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Abstract 

Background: Rectal cancer (RC) is one of the most common malignant tumors. Ferroptosis is an iron‑dependent 
form of cell death, which plays an important role in various cancers. However, the correlation between ferroptosis‑
related genes (FRGs) and prognosis in RC remains unclear.

Methods: Gene expression data from The Cancer Genome Atlas Rectum adenocarcinoma (TCGA‑READ) and 
GSE87211 were downloaded. Clustering and functional enrichment were evaluated. A FRGs risk score was established 
based on the univariate Cox analysis and the Least absolute shrinkage and selection operator (LASSO) analysis. K‑M 
analysis and ROC analysis were conducted to determine prognostic values. qRT‑PCR was performed to validate levels 
of mRNA expression. Multivariate Cox analysis was used to build a prognostic prediction model based on the risk 
score.

Results: Based on FRGs, RC patients were grouped into two clusters. In the functional enrichment of differentially 
expressed genes between the two clusters, immune‑related pathways dominated. A novel FRGs signature with 14 
genes related to the overall survival (OS) of RC was established. qRT‑PCR of the 14 genes identified TP63, ISCU, PLIN4, 
MAP3K5, OXSR, FANCD2 and ATM were overexpressed in RC tissue; HSPB1, MAPK1, ABCC1, PANX1, MAPK9 and ATG7 
were underexpressed; TUBE1 had no difference. The high‑risk group had a significantly lower OS than the low‑risk 
group (P < 0.001), and ROC curve analysis confirmed the signature’s predictive capacity. Multivariate analysis demon‑
strated that the risk score and age were independent prognostic factors.

Conclusion: A novel FRGs model can be used to predict the prognosis in RC, as well as to guide individual treatment.
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Introduction
Colorectal cancer (CRC) is the third most prevalent 
cancer worldwide, and rectal cancer (RC) accounts 
for approximately 40% of all CRCs [1]. RC is the eighth 

leading cause of cancer-related mortality globally, with 
about 339,022 deaths in 2020 [2].

Due to the popularization of digestive endoscopy and 
the development of MRI, endoscopic ultrasound and 
other technologies, early diagnosis of RC has been greatly 
improved [3, 4], and the method of treatment has also 
been developed from a single TME (total mesorectal 
excision) radical operation to a multidisciplinary com-
bined treatment modality including neoadjuvant chemo-
radiotherapy (nCRT) along with organ-sparing surgery 
[5]. However, the prognosis of RC remains unsatisfactory. 
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Despite nCRT combined with radical surgery and adju-
vant chemotherapy, the long-term distant metastasis rate 
after surgery can still reach 30% [6], and the 10-year sur-
vival rate may be below 50% [7].

Some molecular biological diagnostic techniques have 
been applied to diagnose, treat and predict the progno-
sis of RC, such as monitoring circulating tumor DNA 
(ctDNA) expression levels to predict the prognosis [8], 
detecting UGT1A1 gene polymorphisms to predict the 
chemotherapy sensitivity [9], detecting microsatellite 
instability to predict the efficacy of immune checkpoint 
inhibitors (ICI) [10]. With the ultimate goal of improv-
ing the patient’s prognosis, these technologies can make 
the treatment of RC more accurate. Hence, an in-depth 
discussion of the diagnosis and treatment of RC at the 
molecular level is the current research hotspot and the 
direction of future development. We need to further 
explore molecular targets for the diagnosis and treatment 
of RC. In addition, we need to provide novel methods for 
the diagnosis, treatment, and prognostic prediction of 
RC patients through various mechanisms.

Ferroptosis is an iron-dependent programmed cell 
death pattern characterized by the accumulation of lipid 
peroxides, proposed by Stockwell et al. in 2012 [11]. The 
core molecular mechanism of ferroptosis includes regu-
lating the balance between oxidative damage and anti-
oxidant defense, which requires the precise regulation 
of ferroptosis-related genes (FRGs) and their expres-
sion products, and this balancing process also greatly 
affects the occurrence and development of tumor cells 
[12]. Numerous studies have explored the relationship 
between ferroptosis and malignant tumors at the genetic 
level, such as trying to treat renal clear cell carcinoma by 
glutathione peroxidase 4 (GPX4)-dependent ferropto-
sis [13], inhibiting ALOX5 may promote ferroptosis in 
pancreatic ductal adenocarcinoma [14], SLC7A11-medi-
ated cystine uptake inhibits ferroptosis in breast cancer 
cells [15] etc. Based on a large number of studies, some 
researchers have summarized the related literature 
on ferroptosis, and classified the genes involved into a 
database [16]. This may provide better support for our 
research on the mechanism of ferroptosis.

