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Abstract 

Background:  A common issue in CRISPR-Cas9 genome editing is off-target activity, which prevents the widespread 
use of CRISPR-Cas9 in medical applications. Among other factors, primary chromatin structure and epigenetics may 
influence off-target activity.

Methods:  In this work, we utilize crisprSQL, an off-target database, to analyze the effect of 19 epigenetic descriptors 
on CRISPR-Cas9 off-target activity. Termed as 19 epigenetic features/scores, they consist of 6 experimental epigenetic 
and 13 computed nucleosome organization-related features. In terms of novel features, 15 of the epigenetic scores 
are newly considered. The 15 newly considered scores consist of 13 freshly computed nucleosome occupancy/posi-
tioning scores and 2 experimental features (MNase and DRIP). The other 4 existing scores are experimental features 
(CTCF, DNase I, H3K4me3, RRBS) commonly used in deep learning models for off-target activity prediction. For data 
curation, MNase was aggregated from existing experimental nucleosome occupancy data. Based on the sequence 
context information available in crisprSQL, we also computed nucleosome occupancy/positioning scores for off-
target sites.

Results:  To investigate the relationship between the 19 epigenetic features and off-target activity, we first conducted 
Spearman and Pearson correlation analysis. Such analysis shows that some computed scores derived from training-
based models and training-free algorithms outperform all experimental epigenetic features. Next, we evaluated the 
contribution of all epigenetic features in two successful machine/deep learning models which predict off-target activ-
ity. We found that some computed scores, unlike all 6 experimental features, significantly contribute to the predic-
tions of both models. As a practical research contribution, we make the off-target dataset containing all 19 epigenetic 
features available to the research community.

Conclusions:  Our comprehensive computational analysis helps the CRISPR-Cas9 community better understand the 
relationship between epigenetic features and CRISPR-Cas9 off-target activity.
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Background
CRISPR-Cas9 systems are powerful tools for site-
directed binding and mutagenesis across a wide vari-
ety of eukaryotic species  [1–7]. The single guide RNA 
(sgRNA) in CRISPR-Cas9 is highly programmable and 
easy to design. As a result, CRISPR-Cas9 has seen its 
use in many applications. Such applications include 
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targeted genome editing, modulation of gene expres-
sion [8–10], chromatin visualization [11, 12], epigenetic 
modifications  [13, 14], and chromatin reorganiza-
tion  [15]. Notably, Streptococcus pyogenes Cas9 is fre-
quently used due to its short 5’-NGG-3’ PAM sequence, 
which is commonly found in GC-rich mammalian 
genomes. Nonetheless, CRISPR-Cas9 systems are cur-
rently not widely adopted in medical applications, since 
potential off-target Cas9 endonuclease activity [16–18] 
may result in undesirable biological effects [19]. To bet-
ter understand off-target activity, various studies have 
sought to determine the different factors which influ-
ence off-target activity.

A potentially important factor which affects off-target 
activity is the hierarchical chromatin structure which may 
block off certain genomic regions. Specifically, previous 
experimental studies reported less CRISPR-Cas9 cleavage 
for target sites in heterochromatin compared to those in 
euchromatin in Cas9 mutagenesis experiments [20, 21]. A 
similar phenomenon with CRISPR-Cas9 binding activity 
is observed in dCas9 binding experiments [22–24]. Simi-
larly, chromatin accessibility was observed to positively 
correlate with CRISPR-Cas9 activity  [25, 26]. Chromatin 
state can be inferred by experimental epigenetic features 
such as DNase I hypersensitivity, CpG methylation and 
histone marks. These three features can be experimen-
tally measured by DNase-seq [27], reduced representation 
bisulfite sequencing (RRBS) [28, 29] and histone ChIP-seq 
screens  [30]. Because of this, various biological studies 
have used these experimental techniques for investigating 
the impact of the three epigenetic features (or scores) on 
off-target activity  [31]. In particular, DNase I hypersen-
sitivity and CpG methylation were observed to be highly 
indicative of dCas9 off-target activity [32]. However, CpG 
methylation was shown to indirectly contribute to off-tar-
get activity. This is because it is the DNA-binding methyl-
ation-associated factors which likely block Cas9 binding, 
rather than CpG methylation [20].

On the computational side, recent deep learning-based 
CRISPR-Cas9 off-target activity prediction tools  [33–35] 
have used epigenetic features to represent the chromatin 
state at off-target sites. Such features include CCCTC-
binding factor (CTCF, [36]), chromatin immunopre-
cipitation (ChIP, [37]), histone-3 lysine-4 trimethylation 
(H3K4me3, [38]), reduced representation bisulfite sequenc-
ing (RRBS, [28, 29]) and Deoxyribonuclease-I hypersensi-
tive sites sequencing (DNase-seq, [27]) assays. Available in 
crisprSQL [39], DNA:RNA ImmunoPrecipitation and high-
throughput sequencing (DRIP) is an epigenetic score which 
measures R-loop formation in the genome  [40, 41]. Nota-
bly, R-loops play a role in regulating chromatin states [42].

Alternatively, local chromatin structure can be defined 
as the nucleosome organization at the local region. 

Nucleosome organization can be described by nucleo-
some occupancy or nucleosome positioning. Nucleo-
some occupancy is defined as the cell and time-averaged 
probability that a given base pair participates in the 
nucleosomal DNA wrapping around any histone octamer. 
Nucleosome positioning is defined as the cell and time-
averaged probability that a given base pair sits at the 
center of any 147bp nucleosomal DNA [43]. Nucleosome 
occupancy is typically measured by Micrococcal Nucle-
ase digestion with deep sequencing (MNase-seq) [44, 45]. 
Various studies demonstrate that nucleosomes directly 
inhibit Cas9 binding and cleavage both in vitro and in 
vivo  [23, 31, 46, 47]. However, access to nucleosomal 
DNA can be partially recovered via chromatin remodel-
ling [23] and spontaneous nucleosome breathing [47].

