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Abstract 

Background:  Climate change will result in more frequent droughts that can impact soil-inhabiting microbiomes 
(rhizobiomes) in the agriculturally vital North American perennial grasslands. Rhizobiomes have contributed to 
enhancing drought resilience and stress resistance properties in plant hosts. In the predicted events of more future 
droughts, how the changing rhizobiome under environmental stress can impact the plant host resilience needs to be 
deciphered. There is also an urgent need to identify and recover candidate microorganisms along with their functions, 
involved in enhancing plant resilience, enabling the successful development of synthetic communities.

Results:  In this study, we used the combination of cultivation and high-resolution genomic sequencing of bacterial 
communities recovered from the rhizosphere of a tallgrass prairie foundation grass, Andropogon gerardii. We culti-
vated the plant host-associated microbes under artificial drought-induced conditions and identified the microbe(s) 
that might play a significant role in the rhizobiome of Andropogon gerardii under drought conditions. Phylogenetic 
analysis of the non-redundant metagenome-assembled genomes (MAGs) identified a bacterial genome of interest – 
MAG-Pseudomonas. Further metabolic pathway and pangenome analyses recovered genes and pathways related to 
stress responses including ACC deaminase; nitrogen transformation including assimilatory nitrate reductase in MAG-
Pseudomonas, which might be associated with enhanced drought tolerance and growth for Andropogon gerardii.

Conclusions:  Our data indicated that the metagenome-assembled MAG-Pseudomonas has the functional potential 
to contribute to the plant host’s growth during stressful conditions. Our study also suggested the nitrogen transfor-
mation potential of MAG-Pseudomonas that could impact Andropogon gerardii growth in a positive way. The cultiva-
tion of MAG-Pseudomonas sets the foundation to construct a successful synthetic community for Andropogon gerardii. 
To conclude, stress resilience mediated through genes ACC deaminase, nitrogen transformation potential through 
assimilatory nitrate reductase in MAG-Pseudomonas could place this microorganism as an important candidate of the 
rhizobiome aiding the plant host resilience under environmental stress. This study, therefore, provided insights into 
the MAG-Pseudomonas and its potential to optimize plant productivity under ever-changing climatic patterns, espe-
cially in frequent drought conditions.
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Background
Global climate change is a serious concern, resulting in 
soil degradation, soil erosion, and impacts on soil health 
[1]. Climate change has severe impacts worldwide includ-
ing in the USA, resulting in more frequent and prolonged 
droughts [2], gradually degrading the plant diversity 
and ecosystem functions [3]. The rhizobiome, micro-
bial communities that are intimately associated with 
the plant rhizosphere [4, 5], is one of the key factors in 
maintaining ecosystem function, soil quality and plant 
health [6, 7]. The plant rhizosphere is one of the sites for 
plant–microbe and microbe-microbe interactions, gov-
erned primarily by root exudates [8]. Microbes in the 
rhizobiome can facilitate plant host nutrient and water 
uptake, element cycling (carbon, nitrogen, phosphorus), 
and other processes such as inducing plant growth, and 
enhancing plant drought tolerance that is beneficial to 
plants [9–11].

Rhizobiomes are instrumental in enhancing plant hosts’ 
resistance and resilience against abiotic stresses such as 
drought, salinity, and heavy metal exposure [12]. There-
fore, with the more frequent and more extreme droughts 
events predicted in the global climate change scenarios in 
the future, it is essential to provide new insights into the 
mechanisms of how the rhizobiome may promote plant 
host resilience and response to stress. Reports show that 
bacteria populations can modulate the associated plant 
stress responses to environmental stresses [13, 14]. Plants 
respond to the above-mentioned stressors by modulating 
the level of various hormones, such as ethylene, which in 
turn induce the expression of stress-related proteins [15, 
16]. However, when ethylene is produced more than its 
threshold level, it becomes unfavorable in terms of root/
shoot proliferation and other growth parameters, hinder-
ing plant growth and development [17]. Bacteria-medi-
ated 1-aminocyclopropane-1-carboxylate deaminase 
(ACCD) is able to mediate the enhanced resistance to 
biotic stressors and increased tolerance to abiotic stresses 
in their associated plant hosts [18–24], by breaking down 
ACC, an immediate precursor of ethylene resulting in 
plants resuming root/shoot growth [25, 26]. Although 
there are various studies that have dissected how cli-
mate change impacts the rhizobiome [13, 27–29], more 
concerted efforts are needed to provide insights into the 
mechanisms of how the rhizobiome can enhance the 
plant host resilience during drought-induced stress.