The clinical application of ferroptosis focuses on 
targeting the expression of some FRGs to specifically 
induce ferroptosis in tumor cells, thus obtaining anti-
cancer effects [17, 18]. In order to obtain detailed infor-
mation about a target, it is usually necessary to perform 
bioinformatics analysis to determine whether tumor 
tissue differs from normal or paracancerous tissues. 
In CRC, there are some studies discussing the role of 
FRGs, for example, activation of ATF3 may promote 
ferroptosis by inhibiting the  Xc− system [19]; CDKN2A 
sensitizes cancer cells to ferroptosis by downregulating 

SLC7A11 [20]. Some studies also use a set of FRGs to 
develop a risk model for predicting the prognosis of 
CRC [21, 22]. However, such studies on ferroptosis and 
RC alone are lacking.

It is necessary for us to analyze FRGs in RC, find fer-
roptosis-related markers, and evaluate their prognostic 
value, so as to provide reference for further basic research 
and clinical translation.

Materials and methods
Data source
The Cancer Genome Atlas (TCGA) (https:// portal. 
gdc. cancer. gov/) contains 167 rectum adenocarcinoma 
(READ) tumor samples and GSE87211 acquired from 
Gene Expression Omnibus (GEO) (https:// www. ncbi. 
nlm. nih. gov/ geo/) which include 196 RC patients were 
used as training set and external validation sets, respec-
tively. We obtained human FRGs from the FerrDB data-
base (http:// www. datjar. com: 40013/ bt2104/). The Human 
Protein Atlas (HPA) (https:// www. prote inatl as. org/ 
about/ downl oad) was used to verify the immunohisto-
chemical (IHC) staining of genes.

Clustering and identification of differentially expressed 
genes (DEGs)
The ConsensusClusterPlus R package [23] was used to 
perform unsupervised clustering and divide the RC into 
two clusters according to the FRGs. This method is based 
on an algorithm called consensus clustering, which can 
provide quantitative evidence for determining the num-
ber of potential clusters within the RNA-seq data. The 
t-distributed stochastic neighbor embedding (t-SNE) 
analysis was applied based on FRGs to visualize the data 
in two dimensions with the Rtsne and ggplot2 packages 
[24]. Then, the limma R package [25] was used to analyze 
the ferroptosis-related DEGs (FRDEGs) between these 
two groups. FRDEGs were identified based on P value 
< 0.05 and the absolute value of Fold Change > 1 (|Log-
2fold change| > 1). Volcano plots and a Venn diagram 
were drawn with the ggplot2 R package. The heat map 
was generated by the pheatmap R package.

Gene ontology (GO) and Kyoto encyclopedia of genes 
and genomes (KEGG) analysis
GO analysis, including biological process (BP), cellular 
composition (CC) and molecular function (MF), was per-
formed for FRDEGs characteristics using the clusterPro-
filer R package [26]. We also used this package to analyze 
the functional enrichment of the FRDEGs in KEGG path-
ways [27].

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.datjar.com:40013/bt2104/
https://www.proteinatlas.org/about/download
https://www.proteinatlas.org/about/download
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Establishment and validation of the risk score based 
on the FRGs
The univariate Cox regression analysis was performed to 
determine the FRGs with the prognostic value, and the 
cutoff p-value was set at 0.05. Then, least absolute shrink-
age and selection operator (LASSO) regression was per-
formed to further screen relevant key genes. Ten-fold 
cross-validation was used to select the most suitable 
model parameters λ. Next, we used these key genes to cal-
culate a risk score, which was obtained using the formula: 
risk score = (βA × Gene A expression) + (βB × Gene B 
expression) … + (βN × Gene N expression). According 
to the median risk score, RC patients were divided into 
two groups: the low-risk group and the high-risk group. 
The survival differences between the low- and high-risk 
groups were compared through Kaplan-Meier (K-M) 
analysis. In addition, we also performed receiver operat-
ing characteristic (ROC) analysis to access the survival 
predictive ability of this risk score. The GEO dataset was 
used as a validation group to verify the above outcomes.