In light of the above, we aim to conduct a compre-
hensive computational investigation on the impact of 
structural epigenetic features on CRISPR-Cas9 off-tar-
get activity. We use the Cas9 off-target activity database 
crisprSQL  [39] and a comprehensive set of computa-
tional tools in this study. By doing so, we find that several 
nucleosome organization-related features attain higher 
correlation with off-target activity compared to the exist-
ing experimental epigenetic scores. In particular, this 
correlation is significantly higher for two Block Decom-
position Method-based features  [48, 49]. We also build 
physically inspired off-target activity prediction models 
that are purely based on empirical free energy estimates 
of the sgRNA-DNA heteroduplex and epigenetic fea-
tures. This allows us to evaluate the impact of epigenetic 
features in the context of CRISPR-Cas9 activity model 
prediction. We find that said models take advantage of 
the computed nucleosome organization-related features 
but pay less attention to the commonly used experimen-
tal epigenetic scores.

Results
Spearman and Pearson correlation analysis
Figure  1 shows two heatmaps denoting the Spearman 
and Pearson correlations of off-target cleavage activ-
ity with 19 epigenetic features (see exact values in 
Supplementary Table  1). The 19 epigenetic features 
consist of 6 experimental epigenetic features (names 
bolded in the figure) and 13 computed nucleosome 
organization-related features. Heatmap correlations 
are calculated for target sites in human cell lines HeLa, 
K562, HEK293 and U2OS from the CRISPR-Cas9 
activity cleavage crisprSQL database  [39]. To investi-
gate whether correlation values vary between cell lines 
and genomic regions, heatmap correlations are dis-
played for all data, individual cell lines and gene/non-
gene body regions. The rightmost pie chart shows the 
cell line composition of the dataset used for analysis. 
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Overall, Spearman and Pearson correlations for the 19 
epigenetic features considered range between -0.5 and 
0.5. Only Nucleotide BDM and Strong-Weak BDM, 
i.e. BDM-based scores, exhibit highly positive cor-
relations when considering all cell lines. Specifically, 
Nucleotide BDM has Spearman and Pearson correla-
tions of 0.388 and 0.345, and Strong-Weak BDM has 
correlations of 0.423 and 0.310. Similar values are 
obtained for Nucleotide BDM and Strong-Weak BDM 
when considering cell lines individually. When filter-
ing off-target sites by gene body and non-gene body 

regions, similar Spearman and Pearson correlations are 
observed across all epigenetic features. This indicates 
that correlations are not dependent on whether off-
targets are in gene bodies. A similar trend is observed 
when considering each cell line separately (see Supple-
mentary Figs. 2-4).

Table  1 highlights the correlation coefficients for the 
experimental epigenetic features shown in Fig.  1. In 
the table, Spearman/Pearson correlations between the 
six experimental features and off-target cleavage activi-
ties in any human cell lines range between -0.1 and 0.1. 
MNase, which is indicative of nucleosome occupancy 
rather than nucleosome positioning, has a Spearman 
and Pearson correlation of 0.08 and 0.08, respectively. 
Similar values are obtained for the various MNase-seq 
data across HeLa, K562 and U2OS (see Supplementary 
Figs. 2, 3 and 4, respectively).

Figure  2 shows the violin and distribution plots for 
Nucleotide BDM, GC147, YR Scheme and MNase when 
splitting cleavage activities (CA) into three bins. These 
bins are CA = −4 , CA ≤ 2 and CA > 2 (see Supplemen-
tary Figs. 5 and 6 for all epigenetic features). In the left-
most column for Nucleotide BDM, most off-target sites 
with low Nucleotide BDM value fall under the lowest 
cleavage activity bin CA=−4 . The lowest cleavage activ-
ity datapoints are almost exclusively composed of aug-
mented datapoints with sequence alignment-derived 

Fig. 1  Heatmaps showing Spearman (left) and Pearson (middle) correlations between 19 epigenetic features and SpCas9 off-target cleavage 
activities. Red and blue colors represent positive and negative correlations, respectively. The 19 epigenetic features consists of six experimental 
epigenetic features (bolded) and 13 nucleosome organization-related scores. The first four rows in the heatmaps display cell line-specific 
correlations. The fifth and sixth row display correlations for off-target sites in gene body and non-gene body regions. The final row displays the 
overall correlation for the epigenetic features. (Right) Pie plot showing the dataset’s cell line composition including all cell lines that contribute 
more than 1% to the crisprSQL dataset

Table 1  Spearman and Pearson correlation values between 
SpCas9 off-target cleavage activities and each experimental 
epigenetic scores for the crisprSQL dataset used in Fig.  1. The 
experimental epigenetic scores are CTCF, DNase I, DRIP, H3K4me3, 
MNase and RRBS

Experimental Epigenetic 
Feature

Spearman Pearson

CTCF 0.07 0.06

DNase I 0.07 0.03

DRIP -0.06 0.08

H3K4me3 0.07 0.07

MNase 0.08 0.08

RRBS 0.02 0.01
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putative off-target sites. Such putative off-target sites are 
assigned the lowest cleavage activity value CA = −4 on 
the assumption that such sites have no off-target activ-
ity. Therefore, these datapoints do not carry experimen-
tally derived cleavage activity labels. In addition, these 
datapoints constitute the larger fraction (52%) of all data-
points. A similar phenomenon is observed for Strong-
Weak BDM (see Supplementary Figs. 5 and 6).

