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Abstract

paliurus).

in C. paliurus, an important medicinal plant.

Background: The bZIP gene family has important roles in various biological processes, including development
and stress responses. However, little information about this gene family is available for Wheel Wingnut (Cyclocarya

Results: In this study, we identified 58 bZIP genes in the C. paliurus genome and analyzed phylogenetic relationships,
chromosomal locations, gene structure, collinearity, and gene expression profiles. The 58 bZIP genes could be divided
into 11 groups and were unevenly distributed among 16 C. paliurus chromosomes. An analysis of cis-regulatory
elements indicated that bZIP promoters were associated with phytohormones and stress responses. The expression
patterns of bZIP genes in leaves differed among developmental stages. In addition, several bZIP members were dif-
ferentially expressed under drought stress. These expression patterns were verified by RT-qPCR.

Conclusions: Our results provide insights into the evolutionary history of the bZIP gene family in C. paliurus and the
function of these genes during leaf development and in the response to drought stress. In addition to basic genomic
information, our results provide a theoretical basis for further studies aimed at improving growth and stress resistance
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Backgroud

The basic leucine zipper (bZIP) family, a supergene fam-
ily encoding transcription factors (TFs), is evolutionar-
ily conserved and widely distributed across eukaryotic
organisms [1]. bZIP TFs contain a bZIP domain, gener-
ally composed of 60—80 amino acids, with two function-
ally distinct parts, a highly conserved basic region and
a variable leucine-zipper region (explaining the name
bZIP) [2, 3]. The basic binding region has a nuclear
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localization signal (NLS) and a N-X-R/K structural unit
[4, 5]. The bZIP gene family has been studied extensively
in plants. The number of bZIP genes varies considerably
among species, with 78 in Arabidopsis [1], 92 in rice [6],
86 in poplar [7], 50 in Arachis duranensis [8], and 52 in
Carthamus tinctorius L. [9]. bZIP genes are involved
in vital biological processes, including cell elongation,
seed and flower development, and nitrogen/carbon and
energy metabolism [10]. In addition to the essential
regulatory functions in plant growth and development,
bZIP genes participate in the response to abiotic stress.
For instance, bZIP17 and bZIP24 in Arabidopsis [11, 12],
bZIP72 and ABFI in rice [13, 14], and bZIP44, bZIP62,
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and bZIP78 in Glycine max [15] positively regulate plant
responses to salt stress, either directly or indirectly.
bZIP52, bZIP16, bZIP23, and bZIP45 in rice are involved
in drought tolerance [16—18]. Moreover, bZIP52 in rice
is a negative regulator in cold signaling [16]. bZIP72 in
rice positively regulates the ABA response [19], while
bZIP44, bZIP62, and bZIP78 in G. max show negatively
regulatory effects [15].

Cyclocarya paliurus (Batal.) Iljinskaja (Wheel Wing-
nut), belonging to the family Juglandaceae [20], is a
deciduous tree and is widely distributed in the moun-
tainous regions of sub-tropical China [21]. In China,
leaves of C. paliurus are used as a traditional medicine or
nutraceutical tea [22]. Its leaves contain abundant physi-
ologically active compounds [23], such as triterpenoids,
polysaccharides, and flavonoids. Furthermore, there is
evidence for strong health-promoting effects of its leaves,
including the ability to lower blood sugar, reduce blood
lipids, protect against cancer, and enhance immunity
[24]. The growth and development of C. paliurus leaves
are affected by environmental stress, such as drought,
salt, cold, and heat [25], and various TFs contribute to
the regulation of growth in C. paliurus leaves. For exam-
ple, bZIP is involved in the regulation of amino acid bio-
synthesis [26], and MYB and bHLH are involved in the
regulation of flavonoid biosynthesis [27]. The analysis of
transcriptome data of the leaves in C. paliurus revealed
the bZIP gene family was one of the most abundant TFs
in this organism that regulate leaf development [26]. In
addition to participate in leaf development, bZIP gene
family is regarded as important regulators in signaling
and responses to drought stress [16—18]. However, bZIP
gene family characteristics have not been evaluated by
integrative genome and transcriptomic analyses in C.
paliurus.