Quantitative real‑time PCR (qRT‑PCR)
qRT-PCR was performed on 10 pairs of RC tissues and 
adjacent normal tissues to validate the mRNA expres-
sion levels of the 14 signature genes. Consent forms were 
obtained from each patient for the collection and analysis 
of tissue samples. The study was approved by the Peking 
Union Medical College Hospital ethics review boards. 
We immediately froze and stored the tissues in liquid 
nitrogen after extracting them. Total RNA was extracted 
from the sample tissues via Trizol lysate (Thermo Fisher 
Scientific), followed by reverse transcription to cDNA. 
qRT-PCR was carried out using the CFX96 system 
(BIO-RAD CFX96; BIO-RAD Laboratories, Inc., Her-
cules, CA, USA). GAPDH served as an internal control. 
Relative expression levels were quantified by the Ct  (2−
ΔΔCt) method, and the mean value was used as the final 
experimental result for replicated wells. All procedures 
were carried out in accordance with the manufacturer’s 
instructions.

Gene set enrichment analysis (GSEA)
To explore the different KEGG pathways between high- 
and low-risk groups, GSEA was conducted with the 
Molecular Signatures Database (MSigDB). Pathways with 
an adjusted P < 0.05 were identified as significant enrich-
ment pathways in various risk groups.

Evaluation of immune microenvironment character-
istics, immune checkpoint related characteristics and 
chemotherapy drugs’ sensitivity.

xCELL [28] algorithm was used to estimate the abun-
dance scores of 64 immune cells per sample. Tumor 

mutation burden (TMB) was calculated according to 
the mutation information from TCGA READ cohort. 
The TMB estimate for each sample is equal to the total 
mutation frequency/38, since 38 Mb is routinely taken 
based on the length of the human exon. To predict the 
effect of immune checkpoint blockade therapy, the 
expression of 34 potential immune checkpoint genes 
was analyzed. Furthermore, the Tumor Immune Dys-
function and Exclusion (TIDE) (http:// tide. dfci. harva rd. 
edu/) algorithm was used to estimate the ICIs response 
of RC patients from TCGA cohort [29]. The pRRophetic 
R package [30] was used to evaluate the sensitivity of 
chemotherapy drugs. Compare the above characteristics 
of high- and low-risk groups for diagrams.

Establishment of the prognostic model
Univariate and multivariate Cox regression analyses were 
performed to establish the prognostic model based on 
the risk score and other clinicalpathological characteris-
tics (age and TNM stage) of the patients. We constructed 
a nomogram to predict the overall survival (OS) of RC 
patients in 1-, 3- and 5-year according to the prognostic 
model. Then, we used the median total points for each 
patient based on this nomogram, to divide patients into 
high-risk and low-risk groups. The K-M curve was plot-
ted and ROC analysis was carried out at 1-, 3- and 5-year 
of survival. Next, calibration curves were used to esti-
mate whether the predicted survival results of the nomo-
gram (1-, 3- and 5-year survival) were close to the actual 
results.

Statistical analysis
All analyses were performed using R version 4.1.3 
(https:// www.r- proje ct. org/) and its appropriate pack-
ages. Univariate, LASSO and multivariate Cox regression 
analyses were conducted to build models. Log-rank test 
was used in the K-M analysis. Two groups were adjusted 
by the Wilcoxon test and the p-value was corrected by 
Benjamini and Hochberg (BH) test. Two-sided P <  0.05 
indicated statistical significance.

Results
FRGs were clustered in patients with RC, followed by 
the identification of DEGs and functional enrichment 
analysis.

Cluster analysis of TCGA READ gene expression data 
using FRGs can divide RC patients into two clusters 
(Cluster 1 and Cluster 2). Visualization of the two groups 
after dimensionality reduction was shown in Fig. 1(a). We 
conducted the subsequent analysis based on two clusters, 
and also provided consensus matrix heatmaps of 3 to 9 
clusters for readers’ reference (Supplementary Fig. 1). We 
obtained 822 DEGs, 263 genes were up-regulated and 

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://www.r-project.org/
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559 were down-regulated (Fig. 1(b)). The heatmap of the 
top 10 up-regulated and top 10 down-regulated genes 
was shown in Fig. 1(c).