Machine/Deep learning‑based SHAP analysis
We saw that some computed nucleosome organization-
related features correlate with CRISPR-Cas9 off-target 
activity. As a result, we sought to determine whether the 
aforementioned features also show patterns in machine 
and deep learning off-target cleavage activity prediction 
models. We also sought to investigate the importance of 
said features without the influence of explicitly encoded 

Fig. 2  Violin (top) and distribution (bottom) plots for the epigenetic features with high Pearson correlation, namely Nucleotide BDM, GC147, YR 
Scheme and MNase. Cleavage activities (CA) are separated into three bins representing low ( CA = −4 , colored blue), medium ( CA ≤ 2 , colored 
orange) and high ( CA > 2 , colored green) cleavage activity. See violin and distribution plots for other epigenetic features in Supplementary Figs. 5 
and 6, respectively
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base pair identities. To achieve this, we built two models. 
The first model is an extreme gradient boosted (XGBoost) 
tree model. The second model is a convolutional neural 
network (CNN) model (see Supplementary Fig. 1 for neu-
ral network architecture). Both models take all 19 epige-
netic features and three binding energy scores as input 
and predict off-target cleavage activities. Included in 
crisprSQL, the three energy scores represent free energy 
estimates used for estimating the DNA-RNA heterodu-
plex formation’s free energy. These energy terms have 
been generated by using the CRISPRspec [50] biophysical 
interaction model, which provides various binding ener-
gies scores (called CRISPRspec binding energy scores). 
These binding energies scores are further explained in the 
Methods section (see CRISPRspec section). The XGBoost 
and CNN models expect nucleosome organization-related 
features (scores) at base-pair resolution (23 scores per 
target site). sgRNA-DNA sequences were not included as 
input to both models. This is to avoid the interference of 
sequence features with epigenetic features when comput-
ing feature importance scores after training. Instead, we 
included the sgRNA-DNA sequences-derived CRISPRspec 
binding energy scores. When testing on the held out 20%, 
the XGBoost model achieves a Spearman and Pearson cor-
relation of 0.419 and 0.617, respectively. The CNN model 
yields similar correlations, namely a Spearman and Pear-
son correlation of 0.424 and 0.594, respectively.

Next, we interpret the two model using SHAP (see 
Methods section) after training and evaluating the con-
tributions of each input feature. To evaluate a model, a 
randomly drawn test dataset containing 2000 points is 
used. Figure 3 and Supplementary Fig. 7 show the result-
ing feature-based SHAP summary plot and base pair res-
olution heatmap, respectively, for the trained XGBoost 
model. An analogous summary plot and heatmap for 
the CNN model can be found in Fig. 4 and Supplemen-
tary Fig. 8. In the two SHAP summary plots, the distri-
bution of SHAP value contributions is shown for every 
input feature present in the model. Model input features 
are ordered in decreasing SHAP feature importance. In 
other words, features at the top carry high SHAP feature 
importance, and features at the bottom carry low SHAP 
feature importance. In both SHAP summary plots, the 
SHAP feature importance of the six experimental epi-
genetic scores are not comparable to the nucleosome 
organization-related scores. In addition, the top five 
scores with highest SHAP feature importance include 
Nucleotide BDM and NuPoP (Affinity). These two fea-
tures display similar correlations between feature value 
and SHAP value across Figs.  3 and  4. Notably, low 
Nucleotide BDM values and high NuPoP (Affinity) val-
ues correspond to negative impact on off-target activity. 
As for the three CRISPRspec binding energy scores, they 

attain comparable SHAP feature importance to top-per-
forming nucleosome organization-related scores in both 
models.

Discussion
MNase-seq, a common genome-wide experimental tech-
nique, appear to be an attractive option for obtaining raw 
nucleosome occupancy data. In addition, nucleosome 
occupancy data may be indicative of CRISPR-Cas9 off-
target activity. On account of this, we sought to obtain 
MNase-seq data from NucPosDB  [58] where available 
for human cell lines. Nonetheless, we found MNase-seq 
data only for U2OS, K562 and HeLa in NucPosDB. In 
particular, MNase-seq data must be measured for each 
cell line of interest in order to curate sufficient data for 
analysis. This makes MNase-seq data cell-based and dif-
ficult to obtain. Such qualities are the opposite of com-
puted nucleosome organization-related scores, which are 
not only genome-wide but also easy to obtain and cell-
line independent.

The experimental features CTCF, DNase I, RRBS and 
H3K4me3 are commonly used as input features in multi-
ple state-of-the-art deep learning-based CRISPR-Cas9 off-
target activity prediction tools [33, 35, 59]. Despite this, we 
can see in Fig. 1 and Table 1 that BDM-based scores attain 
much higher Spearman and Pearson correlations with 
off-target cleavage activities. This is in contrast to the six 
experimental epigenetic features listed in Table  1, which 
do not strongly correlate with cleavage activity.