Previous studies have reported a clear contribu-
tion from plant-associated microbial members to plant 
growth and resilience during drought conditions [30–32]. 

Plant growth-promoting bacteria (PGPB) reportedly 
enhance plant growth during drought [33, 34], an obser-
vation attributed to the microbial nitrogen cycling 
and transformation in soil [35]. Therefore, candidate 
microbes capable of nitrogen transformation and increas-
ing nitrogen availability in the rhizosphere have been the 
key targets in a growing number of experimental and 
observational studies that focus on the assembly of plant 
health promoting Synthetic Communities (SynCom) [36, 
37]. SynComs have been successfully deployed to alter 
the plant phenotype, to enhance plant disease resistance 
and productivity [38, 39]. However, it is challenging and 
tedious to select optimal members of SynComs because 
of the lack of knowledge of the microorganisms that 
could impart favorable functions under stressful condi-
tions [40]. Therefore, in identifying candidate microbes 
for SynComs, it may be more expedient to identify spe-
cific microbial functions and mechanisms rather than to 
depend solely on taxonomy.

Our long-term, ongoing research on the microbi-
ome of dominant Great Plains prairie grass Andropogon 
gerardii (Big Bluestem) provided an excellent opportu-
nity to acquire deeper insights into the microbial func-
tional potential under abiotic stress [41–43]. There are 
three A. gerardii ecotypes (dry, mesic, and wet) that 
originated in Hays, Kansas ( averaged annual precipita-
tion ~ 500  mm), Manhattan, Kansas (averaged annual 
precipitation ~ 870  mm) and Carbondale, Illinois (aver-
aged annual precipitation ~ 1,200  mm), respectively [41, 
42]. In this study, we attempted to elucidate the rhizos-
phere microbial functional potential from A. gerardii dry 
and wet ecotypes growing in Colby, Kansas, where the 
low precipitation defines a margin of the environment 
suitable for A. gerardii survival and growth. In Colby, 
the averaged annual precipitation regime is compara-
ble to Hays, Kansas. We aimed to identify the A. gerar-
dii rhizobiome associated microbial population(s) that 
are drought resistant or resilient, and to acquire insights 
into the microbial functions by: (1) recovering and culti-
vating microbes that existed in the ecotypes using media 
that promote drought-induced stress [41]; (2) obtaining 
genomic insights into drought resilient bacterial popula-
tions that can contribute to the nitrogen transformation. 
In this study, we combined cultivation and high-resolu-
tion genomic sequencing to identify microbial popula-
tions and their functional potential to enhance A. gerardii 
resistance and resilience during drought stress. The ulti-
mate goal of this study is to identify bacteria populations 
and their functional potentials in synthetic communities 
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(SynComs). In the previous study, we recovered gDNA 
directly from the soil to identify the bacterial and fun-
gal populations under abiotic environmental stress [44]. 
The current study takes one step further to undertake a 
strategy to potentially construct operative SynComs in 
the future, by cultivating and selecting for a few potential 
candidate microorganisms that could be engineered for 
the benefit of the host.

Results and discussion
MAGs analysis, phylogenetic analysis, and identification 
of MAG‑Pseudomonas
We cultured the A. gerardii rhizosphere microbial pop-
ulations using the following samples and media—dry 
ecotype in R2A, dry ecotype in R2A with PEG, wet 
ecotype in R2A, and wet ecotype in R2A with PEG. We 
expected that the PEG-amended media would yield bac-
terial populations enriched with drought-resistant gene 
functions. We recovered an average of 173,480 ± 22,383 
contigs, with N50 of 33,485 ± 2,526. The resolved 
metagenome-assembled genomes (MAGs) were 4.1 ± 1.3 
Mbp had completion values of 89.4% ± 2.0%, and ~ 92.8% 
were annotated to the genus level (Supplementary Table 
S1). We recovered a total of 125 MAGs and generated 
a total of 63 non-redundant MAGs from the four con-
ditions (Fig.  1A, Supplementary Table S1). MAGs that 
share > 95% average nucleotide identity were consid-
ered to be redundant MAGs. We identified 62 redun-
dant MAGs, and those were excluded from downstream 
analyses. The dominant phyla among the non-redundant 
MAGs were Proteobacteria (n = 20), Firmicutes (n = 36) 
and Actinobacteria (n = 7).