The results of the GO enrichment analysis were pre-
sented in Fig.  2(a-c), which showed the enrichment of 
the 20 most significant pathways (ranked according to 
the adjusted p-value) in BP, CC and MF respectively. Dif-
ferential genes were enriched in immune-related path-
ways in each facet, and were additionally associated with 
phagocytosis, transmembrane transport, GABA recep-
tors, ion channels etc. The result of the KEGG enrich-
ment analysis was shown in Fig.  3. As with the GO 
enrichment analysis, differential gene expression was 
associated with immune pathways using KEGG enrich-
ment analysis. This analysis also found associations 
with PPAR, retinol metabolism, P450 enzymes and drug 
metabolism, and the nervous system.

Establishment of a risk score
Using univariate Cox regression analysis with FRGs in 
the training group, 16 genes were correlated with the 
OS of RC patients (P < 0.05) (Fig. 4). To prevent model 
overfitting, 14 genes (TP63, ISCU, HSPB1, PLIN4, 
MAPK1, ABCC1, MAP3K5, OXSR1, PANX1, MAPK9, 
FANCD2, ATM, TUBE1 and ATG7) were selected 
by LASSO regression (Figs.  5(a) and 5(b)). When the 
minimum λ value was 0.002521672, the following risk 
score formula was obtained: Riskscore = (5.076640326) 
* TP63 + (2.175090008) * ISCU + (0.018180284) * 
HSPB1 + (0.593316672) * PLIN4 + (0.155545632) * 
MAPK1 + (0.136338804) * ABCC1 – (0.271718945) * 
MAP3K5 + (0.670705631) * OXSR1 – (0.266461901) 
* PANX1 – (0.928347939) * MAPK9 – (0.230410588) 
* FANCD2 – (1.069047524) * ATM – (1.559344596) * 
TUBE1 – (1.51520076) * ATG7. Based on the median 

Fig. 1 a Clustering tumor samples into two classes based on FRGs in RC. b The volcano plot for the differential expression analysis according to 
different clusters. c The heatmap of the top 10 up‑regulated and down‑regulated FRGs
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Fig. 2 a‑c BP, CC and MF of GO analysis
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Fig. 3 (A) KEGG enrichment analysis
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of the risk score, we separated the cases into two 
groups: high-risk and low-risk groups (Fig.  5(c)). The 
risk distribution plot revealed that the high-risk group 
had significantly higher mortality and shorter OS 
than the low-risk group (Fig.  5(d)). The K-M curve 
indicated that the high-risk group had a significantly 
worse OS (P < 0.001) with a hazard ratio (HR) of 8.36 
(95%CI 3.95–17.7) (Fig.  5(e)). The area under curves 
(AUCs) of 1-, 3-, and 5-year OS were 0.83, 0.813 and 
0.959 according to ROC curves (Fig. 5(f )).

Validation of the risk score using the GEO cohort
We then evaluated the prognostic efficiency of the risk 
model by analyzing the data of RC from the GEO data-
set (GSE87211). The distribution of risk scores and 
survival status in the dataset is presented in Fig.  6(a) 
and 6(b). Likewise, as the risk score increased, the 
number of deaths also increased. Similar to the results 
from the TCGA cohort, the high-risk group had a sig-
nificantly poorer OS in the GEO dataset (P = 0.0381) 
with a HR of 2.26 (95%CI 1.08–4.74) (Fig.  6(c)). The 
AUCs for 1-, 3- and 5-year OS were 0.623, 0.717 and 
0.673, respectively, in the GEO dataset (Fig. 6(d)).

IHC differences using the HPA database
To further confirm the importance of the 14 FRGs in the 
risk score, HPA database was used to compare their pro-
tein expression in non-cancerous and RC tissues. Accord-
ing to Fig. 7, only ATM was highly expressed in RC tissue 

as compared to normal rectal tissue. In contrast, HSPB1, 
MAPK1, ABCC1, PANX1, MAPK9 and ATG7 were 
downregulated in RC. The protein levels of TP63, ISCU, 
PLIN4, MAP3K5, OXSR1, FANCD2 and TUBE1 had no 
significant changes between RC and normal rectal tissue.

qRT‑PCR
In RC tissue, the expression of TP63, ISCU, PLIN4, 
MAP3K5, OXSR, FANCD2 and ATM was significantly 
higher than that of normal tissue. In contrast, the expression 
of HSPB1, MAPK1, ABCC1, PANX1, MAPK9 and ATG7 
was significantly lower than that of normal tissue. There was 
no significant difference in the expression of TUBE1. (Fig. 8).

