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Abstract 

Background:  The cold pressor test (CPT) is a widely used pain provocation test to investigate both pain tolerance 
and cardiovascular responses. We hypothesize, that performing multi-omic analyses during CPT gives the opportunity 
to home in on molecular mechanisms involved. Twenty-two females were phenotypically assessed before and after 
a CPT, and blood samples were taken. RNA-Sequencing, steroid profiling and untargeted metabolomics were per-
formed. Each ‘omic level was analyzed separately at both single-feature and systems-level (principal component [PCA] 
and partial least squares [PLS] regression analysis) and all ‘omic levels were combined using an integrative multi-omics 
approach, all using the paired-sample design.

Results:  We showed that PCA was not able to discriminate time points, while PLS did significantly distinguish time 
points using metabolomics and/or transcriptomic data, but not using conventional physiological measures. Tran-
scriptomic and metabolomic data revealed at feature-, systems- and integrative- level biologically relevant processes 
involved during CPT, e.g. lipid metabolism and stress response.

Conclusion:  Multi-omics strategies have a great potential in pain research, both at feature- and systems- level. 
Therefore, they should be exploited in intervention studies, such as pain provocation tests, to gain knowledge on the 
biological mechanisms involved in complex traits.

Keywords:  Cold pressor test, Transcriptomics, Metabolomics, PCA, PLS, Systems biology, Data integration, Multi-
omics
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Background
The cold pressor test (CPT) is probably the most widely 
used pain provocation test in pain research [1]. It involves 
keeping one hand in ice water as long as possible or until 
10  min have passed. The duration that the subject can 
tolerate is a quantitative measure of the individual’s pain 
tolerability, and physiological responses can measure 
the fitness of the cardiovascular system. What regulates 
pain tolerance and cardiovascular responses is poorly 

understood, but peripheral and central factors may be 
both at play.

Understanding the biochemical mechanisms of pain 
tolerance is unfortunately limited by the fact that blood is 
the only easily accessible tissue for experimental studies 
in humans. There are, however, several studies indicating 
that blood composition reflects not only peripheral fac-
tors but also changes in the central nervous system [2]. 
Transcriptomics reveal gene activation patterns, while 
metabolomics give a snapshot of the biochemical sta-
tus. Together, they enable investigation of the molecular 
mechanisms at play [3] and with metabolomics being 
close to the actual phenotype, it has shown to have great 
predictive abilities [4]. There has been recent progress 
in the extremely complicated biostatistical analysis of 
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multi-omics and in the analysis of repeated measure-
ments which is the most effective way to elucidate tran-
sient changes such as those induced by CPT.

In the present study we take advantage of these new 
methodological developments in an analysis of multi-
omics, including transcriptomics and metabolomics, of 
CPT. The study was part of a larger project in migraine 
patients and therefore the experimental subjects are 
migraine patients. There is no evidence, however, that 
migraine patients respond differently to CPT or have a 
different pain threshold than healthy individuals [5, 6]. 
We, therefore, believe that our results are representative 
of CPT in the population at large. This is the first multi-
omics study of CPT and one of the first studies combin-
ing multi-omics with longitudinal measurements.

Materials and methods
Study population and design
We performed a cold pressor test (CPT) on migraine 
patients recruited at the Danish Headache Center, as 
part of a larger project. The subjects were diagnosed 
with migraine (with or without aura) according to the 
International Classification of Headache disorders crite-
ria, female, aged 18–70 year, weighing 45–95  kg and of 
Danish ethnicity. The CPT was performed in accordance 
with Hines and Brown [7] on a migraine- and headache-
free day and with no record of subsequent migraine or 
headache the following 24  h. Subjects immersed their 
right hand as long as tolerated in ice water (max 10 min). 
Before, directly after, and 60 min after the CPT the heart 
rate and blood pressure were monitored (i.e. physiologi-
cal measures). Before and 60  min after the test a blood 
sample was taken from the cubital vein, which was used 
for measuring steroid, metabolite- and gene expres-
sion. We successfully obtained full ‘omics data in 22 
individuals.

Steroid level measurement
The steroids 17-hydroxyprogesterone, testosterone, 
androstenedione and cortisol were measured as previ-
ously described [8]. To optimize normal distribution of 
the steroids, cortisol was square root transformed and 
androstenedione, progesterone and testosterone were log 
transformed.

RNA‑Sequencing
RNA-Sequencing and processing were performed as pre-
viously described by deCODE Genetics [8, 9]. As previ-
ously described, normalization was performed using 
DESeq2 [10], with normalization of the count matrix 
for library size and gene-length using the average gene 
length-matrix resulting from kallisto [11]. Genes that 
were not expressed in 90% of the samples were removed 

and only protein-coding genes were retained (n = 15,940). 
A regularized log transformation was performed using 
DESeq2.