The complete genome of C. paliurus has been
sequenced, and 46,292 protein-coding genes have been
identified [24]. In this study, we performed the genome-
wide identification of the bZIP gene family and explored
the structural characteristics of bZIP genes. We also
measured the differential expression of bZIP genes at
four developmental stages and under four drought stress
treatments. We explored the evolution of bZIP genes and
its roles in leaf developmental process and under drought
stress. Our results provide a basis for further analysis of
the molecular basis of growth, development, and stress
responses in C. paliurus leaves.

Results

Genome-wide identification of bZIP family members in C.
paliurus

We identified 58 bZIP genes in the C. paliurus genome,
named CpbZIPI to CpbZIP58 according to their localization
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on the chromosomes (Table 1). The lengths of CpbZIP
mRNA transcripts and protein sequences ranged from
399 bp to 4,116 bp (CDS sequences) and 132 amino acids
(CpbZIP8) to 1,371 amino acids (CpbZIP22) (translated pro-
tein sequences). The average molecular weight of CpbZIP
family members was 43.39 kDa. The average isoelectric
point (pI) of CpbZIP genes was 4.78 (CpbZIP11) to 9.53
(CpbZIP27). A plot of the molecular weight with pl for each
CpbZIP gene revealed that the majority of CpbZIPs clustered
together, indicating that they have a similar properties (Fig.
S1). The grand average of hydropathy index (GRAVY) values
for CpbZIP members ranged from -0.968 to -0.301, suggest-
ing that these proteins are hydrophilic. All of the CpbZIP
genes were predicted to be located in the nucleus, consistent
with the biological function of TFs.

To explore evolutionary relationships, we constructed
a maximum likelihood phylogenetic tree based on the
full-length sequences of proteins encoded by bZIP genes
in C. paliurus and Arabidopsis (Fig. 1). The bZIP family
members in C. paliurus and Arabidopsis were assigned
to 13 groups according to the classification system for
Arabidopsis. Only the bZIP proteins of Arabidopsis were
assigned to group ] and M. The three largest groups in C.
paliurus included 13 (group A), 10 (group D), 7 (group I)
CpbZIP members (Fig. S1 and Fig. S2).

Chromosome localization, selective pressure,
and collinearity analysis of CpbZIP genes
All CpbZIP genes were found on 14 chromosomes of C.
paliurus (Fig. 2 and Table 1), with an uneven distribu-
tion and substantial variation. Apart from Chromosome
13 and 14, which had no CpbZIP genes, chromosome 3
harbored the largest number of CpbZIP genes (9, 15.5%),
while the fewest CpbZIP genes were detected on chro-
mosome 16 (1, 1.7%). In addition, most of the CpbZIP
genes were located near the ends of chromosomes.
Furthermore, we examined duplication events of CpbZIP
family members. Based on the phylogenetic tree con-
structed (Fig. S3), several duplication events were predicted.
In a survey of CpbZIP genes in the C. paliurus genome, 15
segmental duplications and 5 tandem duplications were
identified, as shown in Figure S4 and Table S1, indicating
that segmental duplication might play an important role
in bZIP gene family expansion. Duplications of CpbZIP
genes may have occurred at two time points, approximately
0.25-38.29 Mya and 80.60-99.47 Mya (Table S1). The non-
synonymous substitution rate (K,), synonymous substitu-
tion rate (K), and K,/K; ratio for 21 duplicated gene pairs
were calculated to evaluate selective pressure (Table S1).
Values of K,/K,<1, K,/K,=1, and K,/K,>1 suggest purifying
selection, neutral selection, and positive selection, respec-
tively [28]. The K /K; ratios for all bZIP genes in C. paliu-
rus were 0.1121-1.1166, and only one pair had a K,/K; ratio
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are marked with different colors

Fig. 1 Phylogenetic analysis of CpbZIP proteins of C. paliurus and Arabidopsis using 1Q-tree by the maximum likelihood method. Different groups

exceeding 1.0, suggesting that most CpbZIP genes were
under purifying selection.