GSEA
The pathways of ribosomes, oxidative phosphorylation, 
and arachidonic acid metabolism were mainly enriched 
in high-risk groups. In contrast, the pathways of DNA 
replication, homologous recombination, RNA degrada-
tion, cell cycle and spliceosome were mainly enriched in 
the low-risk group (Fig. 9).

Prognostic FRDEGs had minor effects on the immune 
microenvironment of RC
We compared immune infiltration by xCELL between 
patients in the low- and high-risk groups and observed 
that the infiltration levels of  CD4+ Tem,  CD8+ naive 
T-cells, mast cells, monocytes, NK cells, Tgd cells, Th2 
cells were significantly different (Fig. 10(a)). There was no 

Fig. 4 The univariate Cox regression analysis of the training group show 16 FRGs were correlated with OS
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statistical difference in TMB between the high- and low-
risk groups (Fig. 10(b)). The TIDE analysis data showed 
that the high-risk group had a statistically larger dysfunc-
tion score than the low-risk score, while the exclusion 
score had no difference (Fig. 10(c) and (d)). In the evalu-
ation of 34 immune checkpoint gene expressions, only 
CD155 was significantly different (Fig. 10(e)).

Analysis of the relationship between the risk model 
and chemotherapy
The results showed that there were some chemotherapeutic 
drugs with significantly different IC50s between the high- 
and low-risk groups, among which the more sensitive drugs 
in the high-risk group were: AS605240, CI-1040, QS11, 
OSI-027, MK-2206, Cetuximab and MP470 (Fig. 11).

Fig. 5 a Screening for the best LASSO model parameter λ. b Variable number change alongside different λ. c Distribution of risk scores. d Survival 
status of patients with different risk scores. e K‑M plot of the training dataset. f The ROC curves of 1‑, 3‑, and 5‑year OS
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Construction of the nomogram
Based on the univariate and multivariate Cox regres-
sion analysis of the risk score and clinical traits (age and 
TNM stage) (Fig. 12(a) and (b)) in the training cohort, we 
built a prognostic nomogram to predict 1, 3 and 5-year 
OS probabilities of RC patients (Fig. 12(c)). The calibra-
tion curves demonstrated that the model’s predictions of 
1, 3 and 5-year OS probabilities were favorably consistent 
with the ideal predictions (Fig. 12(d-f )).

Discussion
RC is a dangerous malignant tumor that threatens human 
health. At present, the efficacy of comprehensive treatment 
needs to be improved. Many molecular mechanisms are 
still being explored, and many reasons for the occurrence 
and development of RC are still unclear. Ferroptosis is an 
iron-dependent form of cell death. In the field of malignant 
tumors, people hope to inhibit tumor development by pro-
moting ferroptosis in tumor tissue, and providing new tar-
gets and a pharmacological basis for tumor therapy.

In this study, the risk score of FRGs in RC was estab-
lished by analyzing the transcriptome, clinical informa-
tion, and survival information of TCGA READ. A risk 

prediction model was built on the basis of the risk score, 
combined with multivariate Cox analysis. The model can 
effectively predict the 1-, 3- and 5-year OS of RC, provid-
ing a potentially useful tool for clinical practice and fur-
ther mechanism research.

First, we performed a cluster analysis on TCGA 
READ samples from the perspective of FRGs. The clus-
tering results were divided into two categories, mean-
ing that the RCs were divided into two different types 
of ferroptosis gene expression patterns. We use GO 
enrichment analysis and find that these FRDEGs are 
mainly enriched in immunity in BP, CC and MF. This 
suggests that the differences in gene expression of fer-
roptosis in RC patients are closely related to immune 
responses. Many studies have shown that ferroptosis 
is closely associated with the tumor immune microen-
vironment [31]. The study by Fushun et  al. found that 
BEBT-908-induced ferroptosis results in upregulation 
of MHC I and activation of endogenous IFNγ signaling 
in tumor cells, thereby improving cancer immunother-
apy [32]. There will be further studies on ferroptosis 
and cancers, including RC, from the perspective of 
immunotherapy, in an effort to benefit patients.