Scrutinizing the distributions in Fig. 2, we observe that 
most off-target sites with low Nucleotide BDM value fall 
under the lowest cleavage activity bin CA=−4 . Moreo-
ver, crisprSQL is augmented with sequence alignment-
derived putative off-target sites. Such putative sites are 
assigned the lowest cleavage activity value CA= −4 on 
the assumption that such sites have no off-target activity. 
As a result, among the putative sites, Nucleotide BDM 
is better at separating sites without activity from sites 
with activity, compared to other epigenetic features. The 
aforementioned observations can be explained by the 
correspondence between low Nucleotide BDM values 
and proximity to nucleosome dyad positions [49]. Since 
these positions are blocked by nucleosomes, they are 
inaccessible for Cas9 binding and cleavage, thus resulting 
in low off-target activity. This is a possible explanation 
on why these off-target sites have not been experimen-
tally identified as active. In practice, the application of 
Nucleotide BDM for data filtering can be useful when 
preparing data for CRISPR-Cas9 off-target model train-
ing. This is because such a filtering might help resolve 
any class imbalances between experimentally measured 
and putative off-targets. Moreover, Nucleotide BDM 
is a fundamental property of the 147bp nucleosomal 
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DNA context which is not dependent on any training 
dataset. Deeper understanding of why augmented data-
points (i.e., lowest cleavage activity datapoints) have 
no off-target activity is currently lacking. To the best of 
our knowledge, there has not been any existing target 
sequence-based measure that could separate augmented 

datapoints from experimentally-derived datapoints. Fig-
ure 2 indicates that low values of Nucleotide BDM can 
separate these augmented datapoints remarkably well 
compared to other similar measures.

In Figs.  3 and  4, the six experimental scores’ low 
SHAP feature importance demonstrates that they are 

Fig. 3  SHAP summary plot for the trained extreme gradient boosted (XGBoost) tree model. The model’s input consists of three CRISPRspec-derived 
energy terms, six experimental epigenetic scores (bolded), and 13 computed nucleosome organization-related scores. The three 
CRISPRspec-derived energy terms are ERNA-DNA , Ecorr

RNA-DNA
 and EgRNAfold. The six experimental epigenetic scores are CTCF, DNase I, DRIP, H3K4me3, 

MNase and RRBS. The 13 computed nucleosome organization-related scores are GC147 [51], W/S scheme, YR scheme [52, 53], Strong-Weak BDM, 
Nucleotide BDM [48, 49], NuPoP (Occupancy), NuPoP (Affinity), NuPoP (Viterbi) [54], nuCpos (Occupancy), nuCpos (Affinity), nuCpos (Viterbi) [55], 
VanDerHeijden [56] and LeNup (H3Q85C) [57]. The base pair-resolved SHAP contributions for each data point are summed for each computed 
nucleosome organization-related score
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inappropriate for informing off-target cleavage activity 
prediction models. This corroborates with the Spear-
man and Pearson correlation values in Table  1. The 
top five scores with highest SHAP feature importance 
include Nucleotide BDM and NuPoP (Affinity). The 
two features show similar correlations between feature 
value and SHAP value across the two plots. Notably, low 

Nucleotide BDM values and high NuPoP (Affinity) val-
ues correspond to negative impact on off-target activity. 
This observation corroborates the fact that such feature 
values often are signals of positioned nucleosomes. It fol-
lows that information in BDM-based scores and NuPoP 
(Affinity), alongside other nucleosome organization-
related scores, are well suited for informing off-target 

Fig. 4  SHAP summary plot for the trained convolutional neural network (CNN) model (see Supplementary Fig. 1 for architecture details). The 
model’s input consists of three CRISPRspec-derived energy terms, six experimental epigenetic scores (bolded), and 13 computed nucleosome 
organization-related scores. The three CRISPRspec-derived energy terms are ERNA-DNA , Ecorr

RNA-DNA
 and EgRNAfold. The six experimental epigenetic scores 

are CTCF, DNase I, DRIP, H3K4me3, MNase and RRBS. The 13 computed nucleosome organization-related scores are GC147 [51], W/S scheme, YR 
scheme [52, 53], Strong-Weak BDM, Nucleotide BDM [48, 49], NuPoP (Occupancy), NuPoP (Affinity), NuPoP (Viterbi) [54], nuCpos (Occupancy), 
nuCpos (Affinity), nuCpos (Viterbi) [55], VanDerHeijden [56] and LeNup (H3Q85C) [57]. The base pair-resolved SHAP contributions for each data 
point are summed for each computed nucleosome organization-related score
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cleavage activity prediction models. GC147’s importance 
as a feature in both machine learning models is in agree-
ment with latest findings  [60] that CRISPR-Cas9 bends 
DNA to read its sequence. Specifically, DNA bendabil-
ity is very highly correlated with GC content  [61]. Such 
a fact could explain the findings of the SHAP summary 
plot, namely that high GC147 has a positive impact on 
(off-)target cleavage activity. The three CRISPRspec bind-
ing energy scores contribute significantly towards model 
predictions in both models, which confirms these scores’ 
usefulness for CRISPR-Cas9 off-target activity predic-
tion. Despite interesting structures in the heatmaps of 
Supplementary Figs. 7 and 8, a thorough analysis of such 
structures is beyond the scope of this study. In off-target 
prediction, the most suitable use case for Nucleotide 
BDM and other relevant measures is to incorporate them 
in ‘complete’ deep learning models. Together with meas-
ures like NuPoP (Affinity) and GC147, they can be com-
bined with the guide-RNA-(off-)target DNA sequence 
pair as input to such models.

Interestingly, only BDM-based scores have notice-
able correlation with (off-)target activities. However, the 
NuPoP (Affinity) score has comparable SHAP feature 
importance to Nucleotide BDM score in both machine 
learning models considered in this work. Supplemen-
tary Fig.  9 shows that the correlation between NuPoP 
(Affinity) and Nucleotide BDM is relatively low. This 
observation agrees with the finding that only one of the 
two scores (Nucleotide BDM) correlates with (off-)target 
activity. However, it does not alone explain why the other 
score, NuPoP (Affinity), is still a comparably impactful 
feature in both machine learning models. To investigate 
this further, we obtained SHAP dependence plots for 
both models, which include NuPoP (Affinity) and Nucle-
otide BDM (see Supplementary Figs.  11 and 12). These 
plots show that a given NuPoP (Affinity) value can have 
different impact (importance) based on the correspond-
ing Nucleotide BDM value of a data point. This last obser-
vation explains why NuPoP (Affinity) does not noticeably 
correlate with (off-)target activity, yet is an important fea-
ture for both models, since they include NuPoP (Affinity) 
and Nucleotide BDM scores simultaneously.