The collinearity between C. paliurus bZIP genes and
related genes from four other species (ie., Oryza sativa,
Arabidopsis thaliana, Fragaria vesca, and Juglans regia)
was also evaluated using the Multiple Collinearity Scan
toolkit. In total, 33 bZIP genes in C. paliurus showed col-
linear relationships with 5 O. sativa genes, 12 Arabidopsis

genes, 15 E vesca genes, and 17 J. regia genes (Fig. 3 and
Table S2). The numbers of orthologous gene pairs were 18
between C. paliurus and O. sativa, 22 between C. paliu-
rus and Arabidopsis, 30 between C. paliurus and F. vesca,
and 38 between C. paliurus and J. regia. Less orthologous
gene pairs were found between C. paliurus and O. sativa,
which may be explained by the closer phylogenetic rela-
tionships between C. paliurus and other species [24].
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Fig. 2 Chromosomal distribution of CpbZIP genes in C. paliurus. CpbZIP genes are marked at their approximate positions on the right side of
chromosomes. The chromosome numbers are shown above each bar

Analyses of gene structure and conserved motifs

To understand the sequence structure of the bZIP fam-
ily in C. paliurus, the intron—exon structure (Fig. 4) and
motif composition of each member (Fig. 5) were ana-
lyzed. CpbZIP genes had 1 to 17 exons. Most CpbZIP
genes contained 1-3 introns, and some members of the
CpbZIP gene family were intron-less, such as CpbZIP2,
CpbZIP3, CpbZIP8, CpbZIP15, CpbZIP21, CpbZIP24,
CpbZIP34, CpbZIP50, CpbZIP54, and CpbZIP57. A max-
imum of 16 introns were found in CpbZIP22 (Fig. S5).
Moreover, some CpbZIP members belonging to the same
group shared similar gene structures (Fig. 4). For exam-
ple, all members of group S and group H lacked introns.
Out of six members in group E, five had four exons and
three introns. Of four members in group C, three had six
exons and five introns.

To discover conserved motifs of CpbZIP genes, we
used MEME (Multiple Em for Motif Elicitation). A total
of 20 conserved motifs were identified in 58 CpbZIP
genes (Fig. 5), all of which had a bZIP domain (PF00170)
represented by motif 1 (Table S3). Motif 6 and motif 14
were detected in the majority of CpbZIP members. In
addition, motif 7, motif 8, and motif 15 occurred only in
group A. Motif 12 was present only in group E and group
I. Motif 2, motif 3, motif 4, motif 5, and motif 10 were
located only in group A. Motif 18 was shared only by

three members in group F. Many conserved motifs were
found in specific groups and might be related to specific
biological functions.

Promoter region analysis of CpbZIP genes

We analyzed the 2000 bp region upstream of CpbZIP
genes to elucidate cis-acting regulatory elements
(CAREs) involved in processes related to development
and the stress response using the PlantCARE webserver
(Fig. 6). We found 16 unique CAREs in the CpbZIP gene
family, including elements related to light responsiveness,
defense and stress responsiveness, drought response,
flavonoid biosynthetic regulation, and phytohormone
responsiveness, including methyl jasmonate (meJA), gib-
berellin, abscisic acid, auxin, and salicylic acid. CAREs
involved in light, plant hormone, and stress responses
were most frequent in the CpbZIP gene family (Table S4
and Fig. 6B), suggesting that these genes are important
for the regulation of plant growth and stress responses.
Moreover, CAREs in CpbZIP members were also related
to seed-specific regulation, meristem expression, and
endosperm expression, indicating that these genes may
be involved in diverse developmental processes. These
data provide useful insights into the regulatory effects
of the CpbZIP gene family under stress and during
development.
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Fig. 3 Syntenic relationships of CpbZIP genes between C. paliurus and Oryza sativa, Arabidopsis thaliana, Fragaria vesca, and Juglans regia. Gray lines
in the background represent collinear blocks within C. paliurus and other plant genomes, while red lines highlight syntenic bZIP gene pairs
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Gene ontology analysis of CpbZIP genes

To understand the functions of bZIP family members,
we performed a Gene Ontology (GO) analysis [29-32].
CpbZIP genes were effectively annotated using eggNOG-
Mapper (Table S5) [33]. In the biological process category,
CpbZIP genes were enriched for processes related to phy-
tohormones and stress responses (Fig. S6 and Table S6).

The GO terms related to hormone responses included
response to abscisic acid (GO:0,009,737), cellular response
to hormone stimulus (G0:0,032,870), and abscisic acid-
activated signaling pathway (G0:0,009,738). The GO terms
related to the stress response included response to stimulus
(G0O:0,050,896), response to osmotic stress (GO:0,006,970),
and response to salt stress (GO:0,009,651). The results of
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Fig. 4 DNA structures of the bZIP gene family in C. paliurus. Exons are indicated by yellow bars and introns are denoted by black lines

the GO analysis also further supported the roles of CpbZIP
genes in biological processes related to plant development
and stress responses.