Fig. 6 a Distribution of risk scores in validation dataset. b Survival status of patients with different risk scores. c K‑M plot of the validation dataset. d 
The ROC curves of 1‑, 3‑, and 5‑year OS in validation dataset
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To further investigate FRGs affecting RC, univariate 
Cox regression was applied to screen genes significantly 
associated with OS. Then, 14 genes were identified using 
LASSO regression to establish a risk score. We divided 
patients into the high- and low-risk groups by the risk 
score, and survival analysis indicated that the progno-
sis of the high-risk group was significantly worse. ROC 
analysis showed that this risk score was very accurate in 
predicting OS at 1, 3, and 5 years in the TCGA READ 
cohort. Therefore, we selected another RC cohort from 
GEO for external validation. The results showed that 
there was still a significant difference in OS between 
the two groups. The accuracy of OS prediction, though 
decreased, was still above 0.6, indicating that the risk 
score has reasonable extrapolation ability. We briefly 

checked the expression of the 14 genes encoded proteins 
through the HPA database, and found that only ATM was 
significantly highly expressed in RC tissue. Then, we per-
formed qRT-PCR analysis of these 14 genes with surgi-
cal specimens from our research center, and the results 
showed that TP63, ISCU, PLIN4, MAP3K5, OXSR, 
FANCD2 and ATM were significantly highly expressed in 
tumor tissue. The reasons for the different results of IHC 
and qRT-PCR include: the sensitivity of IHC is not high, 
resulting in the failure to identify proteins with signifi-
cant differences; there are some additional intervening 
factors in the process from transcription to translation, 
which need to be further explored.

We briefly introduce these 14 genes one by one. TP63 
encodes a member of the p53 transcription factor family, 

Fig. 7 IHC differences between RC tissue and normal tissue using the HPA database. a‑n IHC of the 14 genes in the risk score. *using colon tissue 
instead due to lack of rectal tissue
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Fig. 8 The relative expression levels of the 14 genes in normal and RC tissues by qRT‑PCR. (*P < 0.05; **P < 0.01, ***P < 0.001, ns not significant)

Fig. 9 GSEA of different KEGG pathways between high‑ and low‑risk groups
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Fig. 10 a Difference of immune cells’ scores between high‑ and low‑risk groups. b Differential analysis of immune checkpoint expression between 
two groups. c Difference of TMB between two groups. d‑e Difference of TIDE scores between two groups
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and studies have shown that up-regulation of TP63 may 
further activate the glutathione metabolic pathways, 
including GPX4, thus reducing cellular exposure to oxi-
dative stress, which supports the survival of tumor cells 
[33, 34]. ISCU encodes a component of the iron-sulfur 
(Fe-S) cluster scaffold. As an important redox center, 
iron-sulfur clusters have participated in numerous physi-
ological functions, particularly in the metabolism [35]. 
HSPB1 encodes a member of the small heat shock pro-
tein (HSP27), and its expression has been demonstrated 
to inhibit the ferroptosis process of tumor cells, thereby 
promoting tumor growth [36]. PLIN4 is linked to the 
formation of lipid droplets which store intracellular free 
fatty acids and inhibit lipotoxic cell death. Studies have 
shown that PLIN4 upregulation can increase the viability 
and drug resistance of tumor cells [37], and this process 
is likely to be closely related to the inhibition of ferrop-
tosis. MAPK1, MAP3K5 and MAPK9 belong to MAPK-
signaling systems which play major roles in tumors. They 
provide a connection between transmembrane signal-
ing and changes in transcription in response to different 
environmental signals such as cytokines, growth fac-
tors, oxidative stress and inflammation [38]. Ferroptosis 
of certain sensitive cell lines may be blocked by MAPK 
inhibition [18]. Tumors with sustained MAPK activation 
are capable of responding to in  vivo cystine depletion 
by inducing ferroptosis [39]. ABCC1 encodes multidrug 
resistance-associated protein 1 (MRP1) is a member of 
the superfamily of ATP-binding cassette (ABC) trans-
porters. Studies have shown that cells overexpressing 
MRP1 can disrupt GSH homeostasis and hinder GPX4 