Metabolomics
Sample preparation
All samples, including blank and pooled quality con-
trol samples were submitted to untargeted liquid chro-
matography-tandem mass spectrometry (LC-MS/MS) 
metabolomics measurements at Statens Serum Institut, 
Copenhagen, Denmark, between July 3, 2019 and July 
5, 2019. Plasma samples were thawed at room tempera-
ture and metabolites were extracted by transferring 40 
µL of plasma onto 96-well plates with addition of 130 
µL of icy cold extraction buffer 1. Plates were sealed 
and shaken for 15  min, at 750  rpm and 25  °C and kept 
at -20  °C overnight. In a second extraction step, plates 
were centrifuged for 10 min at 3220 G and 4  °C and 90 
µL of supernatant from each well were transferred to a 
new glass-coated plate. 58 µL of icy cold extraction buffer 
2 were added, plates were heat-sealed, shaken for 15 min 
at 750 rpm and 25 °C, and then kept at -20 °C for 30 min. 
The plates were then centrifuged for 10  min at 3220 G 
and 4  °C. Finally, 71 µL of supernatant were transferred 
to a hard-shell polypropylene plate and dried in an evap-
orator under nitrogen at 60 L/min at room temperature 
for 1 h, heat-sealed and kept at -20 °C until use. Extrac-
tion buffer 1 consisted of 150 µL NSK-A (vendor), 150 
µL NSK-B (vendor), 150 µL labeled L-proline, 14.445 mL 
methanol (vendor) and 2.1 mL water, whereas extraction 
buffer 2 consisted of acetonitrile (vendor). Pooled quality 
control samples were prepared, by adding equal aliquots 
of all samples. Blank samples were prepared by injecting 
phosphate-buffered saline (PBS) in a K2EDTA 10-mL 
tube (BD vacutainer #367,525, final K2EDTA concentra-
tion 1.8  mg/mL) using a blood sample syringe. 4 mL of 
this matrix was then spiked with 40 µL of protease and 
phosphatase inhibitor mix (Thermo Fischer Scientific 
#78,446, no extra EDTA added) and extracted following 
the same protocol as experimental samples.

LC‑MS/MS method
The LC-MS/MS platform (Thermo Scientific) consisted 
of a Q-Exactive Orbitrap mass spectrometer coupled to 
a Dionex Ultimate 3000 UPLC with a binary pump, hot 
pocket column heater, and CTC Combi PAL autosa-
mpler. Elution was performed on a C18 reversed phase 
column and corresponding pre-column (Acquity UPLC 
BEH 130 Å, 1.7 μm, 2.1 × 100 mm, Waters Corporation, 
Waltham, MA, USA). The mobile phase consisted of sol-
vent A (99.8% H2O and 0.2% FA) and B (99.8% ACN and 
0.2% FA). Frozen extracts were reconstituted in 51 µL 
reconstitution solvent (A:B 98:2), heat-sealed, shaken for 
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15 min at 750 rpm and 25 °C and centrifuged for 10 min 
at 3220 G and 4  °C before being injected (20 µL). Sam-
ples were maintained at 4 °C in the autosampler and the 
column temperature was maintained at 50  °C. Samples 
were injected in random order together with blank and 
pooled quality control samples at regular intervals. The 
gradient of the mobile phase was as follows: 0–1 min, A:B 
98:2 at 0.3 mL/min; 1–6 min, gradient ramp to A:B 2:98; 
6-6.83 min, A:B 2:98 step; 6.83–7.17 min, flow ramp up 
to 0.5 mL/min; 7.17-8  min, A:B: 2:98 step. In between 
each sample the chromatographic column was cleaned 
with solvent C (24.95% H2O, 24.95% MeOH, 24.95% 
ACN, 24.95% IPA, and 0.2% FA) with the following gra-
dient: 8–11 min, flow and gradient ramp to A:B:C 0:2:98 
0.3 mL/min; 11–13 min, gradient ramp to A:B:C 98:2:0; 
13–14 min, flow ramp to 0.5 mL/min; 14–15 min, A:B:C 
98:2:0 step; 15–21 min, A:B:C 98:2:0 step back at 0.3 mL/
min. Tandem mass spectrometric data was acquired from 
0.2  min to 8  min, in positive ionization mode, using a 
Heated Electrospray Ionization (HESI-II) Probe. Set-
tings were spray voltage: 3.8  kV, capillary temperature: 
350  °C, sheath gas pressure: 32 psi, auxiliary gas flow: 8 
arb. unit, and S-lens radio frequency level: 50%. For full 
MS, the parameters were as follows: scan range from 70 
to 1050 m/z, microscans: 1, resolution: 70,000, AGC tar-
get: 1E6, max IT: 120 ms, and spectrum data type: pro-
file. For MS2, the parameters were as follows: scan range 
from 200 to 2000 m/z, microscans: 1, resolution: 17,500, 
AGC target: 1E5, max IT: 80 ms, top 8, isolation window: 
1.0 m/z, isolation offset: 0 m/z, collision energy: stepped 
NCE (17.5, 35.0, 52.5  eV), spectrum data type: profile, 
minimum AGC target: 1.6E3, intensity threshold: 2E4, 
apex trigger: 2 to 4 s, charge exclusion: >2, peptide match: 
off, exclude isotopes: on, and dynamic exclusion: 12.0 s.