Expression of CpbZIP genes under drought stress

and across developmental stages

To explore the expression pattern of CpbZIP genes at var-
ious leaf developmental stages and under drought stress,
we retrieved fragments per kilobase million (FPKM) val-
ues for all CpbZIP genes from RNA-Seq data. We used
FPKM values to build a principal component analysis
(PCA) plot (Fig. S7) and heatmaps (Fig. 7). Four stages
of leaf development and four drought treatments were
evaluated (for details, please refer to the Materials and
Methods section). Under drought treatment, Compared
to the control C group of drought treatment, 361 differ-
ent expressed genes (DEGs) were identified from W1
group, 427 DEGs were from W2 group, and 1,213 DEGs
were from W3 group. Of 58 CpbZIP genes, 50 were
expressed in the drought-treated samples (FPKM>0)

and showed differences in expression (Fig. 7A). For
example, CpbZIP4, CpbZIP5, CpbZIP19, CpbZIP22,
and CpbZIP41 showed higher expression levels under
drought stress condition (W1, W2, and W3) than in the
control group (C). Moreover, during leaf development, 53
CpbZIP genes were expressed at different developmental
stages, some of which showed higher expression in the
smallest fully expanded leaves (Y stage) and small leaves
(X stage) than in intermediate-sized leaves (Z stage) and
in the largest fully expanded leaves (D stage) (Fig. 7B).
CpbZIP1, CpbZIP7, CpbZIP8, CpbZIP15, CpbZIP28,
CpbZIP49, CpbZIP51, and CpbZIP55 were most highly
expressed in the Y and X stages. These results indicated
CpbZIP genes are important for drought tolerance and
leaf development.

To confirm the RNA-Seq results, nine differentially
expressed genes were selected for validation by qRT-PCR.
As shown in Fig. 8A, all selected CpbZIP genes were up-
regulated under drought stress. The expression levels of
CpbZIP4, CpbZIP19, and CpbZIP41 were significantly
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higher in all three drought treatments than in the con-
trol, while CpbZIP5 expression was significantly higher
in W2 and W3 conditions and CpbZIP21 expression was
highest in W1 and W2 conditions. An increase in the
expression level of CpbZIP22 was detected in W3. Dur-
ing leaf development, as shown in Fig. 8B, CpbZIP7 and
CpbZIP55 were highly expressed in the Y developmental
stage, while CpbZIP28 was highly up-regulated in the X
developmental stage.

Co-expression analysis

Co-expression analysis is a powerful approach to
screen associated genes, which may be co-regulated or
involved in the same signaling pathway or physiological
process [34]. Therefore, co-expression networks were
constructed based on the differently expressed genes
under developmental and drought stress conditions in
C. paliurus. The nine genes with expression changes
supported by both RNA-Seq and qRT-PCR (CpbZIP4,
CpbZIP5, CpbZIP7, CpbZIP19, CpbZIP21, CpbZIP22,
CpbZIP28, CpbZIP41, and CpbZIP55) and mRNAs
from plant leaves were used to identify patterns of co-
expression (Fig. 9). Nine co-expression networks were
obtained, including 342 significantly correlated gene

pairs. Among these, the network centered on CpbZIP22
was the largest (90 genes). The network centered on
CpbZIP21 was the smallest, with only one co-expressed
gene. In addition, with the annotation of 342 signifi-
cantly correlated gene pairs, several genes were found
to be involved in the responses to the water deprivation
(Table S7).