Our results indicate that only a few out of 13 nucleo-
some organization-related scores show noticeable cor-
relation with (off-)target activity or are important for 
model predictions. Most of these high-importance fea-
tures ‘measure’ nucleosome affinity rather than nucleo-
some occupancy. Consequently, we speculate that the 
influence of high nucleosome affinity on Cas9 (off-)tar-
get activity exceeds that of high nucleosome occupancy. 
Such speculation is in concordance with the low impact 
of the NuPoP (Occupancy) score (see Figs.  3 and  4) on 
model predictions.

Conclusions
For all off-target sites featured in the crisprSQL Cas9 off-
target database, we obtained 19 epigenetic features, 15 
of which were newly considered. The introduced com-
puted features characterize nucleosome organization, 
and include features based on BDM-based or NuPoP 
(Affinity). We also considered six experimental epige-
netic features, namely CTCF, DNase I, DRIP, H3K4me3, 
MNase and RRBS. We showed that the computed fea-
tures exhibited considerably larger correlation with 
off-target cleavage activity when compared to the six 
experimental epigenetic features. Interestingly, only the 
features CTCF, DNase I, H3K4me3 and RRBS have been 
frequently used in deep learning-based off-target activity 
prediction models. As expected, nucleosome position-
ing negatively impacts off-target activity. This is shown 
by the low Nucleotide BDM scores assigned to putative 
off-target sites with no detectable off-target activity. We 
explain this phenomenon by the presence of positioned 
nucleosomes which inhibit Cas9 binding. Including 
empirical estimates of sgRNA-DNA heteroduplex bind-
ing energies as inputs, we constructed an XGBoost tree 
and a CNN model. The two models were used in order to 
gain feature importance values of all epigenetic features. 
Next, we created a SHAP summary plot for each model, 
with feature contribution quantified by the average SHAP 
feature importance value across data points. The plots 
showed GC147, Nucleotide BDM and NuPoP (Affinity) 
as features among the top five which contribute most to 
the model’s output in both models. Their importance in 
the two models are unlike the six experimental epige-
netic scores. We uploaded the off-target cleavage activity 
dataset used in order to make the experimental epige-
netic and computed nucleosome organization-related 
scores available for further research. This dataset can be 
found as a compressed Parquet file at https://​crisp​rsql.​
com/​downl​oads/​260520_​putat​ive_​nucle​osomal.​parqu​et.​
gz. For future work, computed scores could be combined 
with target sequence and binding energy features in more 
robust and complete CRISPR-Cas9 off-target activity 
prediction models. Notably, BDM-derived and NuPoP 
scores could be used in such models. It would also be 
fruitful to scrutinize whether BDM-derived and NuPoP 
(Affinity) are also predictive of off-target activity in other 
CRISPR-Cas systems.

Methods
crisprSQL
The crisprSQL database consists of experimental off-
target sites and cleavage activities from 15 human 
CRISPR-Cas9 off-target studies. In order to conduct a 
comprehensive investigation on the effect of epigenetics 
and nucleosomes on CRISPR-Cas9 off-target activity, we 

https://crisprsql.com/downloads/260520_putative_nucleosomal.parquet.gz
https://crisprsql.com/downloads/260520_putative_nucleosomal.parquet.gz
https://crisprsql.com/downloads/260520_putative_nucleosomal.parquet.gz
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utilize crisprSQL  [39]. crisprSQL is an up-to-date Cas9 
off-target database containing sequence and epigenetic 
information for over 25,000 gRNA-off-target pairs from 
various human and rodent cell lines. Different experi-
mental techniques were used to measure off-target activ-
ity in different studies. Consequently, we combine the 
experimental off-target cleavage activities from each 
study by applying a Box-Cox transformation. The trans-
formation is such that the resulting combined cleavage 
activity data approximates a Gaussian with mean = 0 
and standard deviation = 2 , as suggested in  [39]. Trans-
formed values were clipped to the [−4, 4] range, with 
cleavage activity values below the lowest reported assay 
accuracy of 10−5 set to −4 . We furthermore augment the 
sites in crisprSQL with those in the respective genome 
which have less than seven mismatches compared to any 
experimental data point. These data points are assumed 
to have no off-target activity ( CA = −4 ). Using the 
sequence alignment tool batmis for this  [62], we gener-
ate 226,682 augmented data points. This results in a total 
of 251,854 data points in our dataset. In summary, the 
above steps yield a crisprSQL-derived dataset which was 
augmented with putative off-targets.

Experimental nucleosome occupancy data
The NucPosDB database  [58] consists of experimen-
tal nucleosome positioning and occupancy data aggre-
gated from various biological publications. Micrococcal 
Nuclease digestion with deep sequencing (MNase-seq) 
data are indicative of nucleosome occupancy and chro-
matin accessibility. In addition, MNase-seq may be 
indicative of CRISPR-Cas9 off-target activity. Con-
sequently, MNase-seq data for human cell lines pre-
sent in crisprSQL are extracted from NucPosDB where 
available. This yields three HeLa (GSM1602359  [63], 
GSM2680344-2680347  [64]), five K562 (GSE78984  [65], 
GSM920557  [66], GSM2083137-2083140  [65]) and two 
U2OS (GSM1838910-1838911  [67]) MNase-seq tracks. 
Such tracks for HeLa, K562 and U2OS are then used for 
annotating crisprSQL off-target sites observed in the cor-
responding cell line.

