30.61144/E108.35160

P. salicina ’Wuyuecui’ Shuangshi, Rong, Sichuan N29.37621/E104.47442 Chishui, Luzhou, Sichuan N27.73962/E105.57788

P. salicina ’Oishiwase’ Xiongyue, Yingkou, Liaoning N40.19776/E122.18046 Xiannvshan, Wulong, Chongqing N29.39880/E107.71477

P. simonii ’Weiwang’ Sanjiao, Qijiang, Chongqing N28.99009/E106.75957 Baishiyi, Jiulongpo, Chongqing N29.45479/E106.35890

P. domestica ’Richard Early’ Xiongyue, Yingkou, Liaoning N40.19776/E122.20143 Sanjiao, Qijiang, Chongqing N29.07032/E106.75494

P. salicina ’Yinhong plum’ Yibin, Sichuan N28.65130/E104.76381 Yibin, Sichuan N28.73574/E104.45183

P. salicina ’Fengtang plum’ Liuma, Zhenning, Guizhou N25.70337/E105.81562 Daxing, Bishan, Chongqing N29.52927/E106.16698

P. salicina ’Cuihong plum’ Leshan, Sichuan N29.40460/E103.63412 Baishiyi, Jiulongpo, Chongqing N29.45544/E106.35833

P. cerasifera ’Hollywood’ Xiongyue, Yingkou, Liaoning N40.18739/E122.18315 Baishiyi, Jiulongpo, Chongqing N29.45487/E106.35919

P. domestica ’Bingtang plum’ Xiongyue, Yingkou, Liaoning N40.18623/E122.19721 Baishiyi, Jiulongpo, Chongqing N29.45470/E106.35884

P. salicina ’No.2 Guofeng’ Xiongyue, Yingkou, Liaoning N40.19776/E122.22141 Baishiyi, Jiulongpo, Chongqing N29.45440/E106.35882

Fig. 7 The identification scheme for this study. The boxes represent varieties names. The arrows represent the primers names
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(157,863 bp). They have a similar structure to most angi-
osperms, and we didn’t find gene gain/loss, thus, the plas-
tomes were still relatively conserved. In terms of gene 
composition, these species encoded 131 genes, including 
86 protein-coding genes, 37 tRNA genes, and 8 rRNA 
genes. The plastomes among Prunus varieties were sim-
ilar in intron and GC contents, but the GC contents in 
LSC and SSC regions were significantly lower than that in 
the IR region. These results are similar to those reported 
previously [28–31].

In this study, we examined the SSRs and repetitive 
sequences of twelve plastomes. 593 of the 629 SSRs 
were mononucleotide repeats, accounting for the major-
ity of all SSRs (94.28%). These mononucleotide repeats 
were mainly A/T repeats, which had a significant effect 
on the overall G/C content of the genome [32, 33]. They 
are often used as molecular markers due to the length of 
polymorphism in different species. Plastomes are rich in 
SSR loci and have been recommended for species iden-
tification [34, 35]. Besides, we also detected three kinds 
of repeated sequences in twelve plastomes. Among them, 
P. salicina ’Oishiwase’ had the most repeats. Genomic 
recombination and sequence variation were mainly 
caused by slip-strand mismatches and inappropriate 
recombination of repetitive sequences [35, 36]. These 
repeats are the genetic markers that are the basis of 
population and phylogenetic studies and are widely used 
because of their high polymorphism rates [37–40].

Typically, the IR region is the most conserved region of 
the chloroplast genome [41]. The expansion and contrac-
tion of IR, LSC and SSC regions are common during the 
evolutionary process and are the main reasons for the dif-
ferences in plastomes length [42, 43]. For example, Cicer 
arietinum and Pisum sativum were found to lack a copy 
of the IR region [44, 45], Cephalotaxus oliveri was no IR 
region [36], and gene loss events were identified in the 
plastome of Astragalus membranaceus [27]. Pelargonium 
hortorum and Pinus thunbergii plastome showed expan-
sion/ contraction events in the IR region leading to the 
length of the plastome being unusual [46, 47]. A compar-
ative map of chloroplast genome boundary regions was 
obtained by analyzing the boundary genes of the IR, LSC 
and SSC regions of the plastome [48, 49]. In our study, 
all species have two copies of the IR regions. Gene ycf1 
is located in the SSC and IRa regions, the length in IRa is 
between 391 bp to 1,051 bp. These overlapping segments 
resulted in a pseudogene fragment of ycf1 at the IRb/SSC 
boundary except P. padus and P. mume. Especially, pseu-
dogene ycf1 of P. persica is all in the IRb region. However, 
except for the P. avium and rps19 genes that are located 
in the boundary of LSC/IRb, the length in the IR region is 
between 39 bp (P. padus) and 197 bp (P. mume). Thus, the 
length of the IR region of P. padus is shorter than others.