We performed a gene set enrichment analysis of
eight sets of co-expressed genes (the smallest net-
work involving CpbZIP21 was excluded). The ten
most significant GO terms were selected for each set
(Fig. 10). CpbZIP4, CpbZIP5, CpbZIP19, CpbZIP22,
and CpbZIP41, which were up-regulated under drought
stress, were enriched for the response to abiotic stim-
ulus (GO:0,009,607), response to external stimulus
(G0:0,009,605), and response to stress (GO:0,006,950).
In addition, CpbZIP7, CpbZIP28, and CpbZIPS5S,
which were highly expressed in during leaf develop-
ment (Y stage and X stage), were enriched for repro-
duction (G0O:0,000,003), post-embryonic development
(G0:0,009,791), and growth (GO:0,040,007). CpbZIP
genes may therefore play important roles in the regula-
tion of C. paliurus growth and development and stress
responses.
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Fig. 6 Putative cis-acting components of bZIP gene families in C. paliurus. A The promoter regions located 2000 bp upstream of the each CpbZIP
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Fig. 7 Heatmap representing the expression patterns of CpbZIP genes under drought stress (A) and across leaf developmental stages (B).

Discussion

C. paliurus is an endangered plant that only grows in
China and is a very important medical plant; its leaves
contain polysaccharides, triterpenoids, and other chemi-
cal components with numerous health benefits [23]. In
plants, bZIP TFs have been reported to contribute to
developmental processes and abiotic stress tolerance [35].
Members of the bZIP family have been comprehensively
identified and analyzed in several plants, including Arabi-
dopsis [1], rice (6], poplar [7], Arachis duranensis [8], and
Carthamus tinctorius L. [9]. Although a chromosome-
scale genome assembly of C. paliurus has been reported,
bZIP genes have not been comprehensively identified
and their roles in leaf development and drought stress
are unclear. In this study, 58 bZIP genes were identified
in the C. paliurus genome by a homology search. A tran-
scriptome analysis of C. paliurus revealed 60 differentially
expressed bZIP genes among different developmen-
tal stages [26], which was higher than number of genes
identified in our genome-wide homology-based search.
This may explained by the transcriptomic data obtained

from four sub-genomes in autotetraploid C. paliurus and
the lack of bZIP domain validation. In addition, com-
pared to the genes predicted from transcriptomic data,
genome-wide identification combined with a transcrip-
tomic analysis can provide more information on gene
structures, functions, and expression patterns [36, 37].
Further chromosome-level assemblies of the four sub-
genomes may facilitate more comprehensive functional
studies of bZIP genes and their regulatory mechanisms in
C. paliurus. The genomic survey revealed 58 members of
the C. paliurus bZIP gene family, which was fewer than
estimates in Arabidopsis (78 bZIPs), rice (92 bZIPs), maize
(125 bZ1Ps), and poplar (86 bZIPs) [1, 6, 7, 38]. Similar to
the C. paliurus family, the bZIP families in Arachis duran-
ensis (50 bZIPs) and Carthamus tinctorius L (52 bZIPs)
were relatively small [8, 9], indicating that the gene family
in these taxa contracted during evolution.

In this study, all CpbZIPs were predicted to be located
in the nucleus, consisting with the TF characteris-
tics and experimental studies in other organisms, such
as rice [39]. Moreover, the 58 CpbZIP genes were not
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Fig. 8 Quantitative real-time PCR analysis of nine CpbZIP genes in the response to drought stress (A) and leaf development (B) for the verification
of RNA-Seq results. Actin of C. paliurus was used as the internal control for standardization. C: 22.5-25.5% soil water, W1: 16.5-19.5% soil water, W2:
10.5-13.5% soil water, and W3: 4.5-7.5% soil water. Y: smallest fully expanded leaves, X: small leaves, Z: intermediate-sized leaves, and D: the largest
fully expanded leaves. Error bars indicate SD, and different lowercase letters (a—c) represent significant differences at p <0.05

uniformly distributed across the 16 chromosomes in
C. paliurus (Fig. 2) and were preferentially located near
the ends of the chromosomes, similar to observations in
sweet potato [10], Cucumis sativus [40], and wheat [41].
Based on the phylogenetic reconstruction (Fig. 1), bZIP
genes in this study could be categorized into 13 groups;
C. paliurus lacked CpbZIP genes in group ] and group
M in Arabidopsis, suggesting that genes in these groups
diverged or were lost in C. paliurus [42]. Recent studies
have proposed that gene duplication events are the main
driving forces for gene family expansion and genome
evolution, particularly segmental duplication and tan-
dem duplication [43, 44]. In the expansion of the bZIP
gene family, segmental duplications are more common
than tandem duplications in many plants, such as Ipo-
moea trifida [10], Malus halliana [45], and wheat [41].
We detected 15 gene pairs with evidence for segmen-
tal duplications and 5 pairs with evidence for tandem
duplications (Table S1), consistent with these previ-
ous findings. Most CpbZIPs (95.24%) showed evidence
for purifying selection (K,/K,>1) [28], indicating that