Data processing
ThermoFisher .raw files were converted to the .mzML 
format using Proteowizard’s MSConvert v3.0 (Prote-
oWizard Software Foundation, Palo Alto, CA, USA) [12], 
and preprocessed by using MZmine v2.40.1 [13, 14]. First, 
the raw data was cropped, with chromatogram retention 
time from 0 to 7.3 min retained. Mass lists were created 
with MS1 intensity above 1E4 and MS2 intensity above 
0 retained. The chromatogram was built through the 
ADAP chromatogram builder [15], by using the follow-
ing parameters: minimum group size of scans: 3, group 
intensity threshold 1E4, minimum highest intensity 3E4, 
and m/z tolerance 0.01 m/z or 10 ppm. The chromato-
gram was further deconvoluted by using the following 
parameters: m/z range for MS2 paring: 0.01 Da, RT range 
for MS2 paring: 0.4 min, and wavelets (ADAP) algorithm 
(S/N threshold: 10, S/N estimator: intensity window SN, 
minimum feature height: 3E4, coefficient/area threshold: 

110, peak duration range: 0.05-1 and RT wavelet range 
0.05–0.1). The peaks were deisotoped by using the iso-
topic peak grouper function, with the following param-
eters, m/z tolerance: 0.01 m/z or 10 ppm, retention time 
tolerance: 0.5  min, maximum charge: 3, representative 
isotope: most intense. Finally, the peaks from all sam-
ples were aligned by using the join align function with 
the following parameters: m/z tolerance: 0.01 m/z or 10 
ppm, retention time tolerance: 0.5  min, weight for m/z: 
75, weight for RT: 25. Features with apex between 0 and 
0.4 min were filtered out. The generated MS/MS filtered 
feature table was exported in the .csv format and used for 
statistical analysis whereas aggregated MS/MS spectral 
information was exported in the .mgf format for chemi-
cal structural annotation through the feature-based mass 
spectral molecular networking workflow within the 
Global Natural Products Social Molecular Networking 
Platform (GNPS) [16, 17].

Before statistical analysis, relative intensities in the 
MS/MS filtered mass spectral feature table were scaled 
by dividing each mass spectral feature by its batch root 
mean square using R’s scale function to normalize for 
batch effect [18]. Filtering of mass spectral features per 
sample was based on a 20-fold difference between blank 
and experimental samples, and metabolite-level features 
were filtered based on the modified 80% rule (i.e. mass 
spectral features present in at least 80% of the samples 
per experimental group). This resulted in inclusion of 622 
mass spectral features with associated MS/MS fragmen-
tation spectrum, which we here refer to as a proxy for 
metabolites.

Chemical structural identification
A mass spectral molecular network was created through 
the Global Natural Products Social Molecular Networking 
Platform (GNPS) (http://​gnps.​ucsd.​edu) using the feature 
based molecular networking workflow (https://​ccms-​ucsd.​
github.​io/​GNPSD​ocume​ntati​on/​featu​rebas​edmol​ecula​
rnetw​orking/) [16]. The data was filtered by removing all 
MS/MS fragment ions within +/- 17 Da of the precur-
sor m/z. MS/MS spectra were window filtered by choos-
ing only the top 6 fragment ions in the +/- 50Da window 
throughout the spectrum. The precursor ion mass toler-
ance was set to 0.02 Da and a MS/MS fragment ion toler-
ance of 0.02 Da. A network was then created where edges 
were filtered to have a cosine score above 0.7 and more 
than 4 matched peaks. Further, edges between two nodes 
were kept in the network if and only if each of the nodes 
appeared in each other’s respective top 10 most similar 
nodes. Finally, the maximum size of a molecular family 
was set to 100, and the lowest scoring edges were removed 
from molecular families until the molecular family size 
was below this threshold. The spectra in the network were 

http://gnps.ucsd.edu
https://ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking/
https://ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking/
https://ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking/