Among the 63 non-redundant MAGs that we resolved, 
one of the clusters (consisting of four MAGs hav-
ing > 95% ANI identity) was assigned to the genus Pseu-
domonas. We obtained 40 closest related Pseudomonas 
genomes using the Similar Genome Finder service, and 
observed that the MAG was phylogenetically close to 
Pseudomonas sp. NFACC52 (Fig.  1B, Supplementary 
Table S1). The MAG-Pseudomonas was found to belong 
to the Pseudomonas corrugata subgroup within the 
Pseudomonas fluorescence species complex [45, 46]. We 
observed that the representative MAG (MAG_001; here-
after referred to as MAG-Pseudomonas) for this cluster 

was highly detected in all the culture conditions, and 
with their ubiquitous presence in the soil irrespective 
of the ecotype and drought stress, we hypothesized that 
MAG-Pseudomonas might be an important contributor 
in the rhizobiome associated with A. gerardii. Not com-
monly found, but rarely Pseudomonas has been identified 
in the A.gerardii rhizosphere [47]. Pseudomonas spp. are 
common in the rhizosphere of other plants, and reported 
to have important functions in modulating host perfor-
mance [48–50]. MAG-Pseusomonas was found to be 
relatively close to the Pseudomonas thivervalensis. The 
species P. thivervalensis was reported to be isolated from 
the roots of Brassica napus and Arabidopsis thaliana 
[51], and is an important member of soil microbial com-
munities [49]. Pseudomonas have also been implicated to 
be a plant growth-promoting rhizobacteria (PGPR) and 
have been associated with plant growth, control of patho-
genicity [49] and aid in plant resilience under drought-
stressed conditions [48, 50]. 

Stress response genes identified in MAG‑Pseudomonas 
enhanced drought tolerance
MAG-Pseudomonas has a total length of 6,777,975  bp, 
with 99 contigs and an N50 of 146,692 bp. The GC con-
tent of MAG-Pseudomonas is 61.1%. When annotated 
with the COG database, we noticed that it yielded 5,953 
gene calls, and 4,924 were assigned at least one COG cat-
egorical function (Table 1).

Previous studies [48, 50] based on 16S rRNA gene 
sequences have identified Pseudomonas in aiding the 
plant host to become more resilient under drought-
stressed conditions. Pseudomonas is highly diverse in 
phylogeny and functions [45]. With the observation from 
the phylogenetic tree analysis that MAG-Pseudomonas 
belonged to the Pseudomonas corrugata phylogenomic 
subgroup, we ask what might be some potential functions 
of Pseudomonas that 1) enabled the survival of Pseu-
domonas under stressful conditions; 2) provided cues to 
how the Pseudomonas might assist in the stress tolerance 
of the associated plant host. We identified the universal 
stress protein (UspA) family (Table  2), which suggested 
that it had an important putative functional role in the 
survivability of MAG-Pseudomonas under a wide range 
of stress conditions [52, 53] which includes starvation 

Fig. 1  A Detection, showing reads recruited to the contigs of non-redundant metagenome-assemble genomes (MAGs) in the rhizosphere of dry 
and wet Andropogon gerardii ecotypes when cultivated in normal precipitation (without PEG) and under drought-induced conditions (with PEG). 
The darker the highlight represents higher detection in the samples. MAG-Pseudomonas was highly detected in all growing media conditions of 
both dry and wet ecotypic rhizosphere samples. B Phylogenetic analysis of MAG-Pseudomonas based on the 40 closely related whole genomes 
with small set of potential outgroup genomes. Tree scale indicated the length of the branches of the tree in terms of evolution. Note that 
Pseudomonas fluorescens F113 and Pseudomonas fluorescens FR1 are now known to be Pseudomonas ogarae sp. nov., nom rev., type strain F113T 
(= DSM 112162 T = CECT 30235.T). Pseudomonas sp. NFACC52 was the most closely related genome to MAG-Pseudomonas. The outgroup in the 
phylogenetic tree is Pseudomonas sp. NFACC23-1, Pseudomonas sp. NFACC16-2, and Pseudomonas sp. NFACC17-2