CpbZIP genes in C. paliurus are highly conserved. One
gene pair with K,/K, above 1.0 may be under positive
selection [46], with rapid recent evolution and potential
functional importance [47]. Furthermore, that there was
greater collinearity between C. paliurus and J. regia than
between C. paliurus and other plants due to the relatively
closer evolutionary relationships [24]. In C. paliurus,
CpbZIP members showed similar gene structures in the
majority of subfamilies (Fig. 4), especially in the number
and length of exons, consistent with results reported in
wheat [41]. A motif analysis (Fig. 5) revealed 20 motifs in
C. paliurus, named motif 1 to motif 20 (Fig. 5), consist-
ent with results in wheat [41], Carthamus tinctorius [9],
and cassava [48]. In addition to the bZIP domain (motif
1) located in each CpbZIP gene, the overall composi-
tions of motifs were similar within the same subgroup
but different among groups, indicating that functional
divergence of bZIP genes may be determined by group-
specific motifs [8]. This was consistent with results of
studies of polar [7] and Malus halliana [45]. Both gene
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structure and motif analyses support the classification of
bZIP genes in the phylogenetic analysis.

Several studies have demonstrated the roles of plant
bZIP proteins in numerous developmental processes and
in responses to biotic and abiotic stresses [8, 49-52]. How-
ever, little is known about their functions in C. paliurus.
In this study, we explored their expression patterns after
drought stress treatment and during different stages of leaf
development. A transcriptome analysis revealed that a large
number of CpbZIP genes were up-regulated after drought
treatment or in the Y stage and X stage (Figs. 7 and 8), such
as CpbZIP4, CpbZIPS, CpbZIP7, CpbZIP19, CpbZIP21,
CpbZIP22, CpbZIP28, CpbZIP41, and CpbZIP55, indicat-
ing CpbZIPs have vital functions in leaf development and
responses to drought stress. Similarly, the cis-acting ele-
ments in promoter regions contained a variety of compo-
nents involved in the stress response (drought response,
low-temperature response, and defense and stress response)
and phytohormone responses (gibberellin, auxin, abscisic
acid, salicylic acid, and methyl jasmonate) (Fig. 6). These
results supported the important roles of the CpbZIP gene
family in environmental stress and plant development,

consistent with previously reported functions of bZIP TFs
[1, 4, 15-17, 19, 51]. In the present study, in addition to the
up-regulated genes, some CpbZIPs were down-regulated
in response to drought stress and during leaf develop-
ment, indicating that CpbZIP TFs might act as positive or
negative regulators. This phenomenon has been reported
in other organisms. For example, AtbZIP17 and AtbZIP24
act as positive regulators in Arabidopsis under salt stress
[11, 12], while OsbZIP52 [16] in rice functions as a nega-
tive regulator in cold signaling. Moreover, OsbZIP72 in
rice positively regulates the ABA response [19], while
GmbZIP44 and GmbZIP62 in Glycine max show negatively
regulatory effects [15]. To understand bZIP gene functions
in C. paliurus, co-expression network and gene set enrich-
ment analyses were performed (Figs. 9 and 10). The differ-
entially expressed genes at different developmental stages
and their corresponding networks were mainly enriched
in processes related to plant growth, while differentially
expressed genes in drought stress were not only enriched
in stress response-related biological processes but also in
growth-related processes. These results suggested that
CpbZIP genes are potentially involved in drought resistance
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Fig. 10 GO enrichment analysis of eight co-expressed gene sets

and leaf development in C. paliurus. Nonetheless, further
experimental analyses should be carried out to elucidate the
precise regulatory mechanism by which CpbZIP genes con-
tribute to the response to drought stress and development.

Conclusions

C. paliurus is an endangered medical plant distrib-
uted in the mountainous regions of sub-tropical China.
Research has mainly focused on increasing yield, qual-
ity, and stress tolerance in C. paliurus. The bZIP gene
family is involved in plant growth and development
and plays important roles in the tolerance to environ-
mental stress. In this study, we identified and charac-
terized the bZIP gene family in C. paliurus. Expression
profiling and functional enrichment analyses clearly
demonstrated the role of CpbZIPs in leaf development
and the response to drought stress. The results of this
study improve our understanding of the role of bZIPs
in developmental processes and in drought stress and
provide a good foundation for further studies of the

molecular regulatory mechanisms underlying C. paliu-
rus stress resistance and growth.