Page 4 of 11Kogelman et al. BMC Genomics          (2022) 23:759 

then searched against GNPS’ spectral libraries. The library 
spectra were filtered in the same manner as the input data. 
All matches kept between network spectra and library 
spectra were required to have a score above 0.7 and at least 
4 matched peaks. Results were visualized using Cytoscape 
v3.5.0 [19]. To further enhance chemical structural infor-
mation, MS2LDA substructure information (https://​
ccms-​ucsd.​github.​io/​GNPSD​ocume​ntati​on/​ms2lda/) [20] 
and information from in silico structure annotation from 
Network Annotation Propagation [21] were incorpo-
rated within the GNPS mass spectral molecular network 
using the MolNetEnhancer workflow (https://​ccms-​ucsd.​
github.​io/​GNPSD​ocume​ntati​on/​molne​tenha​ncer/) [22]. 
In addition, MS/MS fragmentation spectra were searched 
using the in silico tools SIRIUS + CSI:FingerID [23, 24] 
and CANOPUS [25, 26] as well as the mass spectrom-
etry search tool MASST [27]. Links to chemical structural 
information retrieved through the GNPS feature based, 
MS2LDA, Network Annotation Propagation, MolNetEn-
hancer and MASST workflows are available upon request.

Principal component analysis
A principal component analysis (PCA) was performed 
on each data level (i.e. physiological measures, steroids, 
metabolomics, and transcriptomics) to investigate the 
major source of variation in each data set. With respect 
to the paired-sample design, we performed a multi-level 
PCA on the within-subject deviation matrix using the 
pca() function of the R-package mixOmics, by giving the 
subject’s ID to the multilevel setting [28, 29].

Sparse partial least squares – discriminant analysis
Multilevel sPLS-DA is a supervised approach utiliz-
ing the paired-sample design whereby variation for the 
response variable is optimized. Further, this linear mul-
tivariate approach takes the dependencies between genes 
into account which reduces data dimensionality, which is 
especially useful for data sets with a large number of fea-
tures on a relatively small number of samples. sPLS-DA 
was performed using the splsda() function of R-package 
mixOmics [28, 30]. In the case of transcriptomics and 
metabolomics, the number of features and components 
were optimized using leave-one-out cross-validation. 
Based on the classification error rate, the number of 
components were chosen, and tuning of the model was 
performed to minimize the number of features per com-
ponent while maximizing the class discrimination. Based 
on the lowest error rate, the optimal number of features 
per component were selected for the final sPLS-DA 
model. The performance of the final model was evaluated 
using the perf() function with a leave-one-out validation, 
resulting in error rates of the components. The workflow 
was followed as presented in the tutorials of mixOmics 

(http://​mixom​ics.​org/​case-​studi​es/). Given the number 
of physiological and steroids measures, no selection was 
done on them. Physiological measures taken right after 
CPT were used, as they display the direct effect of CPT. 
A model was called significant when P < 0.05 and the area 
under the operator curve (AUC) and error rates were 
presented as evaluation indexes. We note that the AUC 
will be overestimated, as we did not have access to a vali-
dation cohort, and instead, a ‘leave-one-out’ performance 
test was performed.

PLS‑DA on pathway level
To include prior biological knowledge, we transformed 
the gene-level expression dataset into a KEGG pathway-
level dataset, by extracting the module eigengene of each 
pathway using the WGCNA R-package [31]. The module 
eigengene represents the first principal component of a 
set of genes. The sPLS-DA on the pathway-based data-
set allows identification of pathways affected between the 
two time points.

Multilevel multi‑omics analysis: DIABLO
Data Integration Analysis for Biomarker Discovery 
(DIABLO), is a method developed within mixOm-
ics, integrating different ‘omics data levels using a PLS 
approach [32]. The method aims to identify correlated 
features explaining the outcome of interest (i.e. changes 
due to CPT). To increase the power of the paired-sample 
design, we first extracted the within-subject deviation 
matrices per ‘omics data level. Next, using the func-
tion block.splsda, parameters were tuned to select the 
optimal number of components and features per com-
ponents while minimizing the error rate. A full design 
was used to identify correlations between the different 
‘omics levels; a correlation threshold of 0.8 was used to 
identify biologically relevant features. The workflow was 
followed as presented in tutorials of mixOmics (http://​
mixom​ics.​org/​mixdi​ablo/).

Differential expression analysis
Differential gene expression analysis was performed as a 
paired sample design. Differentially expressed (DE) genes 
between the two time points (before and after CPT) were 
detected using a binomial Wald Test within the R-pack-
age DESeq2 [10], with individual patient ID as covariate. 
P-values were adjusted for 15,918 tests using Bonferroni 
correction (Padj) and were called DE in case Padj < 0.05.