The phylogenetic relationships of Rosaceae have long 
been problematic because of frequent hybridization, 
asexual reproduction, presumed rapid radiation, and 
historical diversification [50]. In this study, we obtained 
identical phylogenetic relationships for the twelve cul-
tivars using complete plastomes and common protein-
coding genes. Three cultivars: ‘Hollywood’, ‘Bingtang 
plum’ and ‘Richard Early’ are close to the European plum 
(P. domestica). The others are close to the Chinese plum 
(P. salicina). This also can confirm their breeding back-
ground [7, 11, 51–55].

Currently, there are many studies on molecular mark-
ers for the Prunus. But there are few studies on the 
identification of Prunus based on the plastome, which 
is extremely conserved and has many variant loci and 
is ideal data for molecular marker development. In this 
study, we identified 12 plum cultivars based on the plas-
tomes and used nuclear genes to identify some of the 
plants that could not be distinguished from the chloro-
plast genome. In this experiment, the plastomes of the 
twelve plum cultivars differed very little, and the highly 
variable regions screened by the K2p model could not 
achieve the purpose of distinguishing the individual 
resources by sequence comparison; therefore, we manu-
ally screened the regions with large variation and vali-
dated eight molecular markers that could identify them.

Over all, we first developed markers to identify the 
twelve plum cultivars. DNA markers can comprehen-
sively compare genetic material between populations 
and individuals, and improve the accuracy and reliabil-
ity of plant classification. The genetic distance is related 
to the sequence divergence [56]. In this study, the plas-
tomes of twelve plum cultivars differ slightly. According 
to the hypervariable region using the K2p module, the 
most variable regions can’t distinguish each variety. Thus, 
we selected the different segments manually and verified 
eight markers that could separate each of them.

Conclusions
The complete plastomes of twelve plum cultivars are 
reported for the first time in this study. These twelve cul-
tivars are closely related to P. salicina and P. domestica. In 
addition, we successfully developed a scheme using eight 
molecular makers in plastome and nuclear genome. Our 
results provide a wider perspective on the basis of the 
plastomes of Prunus to the molecular identification and 
phylogenetic construction.

Methods
Plant material, DNA extraction and Sequencing
The fresh leaves of twelve plants were collected from 
Chongqing, Guangdong, Sichuan, Liaoning, Guizhou. 
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All the samples were saved deposited at the Herbarium 
of Southwest University, Chongqing, China. The detailed 
information for the plant samples is shown in Table  1. 
The total genomic DNA was extracted by using the 
CTAB method [57]. The DNA library was constructed 
using the Agilent 2100 and sequenced using the Illumina 
NovaSeq 6000 sequencing platform. Sequencing pro-
duced a total of 5.04 – 6.26 G raw data per sample. Clean 
data were obtained by removing low-quality sequences: 
sequences with a quality value of Q <  = 5 accounted for 
more than 50% of the total base, sequences with more 
than 10% bases being “N”, and sequences having an 
adapter.

Genome assembly and annotation
The chloroplast genome was assembled from the clean 
data by GetOrganelle (v. 1.6.4) [58]. The correctness of 
the assembly was confirmed by using Bowtie2 (v2.0.1) 
[59] to manually edit and map all raw reads to the assem-
bled genome sequence under the default settings. The 
annotation of the plastome was conducted initially using 
CpGAVAS2 [60]. Geseq was then used to confirm the 
annotation results [61]. Furthermore, the annotations 
with problems were manually edited by using Apollo [62]. 
The genome sequence and annotations have been depos-
ited in the GenBank with accession numbers MW406457, 
MW406459, MW406460, MW406461, MW406463, 
MW406464, MW406465, MW406466, MW406468, 
MW406470, MW406471, MW406472.