Methods

Genome-wide identification of bZIP transcription factors

in C. paliurus

The hidden Markov model of the bZIP domain (PF00170)
was obtained from the PFAM database (http://pfam.
xfam.org/, accessed on 19 November 2021) and the
genome sequence and genome annotation of C. paliurus
were downloaded from Genome Warehouse in National
Genomics Data Center Beijing Institute of Genomics,
Chinese Academy of Sciences/China National Center
for Bioinformation (https://ngdc.cncb.ac.cn/gwh, under
accession number GWHBEHY00000000, accessed on 18
December 2021). To identify CpbZIP genes in C. paliurus,
two methods were applied. First, a local database of pro-
tein sequences was made for C. paliurus, and bZIP genes
from Arabidopsis were utilized to discover putative bZIP
genes in C. paliurus by BLASTp searches. A cutoff e-value
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of 107 and bit score of 100 were thresholds for the iden-
tification of putative bZIP genes. Second, another protein
sequence database of bZIP genes from other plant species
was built from Ensembl hosts (http://plants.ensembl.org/
index.html, accessed on 21 February 2022). Then, BLASTp
searches were performed against the proteome of C. paliu-
rus with an e-value threshold of 10~ and bit score thresh-
old of 100. After removing redundancy, 72 putative bZIP
candidates were obtained, which were further verified for
the existence of the bZIP domain (PF00170) using HMM-
scan (https://www.ebi.ac.uk/Tools/hmmer/search/hmmsc
an), NCBI CDD (https://www.ncbinlm.nih.gov/Struc
ture/cdd/cdd.shtml), interPro (https://www.ebi.ac.uk/inter
pro/), and SMART tools (https://smart.embl-heidelberg.
de/). After removing sequences without bZIP domains, 58
bZIP genes were named according to the locations on the
chromosomes.

Sequence analysis of CpbZIP genes in C. paliurus

The isoelectric point and molecular weight of CpbZIP
proteins were characterized using the isoelectric point
calculator (https://web.expasy.org/compute_pi/). CELLO
[53, 54] was used to predict the subcellular localization
of CpbZIP proteins. The annotation file was utilized to
extract intron—exon distributions and gene structures
were visualized using Gene Structure Display Server 2.0
[55]. MEME [56] was used to elucidate conserved motifs.
The maximum number of motifs was set to 10, motif
width was 6-20, and other parameters were set to default
values. For the identification of CAREs, the 2000 bp
sequences upstream of the CpbZIP genes were analyzed
by the PlantCARE online server (http://bioinformatics.
psb.ugent.be/webtools/plantcare/html) and visualized
using TBtools [57].

Chromosomal location, gene duplication, and synteny
analysis

The genomic positions of CpbZIP genes and length
of each chromosome were extracted from genome
sequence and annotation files using local Perl scripts.
TBtools was used to represent CpbZIP genes on C. pali-
urus chromosomes. MCScanX was used to investigate
gene duplication events within C. paliurus species and
similarity between bZIP genes in C. paliurus and four
species, Oryza sativa, Arabidopsis thaliana, Fragaria
vesca, and Juglans regia. Data for the first three species
were downloaded from the Phytozome database [58]
and data for Juglans regia were downloaded from the
NCBI Nucleotide database (NC_049901-NC_049916).
The nonsynonymous substitution rate and synonymous
substitution rates were calculated using DnaSP [59].

Page 150f 18

The time of each gene duplication event was calculated
with formula T=K,/2), assuming 6.5 x 10~° synony-
mous substitutions per site per year [41, 60, 61].