Differential metabolite expression analysis was likewise 
performed as paired sample design. DE metabolites were 
detected using a Wilcoxon signed-rank test. P-values 
were adjusted for 622 tests using the false discovery rate 
(FDR) and were called DE in case FDR < 0.05.

https://ccms-ucsd.github.io/GNPSDocumentation/ms2lda/
https://ccms-ucsd.github.io/GNPSDocumentation/ms2lda/
https://ccms-ucsd.github.io/GNPSDocumentation/molnetenhancer/
https://ccms-ucsd.github.io/GNPSDocumentation/molnetenhancer/
http://mixomics.org/case-studies/
http://mixomics.org/mixdiablo/
http://mixomics.org/mixdiablo/
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Gene set enrichment analysis
Enriched pathways of sets of genes (i.e. DE genes and 
clusters of genes found by sPLS-DA and DIABLO) 
were detected using the STRING database (v11.0) [33]. 
P-values were adjusted for multiple testing using FDR. 
Enriched tissues were detected using FUMA using the 
GENE2FUNC function, using default settings [34]. Path-
ways and tissues were called enriched when FDR < 0.05.

Results
Clinical descriptive statistics
The cold pressure test (CPT) was performed on 22 indi-
viduals diagnosed with migraine, with a mean age of 36.5 
years (SD = 11.3 years) and a mean BMI of 23.7 (SD = 3.3). 
Participants kept their hand in the ice water for an average 
of 283 s (SD = 222 s) ranging from 21 s to the predefined 
maximum of 600 s. Compared to before the CPT, the sys-
tolic blood pressure was significantly increased as meas-
ured immediately after CPT (P = 0.02), while diastolic 
blood pressure and heart rate were not. No differences 
in blood pressure or heart rate were detected comparing 
before the CPT with 60 min after CPT.

Principal component analysis
Dimensionality reduction of the samples using a multi-
level Principal Component Analysis (PCA) did not allow to 

distinguish the two time points at any ‘omics data level (see 
Fig. 1A). Thus, no overall mechanism of CPT could be found.

Sparse partial least squares – discriminant analysis
Dimensionality reduction using sparse Partial Least 
Squares – Discriminant Analysis (sPLS-DA) clearly 
distinguished before and after CPT in transcriptomics 
and metabolomics, but not in physiological measures or 
steroids (Fig. 1B).

Physiological measures
Physiological measures before and right after CPT (heart 
rate, systolic and diastolic blood pressure) did not dis-
criminate the time points, i.e. with one component the 
AUC was 0.59 (P = 0.30) with an error rate of 0.45. From 
single-variable analysis, the heart rate was the most pre-
dictive measure with an AUC of 0.57 (P = 0.40).

Steroids. The steroids progesterone, testosterone, 
androstenedione and cortisol were measured before 
and after CPT with optimal prediction using all four 
steroid levels (two components). The components were 
not able to discriminate the time points and had an 
AUC of 0.64 (P = 0.12).

Transcriptomics
The expression levels of > 15  K genes were reduced in 
dimension by tuning the number of components and 

Fig. 1  Clustering of the ‘omics samples before (blue circles) and after (orange triangles) the cold pressor test using A) multilevel PCA (unsupervised 
clustering) and B) multilevel sPLS-DA (supervised clustering). No significant prediction between the time points could be made using PCA, though 
using sPLS-DA both transcriptomics and metabolomics enabled significant prediction of before vs. after cold pressor test
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features per components, leading to component one 
to four consisting of 20, 5, 30 and 5 genes. Those four 
components were able to significantly discriminate 
the time points with an AUC of 0.92 (P = 1.50 × 10− 6) 
with an error rate of 0.14, 0.09, 0.05, and 0.09 for the 
four components. Enrichment analysis with String-db 
showed enrichment of the Reactome pathways; Metab-
olism of lipids (FDR = 0.01), WNT mediated activation 
of disheveled (DVL) (FDR = 0.04), Phospholipid metabo-
lism (FDR = 0.04), Metabolism (FDR = 0.04), and the 
UniProt keyword: Phosphoprotein (FDR = 0.04). Tissue 
enrichment analysis with FUMA showed whole blood 
and heart left ventricle as significantly expressed tis-
sues (Pbonf < 0.05); no brain tissues were significantly 
expressed.

Next, we performed sPLS-DA on pathway level. After 
tuning, one component with one feature was selected 
as the best model to distinguish the two time points. 
The KEGG pathway Pantothenate and coenzyme A 
(CoA) biosynthesis (map00770) distinguished the two 
time points with an AUC of 0.81 (P = 3.59 × 10− 4), and 
an error rate of 0.14. This pathway included 6 genes: 
DPYD, ENPP1, ENPP3, UPB1, PANK1 and PANK4. 
None of the genes were part of the components 
detected by the sPLS-DA on gene expression.