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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of elements like nitrogen, carbon, phosphate, sulfate as 
well as heat exposures, etc. [53]. Drought might reduce 
growth yields [54], and UspA has been found to be abun-
dant in growth-arrested cells [55]. We further identified 
aminocyclopropane-1-carboxylic acid (ACC) deaminase 
(n = 3) in the MAG-Pseudomonas, implying the putative 
gene could be essential in the modulation of the associ-
ated plant’s stress responses during drought conditions 
(Table  2, Supplementary Table S2). ACC deaminase is 
an enzyme known to enhance plant growth by cleav-
ing plant-produced ACC, which decreases the ethyl-
ene production in the plant, thereby stimulating plant 
growth [18]. Moreover, the ACC deaminase has been 
extensively studied in Pseudomonas [56], and its role in 
stress tolerance is well documented [20, 21]. Putting it 
all together—1) MAG-Pseudomonas was closely related 
to P. corrugata in our phylogenomic analyses; 2) both P. 
corrugata [45] and MAG-Pseudomonas possess ACC 
deaminase; our results strongly suggested that MAG-
Pseudomonas had functional potential in enhancing the 
associated plant’s resilience during drought stress.

Nitrogen transformation potential of MAG‑Pseudomonas 
could enhance A. gerardii growth
Initial genomic analysis showed that our resolved MAG-
Pseudomonas harbored several stress-response-related 
gene functions. Besides understanding microbial mecha-
nisms of MAG-Pseudomonas resilience during drought-
induced stress, we were also interested in gaining a 
deeper understanding of how the plant host could ben-
efit from the A. gerardii and MAG-Pseudomonas interac-
tions. We detected several putative gene functions that 
demonstrated the nitrogen transformation potential in 
our resolved MAG-Pseudomonas, which could contrib-
ute to the growth enhancement of the associated plant 
host, A. gerardii.

Nitrogen transformation genes—nitrogen regulation 
response regulator GlnG, nitrogen PTS system EIIA 
component, nitrogen regulatory protein PII, GlnK, and 

nitrogen regulation protein NtrB, that were detected in 
our resolved MAG-Pseudomonas (Table  2, Supplemen-
tary Table S2), has also been previously reported in other 
Pseudomonas spp [57–59]. All the nitrogen transforma-
tion gene functions that were detected in our MAG-
Pseudomonas can be essential in helping to fulfill the 
plant host’s need for nitrogen, especially in N-depleted 
soils [60–63]. NtrB also plays a role in nitrogen metabo-
lism and can regulate the nitrogen dynamics under nitro-
gen-deprived and enriched environments [64]. NtrC is 
another nitrogen metabolism regulator that contributes 
to nitrogen assimilation [58]. Similarly, nitrogen regula-
tory protein PII (GlnK) and nitrogen PTS system EIIA 
components are also involved in regulating nitrogen 
metabolism [65]. Assimilatory nitrate reductase catalytic 
subunit was also identified in this study which catalyzes 
the process from nitrate to nitrite [66] (Table 2).

We selected the 3 genomes from the Pathosystems 
Resource Integration Center (PATRIC) web portal. We 
used the comparative pathway tool in PATRIC, and iden-
tified 138 potential pathways of MAG-Pseudomonas 
based on genomic information from 3 Pseudomonas 
genomes—Pseudomonas chlororaphis subsp. aurantiaca 
strain ARS 38 isolated from the cotton rhizosphere, Pseu-
domonas sp. DR208 and Pseudomonas sp. DR48 isolated 
from the soybean rhizosphere. The criteria for the selec-
tion of these genomes were: 1) genomes were obtained 
from the rhizosphere; 2) genomes were complete and 
of high quality. The identified pathway classes included 
carbohydrate metabolism, lipid metabolism, metabolism 
of cofactors and vitamins, energy metabolism, nucleo-
tide metabolism, biosynthesis of secondary metabolites, 
amino acid metabolism, xenobiotics biodegradation and 
metabolism, metabolism of other amino acids, glycan 
biosynthesis and metabolism, translation, signal trans-
duction, and immune system (Supplementary Table S3). 
We further analyzed the differential occurrence of the 
genes in MAG-Pseudomonas and the 3 Pseudomonas 
genomes, and observed that there was a high occur-
rence of nitrate reductase and glutamate synthase in the 
MAG-Pseudomonas genome when compared with the 
other genomes (Fig.  2A). Nitrate reductase plays a key 
role in nitrogen transformation processes [66]. Given 
the importance of nitrogen-mediated microbial pro-
cesses on plant growth [67], we analyzed the annotated 
MAG-Pseudomonas nitrogen transformation processes 
and showed that there were 79 annotated genes that 
were involved in the nitrogen metabolism pathway with 
100% coverage. We identified several important genes 
in MAG-Pseudomonas associated with nitrogen trans-
formation processes in the nitrogen metabolism path-
way (Table  2, Fig.  2B). Glutamate synthases, identified 
in MAG-Pseudomonas are actively involved in ammonia 