Adding epigenetic scores
To construct the dataset for our study, we extract the 23bp 
target DNA sequence and 169bp target-centered sequence 
context for all gRNA-target pairs in crisprSQL. We also 
extract the experimental epigenetic (i.e., CTCF, DNase I, 
H3K4me3 and RRBS) scores and the normalized off-target 
cleavage activity for all aforementioned gRNA-target pairs. 
To create a single experimental epigenetic MNase feature 
from the cell-specific tracks, we first average HeLa data from 
replicate tracks GSM2680344 and GSM2680345. Next, we 

average U2OS data from replicate tracks GSM1838910 and 
GSM1838911, and directly adopt GSM2083140 for K562. 
We then linearly rescale each of the three resulting sets of 
MNase data to [0, 1], and concatenate the sets together into 
a single feature. We assign zeros to off-target sites with no 
available MNase data. In summary, this yields a crisprSQL-
derived dataset with 6 experimental epigenetic scores for 
each of the experimental and putative off-target sites.

Adding nucleosome organization‑related scores
Various existing procedural and training-based data-
driven computational tools are used for predicting nucle-
osome organization-related scores such as nucleosome 
occupancy and positioning. Whereas training-free pro-
cedural tools are adopted wherever available, only three 
recently developed training model-based tools, namely, 
NuPoP [54], nuCpos [55] and LeNup, were adopted. This 
is because these tools attain similar performances to the 
gold standard nucleosome occupancy model from Kaplan 
et al.  [68, 69]. Alternatively, they use chemical cleavage-
based nucleosome positioning data  [55, 70] which have 
higher resolution compared to the MNase-seq data used 
in the gold standard model.

We further augment the crisprSQL dataset with nucle-
osome organization-related scores. This is done by com-
puting nucleosome occupancy and/or positioning-related 
scores for each base pair in the 23bp target sequence for 
all off-target sites. To compute a variety of scores for each 
169bp sequence context, we use a comprehensive set of 
nucleosome organization-related tools. The names of 
these tools are GC content (abbreviated GC147)  [51], 
W/S scheme [52, 53], YR scheme [52, 53], Van Der Hei-
jden [56], Block Decomposition Method (BDM) [48, 49], 
NuPoP  [54], nuCpos  [55], and LeNup  [57]. Note that 
nucleosome organization-related tools like BDM  [48] 
cannot handle ‘N’-containing input sequences. As a 
result, the dataset used in this study only consider off-
target sites with non-‘N’-containing sequence contexts.

The following subsections details how each tool is 
used for computing one or more nucleosome organ-
ization-related scores. Since NuPoP and nuCpos both 
output histone affinity, nucleosome occupancy, and 
Viterbi scores, we include all three scores as separate 
features for both tools. We also derive Nucleotide BDM 
and Strong-Weak BDM scores from BDM. As a result, 
the 8 tools above generate 13 computed scores. In sum-
mary, the above steps yield a crisprSQL-derived data-
set which was augmented with putative off-targets. In 
terms of features, it has a total of 6 experimental epi-
genetic and 13 nucleosome organization-related com-
puted features. We further refer to these 19 features as 
epigenetic features.
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GC content
GC content (or GC147 as abbreviated here for clarity) is a 
simple training-free measure. It is defined as the fraction 
of guanine and cytosine residues present in the 147bp 
nucleosomal sequence around a given nucleotide. Details 
on the use of GC content for predicting nucleosome 
occupancy can be found in the supplementary material.

We compute base pair-resolved GC147 values for each 
(off-)target site in the crisprSQL dataset. To do this, we 
slide a 147bp window across the (off-)target site’s 169bp 
context sequence, thereby obtaining 23 subsequences of 
length 147. A GC147 value is then computed for each of 
these subsequences.

W/S and YR schemes
W/S and YR schemes are training-free scores used for 
the prediction of rotational and translational nucleosome 
positioning, respectively [52]. The two schemes are avail-
able on the web platform nuMap [53], and are based on 
sequence-dependent DNA anisotropy. Details regarding 
how W/S and YR schemes work can be found in the sup-
plementary material.

We compute base pair-resolved W/S and YR Scheme 
values for each (off-)target site in the crisprSQL dataset. 
The general approach for doing this is identical to that 
of GC147. Namely, we slide a 147bp window across the 
(off-)target site’s 169bp context sequence, thereby obtain-
ing 23 subsequences of length 147. The only difference is 
that we use W/S and YR Scheme instead of GC147 when 
computing values for each of the 23 subsequences.

Van Der Heijden algorithm
In reference  [56], the authors propose a method for pre-
dicting the intrinsic nucleosome position of a genome 
based on statistical mechanics. We abbreviate this method 
as VanDerHeijden. Details regarding how VanDerHeijden 
works can be found in the supplementary material.

We compute base pair-resolved VanDerHeijden val-
ues for all (off-)target sites in the crisprSQL dataset. To 
compute a VanDerHeijden score for a given (off-)target 
site, we first obtain the 169bp context sequence of the 
given site. The context sequence is then padded with 73 
A nucleotides on both ends, and then passed into the Van 
Der Heijden algorithm (see Supplementary Material). 
Reading the middle 23 values in the array of 169 values 
produced by the algorithm then yields the base pair-
resolved values. We use the following hyperparameters 
for VanDerHeijden:

•	 a nucleosome positioning window of N = 147,
•	 probability amplitude B = 0.16,
•	 dinucleotide periodicity p = 10.1 , and

•	 chemical potential µ = −0.6.

An implementation of the algorithm can be found at 
https://​github.​com/​JvN2/​NucTo​ol.