Metabolomics
The metabolomic dataset consisted of 622 metabo-
lites. It was reduced in dimension by tuning of the 
parameters to component one and two, both consist-
ing of five metabolites. This resulted in a significant 
discrimination of the time points with an AUC of 0.89 
(P = 1.02 × 10− 5) and an error rate of 0.32 and 0.32 for 
the two components. Partial putative chemical struc-
tural annotation could be retrieved for one metabolite 
in component 1 and two metabolites in component 2 
(Additional file 1), corresponding to a level 3 metabolite 
identification according to the Metabolomics Standard 
Initiative’s reporting standards [35]. One metabolite in 
component 1 was indicative of a disaccharide struc-
ture (ID 6108), whereas one metabolite in component 
2 could be putatively annotated as catecholamine (ID 
7059), based on its structural relatedness to phenyleth-
anolamine. A third metabolite (ID 4001) was putatively 
annotated as peptide containing a phenylalanine sub-
structure, based on its structural relatedness to multi-
ple high molecular weight compounds and presence of 
a phenylalanine-COOH substructure.

Integration of the different ‘omics layers
Physiological measures did not significantly discrimi-
nate the time points in clustering analysis. As they are 

conventionally used in the CPT, we tried to integrate them 
with metabolomics and transcriptomics data. Correla-
tions estimated by PLS between the different ‘omics lev-
els ranged from 0.39 (steroids vs. transcriptomics) to 0.87 
(metabolomics vs. transcriptomics). After tuning parame-
ters within DIABLO, two components were selected which 
both had 3, 4, 10, and 20 features (physiological measures, 
steroids, metabolomics and transcriptomics). Correla-
tions between the ‘omics levels increased and ranged from 
0.46 (physiological measures vs. steroids) to 0.88 (metab-
olomics vs. transcriptomics), resulting in an AUC of 0.96 
(P = 2.61 × 10− 5) explained by the two components.

Focusing on integrated metabolomics and transcrip-
tomics, which were able to significantly distinguish the 
time points, the tuning to select features did not change 
the correlation between metabolomics and transcriptom-
ics (i.e. 0.87 both before and after tuning). We identified 
components one to three containing 10,10, and 10 metab-
olites (error rate of 0.32, 0.14, and 0.05) and 10,10, and 
20 genes (error rate of 0.14, 0.05, and 0.00). Using those 
three components, the AUC was 0.99 (P = 2.68 × 10− 8).

The AUC of the model was higher and more signifi-
cant when excluding physiological measures and ster-
oid data levels, and therefore downstream analysis was 
performed on integration results of metabolomics and 
transcriptomics only. Enrichment analysis of the 40 
genes showed enrichment of the Reactome pathway 
Activation of PUMA and translocation to mitochondria 
(FDR = 0.04) and the following tissues were significantly 
enriched: spleen, sigmoid colon, prostate, and coro-
nary artery. Among the 30 metabolites, partial putative 
chemical structural annotation could be retrieved for 19 
metabolites (Additional file  1). Five metabolites could 
be annotated through GNPS spectral library matching, 
manual annotation propagation throughout the network 
and SIRIUS + CSI:FingerID in silico structure annota-
tion with an annotation level 2 [35], including two amino 
acids, methionine, arginine, an acylcarnitine, propionyl-
carnitine, two bile acids, glycochenodeoxycholate and 
taurohyodeoxycholic acid. Twelve metabolites could be 
putatively annotated at an annotation level 3. Six metab-
olites contained lipid and sugar substructures, suggestive 
of glycerophospholipids and glycerophosphoethanola-
mines, whereas two metabolites were suggestive of long-
chain fatty acids and four metabolites of an alpha amino 
acid, a nucleobase, an acylcarnitine, and a peptide struc-
tural analogue respectively.

Several of the genes and metabolites are strongly cor-
related with each other (Fig.  2). Interestingly, we see 
that CSGALNACT1 (Chondroitin Sulfate N-Acetyl-
galactosaminyltransferase 1) is correlated with four 
metabolites, of which three are suggestive of glyc-
erophospholipid structural analogues and one is 



Page 7 of 11Kogelman et al. BMC Genomics          (2022) 23:759 	

suggestive of a glycerophosphoetanolamine structural 
analogue. CSGALNACT1 encodes an enzyme trans-
ferring N-acetylglucosamine, a sugar donor for glyco-
phosphatidylinositol lipid synthesis [36]. Based on the 
positive correlation between CSGALNACT1 and the 
metabolites, we therefore speculate that the involved 
metabolites are glycophosphatidylinositol anchored 
proteins, containing both glycophosphatidylinositol as 
well as a phosphoethanolamine substructures. Another 
cluster suggests long chain fatty acids (ID 6316 and 
5396) to correlate with the genes FAM129C, ANKRD24, 
ST5, CDYL2 and KCNG1. No direct association could 
be found between those genes and long chain fatty 
acids and using the STRING database no direct asso-
ciations were found between those five genes. Lastly, 
we found a cluster of an alpha amino acid structural 
analogue (ID 2536), arginine (ID 157), an acylcarni-
tine structural analogue (ID 1257) and a nucleobase 
structural analogue (ID 3029) with the genes TUBB4A, 
CYFIP2, CERCAM and SBK1.