activity, thereby making cells more susceptible to ferrop-
tosis [40]. OXSR1 encodes a serine–threonine protein 
kinase, and studies have shown that high OSR1 expres-
sion causes an increase in deaths specifically attributed 
to breast cancer and is related to an increase in lymph 
node metastasis [41]. However, the specific mechanism 
remains to be explored. PANX1 encodes an ATP-releas-
ing pathway family protein and PANX1 deletion protects 
against renal ischemia/reperfusion injury by attenuating 
the MAPK/ERK activation in a ferroptotic pathway [42]. 
FANCD2 encodes a nuclear protein involved in DNA 
damage repair. Studies have shown that it can protect 
against ferroptosis-mediated injury in bone marrow stro-
mal cells [43]. In addition, it is significantly overexpressed 
in lung cancer tissue and is associated with the prognosis 
of lung cancer [44]. ATM encodes an important cell cycle 
checkpoint kinase. ATM inhibition rescued ferroptosis 
by increasing the expression of iron regulators involved 
in the storage and export of iron [45]. TUBE1 encodes a 
tubulin superfamily member that was included in a fer-
roptosis prognostic model of skin cutaneous melanoma 
[46]. ATG7 encodes an activation enzyme that is essen-
tial for autophagy and cytoplasmic to vacuole transport 
[47]. Knockdown of ATG7 may limit erastin-induced fer-
roptosis with decreased intracellular ferrous iron levels, 
and lipid peroxidation [48]. In conclusion, most of these 
14 genes in the signature are closely related to ferroptosis 
and play an important role in tumor development, which 
merits further study.

We further analyzed the underlying mechanisms of dif-
ferent prognosis between high- and low-risk groups. The 

Fig. 11 Differential analysis of chemotherapeutic drugs’ response between high and low risk groups
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GSEA results indicate that the enrichment pathways of 
the two groups are different. The high-risk group tends 
to be enriched in energy metabolism such as ribosomes, 
oxidative phosphorylation, and arachidonic acid metabo-
lism. High-risk patients are likely to require the joint par-
ticipation of the above pathways due to the inhibition of 
ferroptosis. Analysis of both groups of immune micro-
environments found that, from the perspective of the 
ESTIMATE algorithm, the risk score was not correlated 
with the total number of immune cells and stromal cells. 

However, there are significant differences in the number 
of different types of immune cells in high- and low-risk 
groups from the perspective of the xCELL algorithm, and 
the high-risk group has significantly more CD8+ naive 
T cells and Th2 cells. In CRC, a substantial density of 
CD8+ T-cells in tumor tissue is generally associated with 
a favorable prognosis and sensitivity to chemoradiother-
apy and immunotherapy [49, 50], partly because CD8+ 
T cells enhance ferroptosis-specific lipid peroxidation in 
tumor cells and thereby improve the anti-tumor effect 

Fig. 12 a‑b Univariate and multivariate Cox analysis of the risk score and clinical traits in training dataset. c The prognostic nomogram predicting 1, 
3 and 5‑year OS. d‑f Calibration curves (grey line) of 1, 3 and 5‑year OS in risk model
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of ferroptosis [51]. CD8+ naive T cells in the high-risk 
group were notably overexpressed, and further research 
may be required to explore the evolution process from 
naive to maturity. The TMB of the high- and low-risk 
groups was basically the same, which just showed that 
the ferroptosis risk score in this study was independent 
of the TMB level, and RC patients were grouped from a 
distinct perspective. Regarding the TIDE score, the dys-
function score was significantly greater in the high-risk 
group. The TIDE score is primarily used to measure 
tumor immune escape from tumor immune dysfunction. 
In clinical practice, a higher TIDE score was associated 
with poorer immune checkpoint blocking treatment and 
shorter survival [29]. This result shows that the immune 
dysfunction in the high-risk group is more serious, indi-
rectly suggesting that there is a relationship between 
ferroptosis and the immune microenvironment, which 
needs to be further explored. Analysis of 34 immune 
checkpoints showed significantly lower expression of 
CD155 in the high-risk group, while no significant differ-
ences were found for the remaining checkpoints. CD155 
gene is overexpressed, which begins at an early stage in 
tumorigenesis and continues to late stages in colorectal 
carcinoma [52]. Besides, CD155 interacts with TIGIT 
on natural killer cells and T cells may transmit inhibi-
tory signals to immune cells [53]. The significantly lower 
expression of CD155 in the high-risk group suggests that 
this group of patients may have characteristics of insensi-
tivity to immunotherapy.