Block decomposition method‑based measures
Many recent nucleosome occupancy tools such as NuPoP 
are statistical and entropy-based. However, such tools 
often require the use of experimental nucleosome occu-
pancy data for the training of many parameters in the 
model, which is computationally expensive. To resolve this, 
we can use the Block Decomposition Method (BDM) [48], 
which is a training-free method for approximating the 
algorithmic complexity of sequences. A consequence of 
this definition is that repetitive sequences, e.g., “ATA​TAT​
ATAT”, have low BDM values. A recent study [49] showed 
that BDM scores of 147bp candidate DNA sequences carry 
valuable information related to nucleosome organization.

Based on BDM, we derive Nucleotide BDM, which 
computes the BDM of the 147bp DNA string. We also 
derive Strong-Weak BDM, which applies the strong-
weak transformation before computing the BDM of the 
resulting modified string. The strong-weak transforma-
tion replaces ‘G’ and ‘C’ with ‘S’ (Strong) and ‘A’ and ‘T’ 
with ‘W’ (Weak) in the DNA string. We compute base 
pair-resolved Nucleotide BDM and Strong-Weak BDM 
values for each (off-)target site in the crisprSQL dataset. 
The general approach for doing this is identical to that 
of GC147. Namely, we slide a 147bp window across the 
(off-)target site’s 169bp context sequence, thus obtaining 
23 subsequences of length 147. We then use PyBDM, a 
Python [71] implementation of BDM, to compute Nucle-
otide BDM and Strong-Weak BDM values for each of 
the 147bp subsequences. The Python implementation of 
BDM can be found in https://​github.​com/​sztal/​pybdm.

NuPoP
Using a duration Hidden Markov Model (dHMM), 
NuPoP  [54] predicts nucleosome positioning and occu-
pancy. NuPoP accounts for the different linker length dis-
tributions or base compositions in different eukaryotes in 
order to make better predictions [72]. Details on NuPoP 
can be found in the supplementary material. An imple-
mentation of NuPoP can be found at https://​github.​com/​
jipin​gw/​NuPoP.

We compute base pair-resolved NuPoP (Affinity), 
NuPoP (Occupancy) and NuPoP (Viterbi) values for 
each (off-)target site in the crisprSQL dataset. First, the 
294,989 context sequences in the crisprSQL dataset 
were split into 9 sets of size 31,645 and 1 set of 10,184. 

https://github.com/JvN2/NucTool
https://github.com/sztal/pybdm
https://github.com/jipingw/NuPoP
https://github.com/jipingw/NuPoP
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This is to accommodate the fact that NuPoP requires an 
input sequence length of at least 1000bp. Long strings 
of length 147+ (147+ 169) ∗ 31, 645 = 9, 999, 967 were 
created for the first 9 set by adding 147 A nucleotides 
between each context sequence. To remove end effects, 
the long string also contains 147 A nucleotides both 
before the first context sequence and after the last con-
text sequence. In the same way, a short string of length 
147+ (147+ 169) ∗ 10, 184 = 3, 218, 291 is created for 
the final set. The 10 long strings are then fed into the 
NuPoP R package individually using the predNuPoP 
function. This gives rise to 10 TSV files containing the 
base pair-resolved histone binding affinity, occupancy 
and Viterbi values. When calling predNuPoP, we use 
parameters species=1 and model=4.

nuCpos
Building on NuPoP, nuCpos [55] is a recent dHMM-based 
algorithm for predicting nucleosome positioning. nuCpos 
uses the same training and inference algorithms as NuPoP. 
However, it improves upon NuPoP by using high-resolu-
tion H3Q85C-seq budding yeast data  [70] instead of the 
low-resolution MNase-seq data. Similar to NuPoP, nuCpos 
produces histone binding affinity, predicted nucleosome 
occupancy and Viterbi scores. More details on the algo-
rithm can be found in [55]. An implementation of nuCpos 
can be found at https://​github.​com/​hkato​med/​nuCpos.

We compute base pair-resolved nuCpos (Affinity), nuC-
pos (Occupancy) and nuCpos (Viterbi) values for each (off-)
target site in the crisprSQL dataset. The nuCpos R package 
has similar input-output interfaces to NuPoP. Consequently, 
we use the same approach as that described for NuPoP above 
in order to produce these base pair-resolved values. When 
calling predNuCpos, we use parameters species="c", 
smoothHBA=FALSE and ActLikePredNuPoP=TRUE.

LeNup
In light of the recent rise of state-of-the-art deep learn-
ing methods for data-based models, LeNup uses a 
convolutional neural network (CNN) with gated Incep-
tion-like modules  [73, 74]. LeNup is used for nucleo-
some positioning prediction in a variety of eukaryotic 
genomes  [57]. The original implementation of LeNup is 
available at https://​github.​com/​biome​dBit/​LeNup.

LeNup was originally trained for separating nucleosomal 
and non-nucleosomal DNA. Consequently, we retrained 
the neural network used in LeNup using high resolution 
H3Q85C chemical cleavage-seq  [70] yeast data. Because 
of this modification, we will refer to this measure as LeNup 
(H3Q85C). The retrained PyTorch [75] model can be found 
at https://​github.​com/​jeffm​ak/​crispr-​cas9-​epige​netics. We 
compute base pair-resolved LeNup (H3Q85C) values for all 

(off-)target site in the crisprSQL dataset. For each (off-)tar-
get site, we one-hot encode its context sequence and pass 
it into the PyTorch model, which outputs the base pair-
resolved value.