Differential expression analyses
Differential expression analysis of transcriptomics revealed 
44 differentially expressed (DE) genes: ten were upregulated 

and 34 downregulated after CPT (Fig.  3B). Assessing the 
protein product of the DE genes, revealed an enrichment for 
the UniProt description for lipid transporting (FDR = 0.02) 
and anion exchange proteins (FDR = 0.03). Several of the DE 
genes correlated significantly with one or more metabolites 
(FDR < 0.05), of which putative chemical structural annota-
tion at a level 2–3 could be retrieved for eight metabolites, 
two acylcarnitines, two amino acids, a carnitine, a fatty 
alcohol, a dicarboxylic acid and a glycosylated molecule: 
CENPC with oleoylcarnitine-C7H14 (ID 3853), KLC2 and 
NEMF with creatine (ID 2043), MFSD2A with carnitine (ID 
5), PDK4 with O-Acetylcarnitine (ID 11), RPGR with a fatty 
alcohol structural analogue (ID 9097), a glycosylated mole-
cule (ID 1279) and 5-amino-2-(cyclohexanecarbonylamino)-
5-oxopentanoic acid (ID 6394), and SMPD3 with a 
dicarboxylic acid structural analogue (ID 15,291).

Differential expression analysis of the metabolomics 
data revealed 21 DE metabolites, all were downregu-
lated after CPT (Fig. 3 A). Among these 21 metabolites, 
partial putative chemical structural annotation could be 
retrieved for 14 metabolites at an annotation level 2–3 
(Additional file  1). Eight metabolites could be anno-
tated through GNPS spectral library matching, manual 
annotation propagation throughout the network and 

Gene

DIABLO correlation
(score > 0.8)
Chemical structural relatedness 
(spectral similarity score > 0.7)

Metabolite correlated to gene

Metabolite chemically structurally related 

Arginine
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C22H36O3
[M+H]
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KCNG1 CDYL2

FAM129C ST5ANKRD24

C23H48NO7P
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C21H44NO7P
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C23H46NO7P

[M+H]
m/z 480.3091

GLYCEROPHOSPHOLIPIDS

C26H54NO7P
[M+Na]

m/z 546.3529

C24H50NO7P
[M+Na]

m/z 518.3214

CSGALNACT1

motif_267
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Nitrogen containing substructure

Unknown

Unknown

Substructural motifs

Fig. 2  Network of correlating genes and metabolites, detected by DIABLO. Genes in blue, metabolite IDs in red
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SIRIUS + CSI:FingerID in silico structure annotation with 
an annotation level 2 [35], including three amino acids 
(tyrosine, methionine, creatine), one indole (tryptophan) 
and one acylcarnitine (propionylcarnitine). Six metabo-
lites were indicative of steroid, tryptophan, acylcarnitine, 
glycerophospholipid, bile acid and phenylalanine struc-
tural analogues respectively. Several of the annotated 
metabolites were significantly correlated with transcrip-
tomics (FDR < 0.05), i.e. tyrosine (ID 4) was correlated 
with MMAB (r = 0.63), creatine (ID 2043) with LIPE 
(0.67), ZBTB32 (0.66), CPNE5 (0.65) and more, oleoyl-
carnitine-C7H14 (ID 3853) with IGFBP2 (r = 0.63) and 
CENPC (r = -0.62, FDR = 0.03), a glycerophospholipid 
structural analogue (ID 5380) with GADD45G (0.66), 
SCARF1 (0.66), NDST1 (0.64), and lastly, a acylcarnitine 
structural analogue (ID 5479) with KCNH2 (0.61).

Discussion
In this study we show the potential of multi-omics data 
integration in pain research, using samples taken before 
and after a cold pressor test (CPT). By analyzing data at 
a systems-level instead of only at feature-level we showed 
that ‘omics levels discriminate the time points before and 
after CPT better than conventional physiological meas-
ures. Over and above, we point to clusters of features 
which differ between the two time points, indicating that 
integration of ‘omics levels has a great potential to iden-
tify relevant molecular mechanisms.