Table 1  Bin assignment statistics to MAG-Pseudomonas: GC-content, 
N-50, number of contigs, percent completion, percent redundancy, 
and total length

MAG-Pseudomonas

GC-content 61.11%

N-50 146,692 bp

Number of contigs 99

Percent Completion 100%

Percent redundancy 1.41%

Total length 6,777,975 bp
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Table 2  Annotated gene features in MAG-Pseudomonas. The gene features were annotated using the PATRIC portal. The table lists 
genes from stress, nitrogen transformation, and pathogenic behavior detected in MAG-Pseudomonas. This includes assimilatory nitrate 
reductase large subunit, ACC deaminase and LPQ island features
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assimilation pathways in bacteria [68] (Table  2), while 
glutamate dehydrogenase has a prominent role in nitro-
gen assimilation and is capable of maintaining the bal-
ance of carbon and nitrogen [69] (Table 2). We identified 
a wide range of genes involved in nitrogen transforma-
tion processes in MAG-Psuedomonas that could increase 
the nitrogen availability to the plant host [70, 71]. Putting 
it all together, our resolved MAG-Pseudomonas with its 
potential in microbial-driven nitrogen transformation 
processes could play a critical role in the regulation of 
primary productivity of its plant host, A. gerardii, even 
during times of drought-induced stress.

MAG‑Pseudomonas is essential to understand 
the resilience of the host plant under abiotic stress
Our genomic analysis revealed several stress response 
and nitrogen transformation functional potential, but is 
there any niche specificity for MAG-Pseudomonas? We 
used a pangeomic analysis to compare the shared and 
unique gene functional potential of MAG-Pseudomonas 

and 6 related Pseudomonas genomes. We selected Pseu-
domonas genomes from RefSeq that have complete 
chromosomes [73], and had been subjected to rounds 
of quality check and consistent gene annotation [74], in 
order to ensure more conclusive pangenome analysis. 
Our analysis yielded 39,798 genes across the 7 genomes, 
with a total of 12,473 gene clusters. We used hierarchi-
cal clustering to group the gene clusters, showing similar 
distribution patterns across the 7 genomes (Fig.  3, Sup-
plementary Table S4). Our pangenomic analyses identi-
fied a collection of 2,112 core gene clusters that occurred 
in 100% of all Pseudomonas genomes, and 719 gene 
clusters that only occurred in the MAG-Pseudomonas 
genome. The proportion of genes with functional anno-
tation varies between the core and accessory clusters of 
MAG-Pseudomonas. We noticed that there were 94.4% 
of core gene clusters annotated with gene functions, 
using NCBI’s Clusters of Orthologous Groups (COGs) 
database, while only 63.6% of the gene clusters in the 

Fig. 2  A Differential occurrence of the genes in MAG-Pseudomonas with Pseudomonas chlororaphis subsp. aurantiaca strain ARS 38, Pseudomonas sp. 
DR208 and Pseudomonas sp. DR48. The darker the highlight represents higher occurrences in the MAG-Pseudomonas. MAG-Pseudomonas showed 
a high occurrence of nitrate reductase and glutamate synthase in the MAG-Pseudomonas genome when compared with the other genomes. B 
Nitrogen metabolism pathways in MAG-Pseudomonas were detected based on a comparative pathway tool in PATRIC. MAG-Pseudomonas had 79 
genes annotated to have enzyme classification numbers involved in the nitrogen metabolism pathway with 100% coverage. Nitrate reductase was 
found to be present in the principal nitrogen metabolism pathway, along with the denitrification pathway. Box numbers represent the Enzyme 
Commission number (E.C. number). The green colored boxes denote the annotated enzymes. The block comparison nitrate reductase corresponds 
to the dissimilatory nitrate reduction. The enzyme that the MAG-Pseudomonas has is the assimilatory nitrate reductase, so that could be identified in 
the nitrate assimilation block. The block nitrate assimilation corresponds to the assimilatory nitrate reductase. KEGG nitrogen metabolism pathways 
[72] were downloaded from PATRIC web portal. Copyright permission for use and modification were obtained from KEGG
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accessory clusters of MAG-Pseudomonas were annotated 
(Fig. 3, Supplementary Table S4).