Correlation and distribution analysis
We compute the Spearman and Pearson correlations 
with off-target cleavage activities for all epigenetic 
features. This enables us to examine the relationship 
between each epigenetic feature and off-target cleavage 
activity, and to identify features which significantly cor-
relate with off-target activity. We also consider whether 
such correlations vary between gene and non-gene bod-
ies or across cell lines. The calculation of gene bodies 
is not cell line dependent. The nucleosome organiza-
tion-related scores are at base-pair resolution. Conse-
quently, we take the mean of the values at each (off-)
target if the score is not binary and the median of the 
values otherwise. Using the dataset which was aug-
mented with putative off-targets, we separate the data 
points into lowest ( CA = −4 ), low ( CA ≤ 2 ) and high 
( CA > 2 ) cleavage activity. We also visualize the epige-
netic score distributions for these data points. In order 
to compare cleavage frequencies across studies, we use 
the nonlinear Box-Cox transformation  [76] to trans-
form cleavage rates. We transform cleavage rates to 
approximate a Gaussian with zero mean and standard 
deviation σ = 2 for each study individually. To achieve 
a fixed value range and treat outliers efficiently, this dis-
tribution has been clipped at −2σ and 2σ . This has been 
used in the literature  [77, 78] before. Based on these, 
we separate the data points into lowest cleavage activity 
( CA = −2σ = −4 ), low cleavage activity ( CA ≤ σ = 2 ) 
and high cleavage activity ( CA > σ).

CRISPRspec
The crisprSQL database includes estimates for the free 
energy of the DNA-RNA heteroduplex generated by the 
CRISPRspec  [50] biophysical interaction model. These 
interaction energies are features derived from secondary 
structures. These features shape the thermodynamic advan-
tage to gRNA-DNA hybrid formation upon binding of the 
gRNA-Cas9 complex to the off-target site. Computationally, 
for a given (off-)target region, CRISPRspec uses four empir-
ical free energy contributions terms, namely:

•	 a PAM-dependent correcting factor �PAM,
•	 free energy �GRNA:DNA

H  from hybridizing the gRNA 
and target strand, weighted by a position-wise esti-
mate of the Cas9 influence in the binding,

•	 free energy �GRNA:RNA
U  from forming the secondary 

structure of the 20nt gRNA spacer sequence, com-
puted using RNAFold,

https://github.com/hkatomed/nuCpos
https://github.com/biomedBit/LeNup
https://github.com/jeffmak/crispr-cas9-epigenetics
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•	 free energy �GDNA:DNA
O

 from forming the dsDNA 
duplex from the target and non-target DNA strands.

These four terms are used for computing the total bind-
ing free energy

From the values given in the crisprSQL database, we cal-
culate three key energy features to be included in our 
model, namely

•	 E
RNA-DNA

= �
PAM

ΔGRNA:DNA

H
,

•	 E
corr

RNA-DNA
= �PAM(ΔGRNA:DNA

H
− ΔGDNA:DNA

O
),

•	 EgRNAfold = ΔGRNA:RNA
U

.

Model and SHAP
CRISPR recently saw an increase in computational 
tools for Cas9 off-target activity prediction  [79], with 
recent tools using machine and deep learning tech-
niques  [33, 35, 59, 80, 81]. To determine how all 19 
epigenetic scores relate to off-target activity within a 
Cas9 off-target cleavage activity prediction model, we 
build two machine learning models. The first one is an 
extreme gradient boosted (XGBoost) tree model  [82], 
and the second one a convolutional neural network 
(CNN) model. These models take three CRISPRspec-
derived energy features  [50], experimental epigenetic 
features and nucleosomal organization-related fea-
tures. The CNN’s model architecture is similar to Deep-
CRISPR’s  [33] Siamese neural network, but lacks the 
sequence arm (see Supplementary Fig.  1 for details on 
the architecture). Any nucleosome organization-related 
feature is calculated at base pair resolution leading to 
23 values for an (off-)target DNA. In contrast, the mean 
value across the 23 (off-)target base pairs is presented 
for any experimental epigenetic feature.

Regarding training and evaluation for the XGBoost and 
CNN models, the dataset is randomly split into a train-
ing dataset and test dataset. A ratio of 80%-20% is used 
for the splitting. The train-test split is done in a way so 
as to ensure equal amounts of experimentally measured 
and augmented data in both datasets. For XGBoost, the 
tree model is trained for 70 epochs, where a new train-
ing batch with 50,000 data points is sampled in each 
epoch. We chose hyperparameters eta=0.5, colsam-
ple_bytree=0.7, max_depth=7. As for CNN, the 
model is trained for 70 epochs, where a new training batch 
with 35,000 data points is sampled in each epoch. We 
use hyperparameters lr=0.001, batchnorm_momen-
tum=0.1, together with early stopping. For both mod-
els, bootstrap sampling ensures that each training batch 

ΔGB = �PAM(ΔG
RNA:DNA

H
− ΔGRNA:RNA

U
− ΔGDNA:DNA

O
).

contains equal amounts of active ( CA > −4 ) and inactive/
putative ( CA = −4 ) (off-)targets. We then use the Shapley 
Additive Explanation (SHAP) library’s Tree Explainer and 
Deep Explainer  [83]. We use these explainers on a batch 
of 10,000 datapoints randomly sampled from the test data. 
This allows us to measure the contribution of each input 
feature towards the XGBoost and CNN model’s prediction 
respectively. Contributions for each input features are then 
visualized using SHAP summary plots. When creating the 
SHAP summary plots, for each data point, we compute 
the SHAP contribution of each computed feature in the 
SHAP summary plots. The SHAP contribution for each 
computed feature is computed by summing up the corre-
sponding base pair-resolved SHAP contributions.
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Guide RNA; XGBoost: Extreme Gradient Boost; CNN: Convolutional neural 
network; SHAP: Shapley Additive Explanation.
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