The CPT has been used in research to investigate both 
pain response and cardiovascular response. Though a 
significant raise in systolic blood pressure was present 
after CPT, clustering analysis with PCA or PLS was not 

able to distinguish the two time points. Furthermore, 
when integrating the physiological measures with other 
data levels, the physiological measures were not con-
tributing to the model in DIABLO and made predic-
tion of the time points less accurate. This indicates that 
changes, i.e. effect sizes, in physiological measures dur-
ing the CPT are small and/or our sample size was too 
small to discriminate the time points due to interindivid-
ual variation using PCA or PLS. Moreover, the physio-
logical measures do not provide information on involved 
molecular mechanisms.

Common and complex traits are caused by environ-
mental and genetic factors, and incorporation of the 
different ‘omics layers provides a more comprehensive 
understanding of the trait [37]. Partial Least Squares 
(PLS) analysis, a multivariate dimensionality reduction 
approach, has been developed recently allowing ‘omics 
analyses on systems-level. Importantly, it can handle 
multicollinearity of the features, which often occurs with 
metabolomic data [38]. PLS incorporates the relation-
ships between features, reduces data dimensionality and 
provides information on which features are driving the 
biological signal. It has been advanced to PLS with dis-
criminant analysis (PLS-DA), enabling prediction of cat-
egorical values and to sparse PLS-DA (sPLS-DA) which 
enables the selection of discriminating values [30]. To 
simplify: where PCA reduces dimensionality by detect-
ing components that preserves as much of the variance 
in the data, PLS-DA preserves as much of the covariance 
between the data and phenotype of interest [39]. In the 
present study, we show the potential of sPLS-DA: both in 
transcriptomics and metabolomics we were not able to 
discriminate the time points using PCA, while sPLS-DA 

Fig. 3  Two of the top differentially expressed metabolites (A) and genes (B) before vs. after cold pressor test (CPT)
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significantly distinguished the time points and detected 
features explaining this differentiation.

A challenge of untargeted metabolomic analysis is the 
incomplete chemical structural annotation; on aver-
age only 2–5% of all mass spectra collected in a typical 
LC-MS/MS experiment can be matched to known mol-
ecules [40]. Using a combination of several recent mass 
spectral data mining tools, we were able to annotate 
chemical structures or classes for almost 50% of our spec-
tra of interest, corresponding to an annotation level 2–3 
according to the Metabolomics Standard Initiative [35] 
(Additional file 1). Furthermore, we showed that annota-
tion of metabolites can be enhanced by integration with 
transcriptomics data. For example, further evidence for 
annotation of three unknown metabolites could be col-
lected based on their correlation with CSGALNACT1: 
metabolomic mass spectral annotation suggested lipid 
and sugar substructures, but based on the integration 
with transcriptomics data, we could propose a structural 
hypothesis supporting glycophosphatidylinositol lipids.

The CPT affects many different molecular mecha-
nisms, e.g. stress/pain reaction and cardiovascular 
responses. Several analyses showed the involvement of 
lipid transport/metabolism. One of the DE genes pre-
sent in the lipid transport pathway, a pathway signifi-
cantly overrepresented in several transcriptomic analyses 
in this project, is MFSD2A. It correlated with carnitine, 
a metabolite playing an important role in transporting 
fatty acids into and out of the mitochondrion [41]. Lipid 
metabolism has a key role in pain mechanisms [42, 43] 
and cardiovascular pathways [44, 45]. Closely related is 
the regulation of glucose by insulin. One of the DE genes, 
PDK4, significantly correlated with O-acetylcarnitine. 
The expression of PDK4 is regulated by, among others, 
insulin [46]. Furthermore, PDK4 inhibits the pyruvate 
dehydrogenase complex, which increases the influx of 
acetyl-coA from beta-oxidation into the Krebs cycle (and 
in turn, slowing glycolysis). Acetyl-L-carnitine together 
with coenzyme A (CoA) converts into acetyl-CoA, 
which is involved in insulin sensitivity [47]. Among the 
DE metabolites we found carnitine and carnitine-related 
metabolites. One acylcarnitine correlated with IGFBP2, 
encoding an insulin-like growth factor binding protein. 
Thus, both metabolites and genes point to the regulation 
of insulin during CPT. Furthermore, catecholamines, also 
found among the DE metabolites, are known to play a 
key role in stress response [48].

In conclusion, we here show the potential of multi-
omics in pain research on both feature- and systems-
level. Regardless of the small sample size, a high 
predictive ability was found for both metabolomics, 
transcriptomics, and their interaction. However, a 

replication cohort is required for validation. We sug-
gest that future research, investigating pain and/or 
vascular response, considers investigation of ‘omics 
levels. Despite the fact that it’s in its infancy and the 
present study is, therefore, of a pioneering type, multi-
omics analyses are certain to further improve insight 
into biological mechanisms nearby future.
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