Combined with the analysis of drug susceptibility 
in the database, it was suggested that patients in the 
high-risk group were more sensitive to certain drugs. 
Although the difference in IC50 was not too large, it 
still provided us with an idea that these drugs may 
inhibit RC by enhancing ferroptosis. AS605240 is a 
kind of phosphatidylinositol 3-kinase (PI3K) gamma 
inhibitor. Studies have shown that oral administra-
tion of AS605240 in a mouse colitis model can reduce 
intestinal inflammation in mice through a number of 
immunomodulatory effects [54]. MK-2206 is an inhibi-
tor of Akt in the PI3K/Akt/mTOR pathway, and a mul-
ticenter phase II clinical study has demonstrated that 
its combination with neoadjuvant therapy can improve 
the pathological complete response (pCR) rate of HR-
negative and HER2-positive breast cancer [55]. OSI-027 
is an inhibitor of mTOR downstream of PI3K and can 
inhibit colon cancer cell growth through the 4EBP1/
eIF4E/PUMA pathway [56]. At present, studies have 
found that activation of the PI3K/Akt/mTOR signal-
ing pathway can inhibit the ferroptosis of tumor cells 
through lipid production [57]. It has been reported that 
PI3K inhibitors can induce immunogenic ferroptosis in 

tumor cells, thereby achieving anticancer effects [32]. 
Therefore, PI3K pathway inhibitors induce ferroptosis 
by affecting the tumor immune microenvironment, and 
have broad research prospects in the field of colorectal 
cancer treatment. CI-1040 is a kind of MAPK inhibitor. 
An early multicenter phase II clinical study to explore 
oral CI-1040 in the treatment of multiple cancer types 
showed unsatisfactory results [58], so this medicine is 
basically eliminated. MP470 is a kind of receptor tyros-
ine kinase inhibitor, now known as amuvatinib [59]. It 
was used in a phase II clinical study of platinum-refrac-
tory small cell lung cancer patients, and the efficacy was 
not satisfactory [60]. QS11 is a kind of small molecule 
synergist with Wnt-3a ligand in the activation of Wnt/
beta-catenin signal transduction [61]. A recent study 
on gastric cancer found that activation of the Wnt/
beta-catenin signaling attenuates cellular lipid ROS 
production and subsequently inhibits ferroptosis [62]. 
Therefore, from the perspective of ferroptosis, QS11 
may have the opposite effect. Studies have shown that 
the combined treatment of β-elemene and cetuximab is 
sensitive to KRAS mutant CRC cells by inducing ferrop-
tosis, which will hopefully provide a prospective strat-
egy for CRC patients with RAS mutations [63].

To further improve the clinical predictive value of the 
risk score, we combined common clinical prognostic fac-
tors (age and TNM stage) to construct a final prognos-
tic model, which is composed of the risk score and age. 
1-year, 3-year and 5-year OS were predicted, and the 
prediction accuracy was further improved compared 
with the risk score alone. We look forward to further 
discussion and promotion of the detailed mechanism 
of this model. In recent years, many clinical prognostic 
models have been built, involving various cancers and 
mechanisms [21, 64–66]. While the model presented in 
this study is still in its theoretical exploration stage, we 
hope that through this limited research it will provide a 
reference for more in-depth research on the mechanism 
of ferroptosis in the RC field in the future. There are 
also some obvious limitations in this study. Our cluster 
and DEGs analysis and subsequent risk model construc-
tion are two relatively independent parts. The former 
attempts to present different ferroptosis patterns in RC 
but is not discussed in detail. The latter is the main body 
of the article, which may confuse readers about the struc-
ture of this article. The data set selected for the bioinfor-
matic analysis is itself a very small subset of RC patients. 
This subset inherently suffers from limited extrapolation, 
although we obtained acceptable results with the valida-
tion set. The sample size included in qRT-PCR is limited. 
If the sample size increases, the expression level of its 
mRNA may change on this basis.



Page 16 of 18Shi et al. BMC Genomics          (2022) 23:764 

Conclusions
This study provides a risk score of FRGs for RC by ana-
lyzing the TCGA READ cohort from the perspective of 
FRDs, which can effectively distinguish the prognosis 
of two groups of patients and predict 1-year, 3-year and 
5-year OS. The 14 genes involved in this risk score may 
affect the occurrence and development of RC. It may also 
affect drug sensitivity from ferroptosis, immune infiltra-
tion and other aspects, providing a reference for further 
in-depth discussion. We constructed a more complete 
prognostic model combined with the clinical characteris-
tics of the patients, which enhanced the predictive ability 
of the risk score.
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