Repeats and SSR analysis
The GC content was conducted by using the cusp program 
provided by EMBOSS (v6.3.1) [63]. The simple sequence 
repeats (SSRs) were identified using the Online website 
MISA (https:// webbl ast. ipk- gater sleben. de/ misa/), includ-
ing mono-, di-, tri-, tetra-, penta-, and hexanucleotides 
with the minimum numbers were 10, 5, 4, 3, 3, and 3, 
respectively [64]. Additionally, REPuter (https:// bibis erv. 
cebit ec. uni- biele feld. de/ reput er/) was used to calculate 
palindromic repeats, forward repeats, reverse repeats, and 
complement repeats with the settings: Hamming Distance 
was three, and Minimal Repeat Size was 30 bp [65].

Genome comparison
The multiple sequences were aligned using ClustalW2 
[66]. The intergenic regions were extracted with extract-
seq from EMOSS [63]. The distances of intergenic spac-
ers were conducted using the program distmat from 
EMBOSS [63]. IRscope (https:// irsco pe. shiny apps. io/ 
irapp/) was used for visualizing the IR boundaries in 
these plastomes [67].

Phylogenetic analysis
Except for the twelve sequences in this study, the plas-
tome sequences of 19 species belonging to the genus Pru-
nus were downloaded from GenBank (NCBI, https:// www. 
ncbi. nlm. nih. gov/). Malus baccata (Rosaceae) was used as 
an outgroup. The details are shown in Table S1. The com-
plete plastome sequences were aligned by using MAFFT 
(https:// mafft. cbrc. jp/ align ment/ server/) [68]. These aligned 
sequences were used to construct the phylogenetic trees 
by using the Maximum Likelihood (ML) method imple-
mented in RaxML (v8.2.4) [69]. The parameters were 
“raxmlHPC-PTHREADS-SSE3 -f a -N 1000 -m GTR-
GAMMA—× 551,314,260 -p 551,314,260”. The bootstrap 
analysis was performed with 1,000 replications. As for the 
common genes, we extracted 71 protein-coding genes from 
32 species. The method to construct the tree is the same 
with the above.

Identification of nuclear markers for phylogenetic analysis
To distinguish the four varieties whose plastome sequences 
are pairwise consistent, we used the pipeline HybPiper 
(v1.2) (https:// github. com/ mossm atters/ HybPi per) to iden-
tify nuclear markers with the default settings to process our 
cleaned data [70]. The HybPiper package contains an inter-
nal reference set of 353 genes [24]. This Angiosperms-mega 
353 gene set can capture loci in our sequence reads. The 
identified contigs matching probe can be extract using the 
command line “./reads_first.py -b mega353.fasta -r sample_
R1.fastq sample_R2.fastq –prefix sample_result –bwa”. And 
we selected the common genes among the four varieties 
to construct the phylogenetic tree using RaxML with 1000 
bootstrap replicates. Oryza sativa is the outgroup.

Identification and validation of molecular markers 
for discrimination
We selected different segments manually to develop 
molecular markers. Primers were designed using the IDT 
website (https:// sg. idtdna. com/ pages/ tools/ prime rquest? 
retur nurl=% 2FPri merqu est% 2FHome% 2FInd ex). We col-
lected three individuals from each variety. DNA samples 
were extracted and then subjected to PCR amplification 
on a Pro Flex PCR system (Applied Biosystems, Waltham, 
MA, USA). PCR amplifications were performed in a final 
volume of 25μL with 2 μL template DNA, 1 μl of forward-
ing primer, 1  μl of reverse primer, 12.5 μL 2 × Taq PCR 
Master Mix and 8.5 μL  ddH20. PCR experiments were 
conducted under the following conditions: pre-denatur-
ation at 94 ˚C for 5 min, 30 cycles of amplification at 94 
˚C for 30 s, 58 ˚C for 30 s, and 72 ˚C for 60 s, followed by 
a final extension at 72 ˚C for 5  min. The PCR products 
were evaluated with 1% agarose gelelectrophoresis. Only 
single bands were subjected to Sanger sequencing.

https://webblast.ipk-gatersleben.de/misa/
https://bibiserv.cebitec.uni-bielefeld.de/reputer/
https://bibiserv.cebitec.uni-bielefeld.de/reputer/
https://irscope.shinyapps.io/irapp/
https://irscope.shinyapps.io/irapp/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://mafft.cbrc.jp/alignment/server/
https://github.com/mossmatters/HybPiper
https://sg.idtdna.com/pages/tools/primerquest?returnurl=%2FPrimerquest%2FHome%2FIndex
https://sg.idtdna.com/pages/tools/primerquest?returnurl=%2FPrimerquest%2FHome%2FIndex
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