Plant material and drought treatment

Leaf materials of C. paliurus were collected from Zhu-
Zhang Village, Longquan City, Lishui City, Zhejiang
province, China (E118°4828", N28°5’57”). Leaves were
divided into four development stages, including the
smallest fully expanded leaves (Y stage), small leaves (X
stage), intermediate-sized leaves (Z stage), and the larg-
est fully expanded leaves (D stage). The leaves of C. paliu-
rus were sampled separately on the same tree at the same
time of each developmental stage. The collected leaves
were stored in a liquid nitrogen tank immediately after
being collected from the branches. Then the leaves were
transferred to -80°C freezer for storage after returning to
the laboratory. Three biological replicates were indepen-
dently performed, and each developmental stage con-
tained three plants in one biological replicate. To avoid
experimental errors between repetitions, we collected
leaves of four developmental stages on the same tree with
different orientations at the same time. In addition, one
replicate of each developmental stage mixed the leaves
from three randomly selected trees. For each develop-
mental stage, the whole leaves were used for further
RNA-seq analysis.

For the drought treatment, 2-year-old C. paliurus seed-
lings were moved to greenhouse in Taizhou University
with a ratio of peat soil to vermiculite of 2:1. After the
seedlings were adapted to the growth environment and
maintained stable growth, four drought treatments were
applied for 100 days, including 22.5-25.5% soil water
(control C group), 16.5-19.5% soil water (W1), 10.5—
13.5% soil water (W2), and 4.5-7.5% soil water (W3).
Similar to the developmental leaf materials, three biologi-
cal replicates for each drought treatment were included
for transcriptome analyses.

Transcriptome analysis

Transcriptomic data for C. paliurus leaves at four devel-
opmental stages were collected as described previously
by Sheng et al. [27] and were downloaded from the NCBI
database with accession no. PRINA548403. For differ-
ent drought treatment groups, total RNA was extracted
from the leaves using a Total RNA Extractor (TRIzol) Kit
(B51311; Sangon Biotechnology, Shanghai, China). Three
biological replicates were performed for a total of 12
samples, which were used for mRNA library construction
after the determination of the quality and concentration
of extracted RNAs using the NanoDrop 2000 (Thermo
Fisher, Waltham, MA, USA). mRNA libraries were con-
structed using the VAHTS mRNA-seq V2 Library Prep
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Kit for Illumina (NR60102; Vazyme Biotechnology, Nan-
jing, China). The T100TM thermal cycler (Bio-Rad, Her-
cules, CA, USA) was used to synthesize the first- and
second-strand cDNAs, and the library fragments were
further purified by AMPure XP System (Beckman Coul-
ter Company, Beverly, MA, USA). After library ampli-
fication by PCR, the products were purified using the
AMPure XP system and qualified using the Bioanalyzer
2100 system (Agilent Technologies Inc., Santa Clara, CA,
USA). Finally, paired-end sequencing of these libraries
was performed using HiSeq X Ten sequencers (Illumina,
San Diego, CA, USA) by Novagen Co., Ltd. (Beijing,
China). After removing the adapters and low-quality
reads using Trimmomatic [62], the trimmed reads were
aligned to the C. paliurus genome using HISAT2 with
default parameters [63]. The expression profiles including
FPKM values and read counts for each CpbZIP gene were
calculated using StringTie [64] with default parameters.
Heatmaps and a principal component analysis (PCA)
were performed using TBtools [57] and the FactoMineR
R package [65].

Real-time PCR analysis

RNAs extracted from plants at different developmental
stages and under drought stress were treated with DNase-
I (Takara Bio. Inc., Shiga, Japan) at 37 °C for 30 min to
remove genomic DNA contamination. RNAs were reverse
transcribed to cDNA using the cDNA Synthesis Super-
Mix Kit (Applied Biosystems, Shanghai, China). Quan-
titative real-time PCR (qRT-PCR) was performed using
SYBR qPCR Master MIX (Vazyme). Three biological rep-
licates were included for each sample. Relative expression
by qRT-PCR was normalized to beta actin (-actin). The
fold change values were calculated based on mean 2724¢T
values [41]. Primers were designed using the Sangon Bio-
tech online server (https://www.sangon.com/newPrimerD
esign). The primers are listed in Table S8.

Gene co-expression and gene ontology analysis

Nine differentially expressed CpbZIP genes were evalu-
ated. Co-expression between CpbZIP genes and non-
CpbZIP genes was evaluated based on Pearson correlation
coefficients (PCC). Gene pairs for which the absolute value
of the PCC was higher than 0.99 (p<0.01) were regarded
as co-expressed. Cytoscape [66] was used for network vis-
ualization. A gene set enrichment analysis was performed
using the clusterprofiler package in R [67].
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