We identified several stress response and nitro-
gen transformation genes in the core cluster in the 
pangenomic analysis which again reiterated our hypoth-
eses that MAG-Pseudomonas might have microbial 
mechanisms that enhanced its survivability and would 
contribute to the plant hosts’ well-being under abiotic 
stress conditions (Fig.  3, Supplementary Table S4). The 
genes that were identified were predicted universal stress 
protein E, nucleotide-binding universal stress protein 
UspA family (UspA), desiccation stress tolerance pro-
tein with LEA/WHy domain (LEA), and universal stress 

protein A. (Fig. 3, Supplementary Table S4). Desiccation 
stress tolerance proteins with LEA/WHy domain (LEA) 
is suggested to confer a broad range of stress response 
function to bacteria such as Escherichia coli [75], while 
genes corresponding to a WHy protein homologue have 
been identified in both archaea and bacteria including 
Pseudomonas [76, 77] although the specific function in 
Pseudomonas is still incomprehensible. Our findings in 
MAG-Pseudomonas and 6 related genomes provided 
insights into potential gene functions in Pseudomonas 
that could be instrumental in providing resilience against 
drought induced stress. We also identified a set of uni-
versal stress proteins (UspA, UspE), which belonged to 

Fig. 3  Pangenomic analysis of MAG-Pseudomonas with 6 related Pseudomonas genomes. Each layer represents a genome, and the region 
highlighted shows “gene clusters that was unique to MAG-Pseudomonas” and “core gene clusters” that was present in 100% of all the genomes. The 
highlight in the genomes represents the presence of the gene clusters. Tree in the middle represent the clustering of the gene clusters based on 
presence and absence of the genes. The two outer ring shows the presence or absence of annotation of COG function and category in the gene 
clusters. The genomes include Pseudomonas thivervalensis strain DSM 13,194 (Accession number: NZ_LT629691), Pseudomonas synxantha strain 
R6 28 08 (Accession number: NZ_CP027756), Pseudomonas stutzeri strain F2a (Accession number: NZ_AP024722), Pseudomonas fluorescens strain 
ATCC 13,525 (Accession Number: NZ_LT907842), Pseudomonas chlororaphis strain qlu-1 (Accession Number: NZ_CP061079), and Pseudomonas 
brassicacearum strain 3Re27 (Accession Number: NZ_CP034725). All the genomes were downloaded on April 29, 2022
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bacterial universal stress proteins, and were produced 
under stressful conditions [55]. We also identified other 
genes—YaaA (oxidative stress); TypA/BipA (general 
stress-response regulator, [78]; BolA (family transcrip-
tional regulator, [79]; and Ribosomal protein L25 (gen-
eral stress protein Ctc) (RplY) [80], that demonstrated 
the potentiality of Pseudomonas to elicit one or more 
microbial mechanisms to become more resilient when 
subjected to abiotic stresses. Similar to stress response 
genes, our findings, which identified numerous nitrogen 
transformation gene functions (Fig.  3, Supplementary 
Table S4), in the pangenome analysis corroborate with 
our MAG-Pseudomonas genome analysis that Pseu-
domonas might have the capability to contribute to the 
resilience and well-being of the plant host under environ-
mental stresses.

Besides the core-clusters gene functions, we also 
observed genes related to chemotaxis in the MAG-Pseu-
domonas accessory gene-clusters. We detected genes 
corresponding to methyl-accepting chemotaxis protein 
and chemotaxis protein CheD (Supplementary Table S4). 
Our resolved MAG-Pseudomonas might show chemot-
axis towards certain amino acids by using methyl-accept-
ing chemotaxis proteins [81], as these bacterial cells are 
known to methylate the methyl-accepting chemotaxis 
proteins when adapting to environmental repellents 
and attractants [82]. Similarly, CheD chemotaxis pro-
teins might be used by MAG-Pseudomonas to attract or 
evade various environmental stimuli [83–85]. Our MAG-
Pseudomonas also had a gene corresponding to insecti-
cidal toxin complex protein TccC. These proteins exhibit 
toxicity to a wide range of insects that could be utilized 
in designing strategies for crop protection [86]. Interest-
ingly, we also identified the pathogenicity LPQ (lipopep-
tide/quorum-sensing) island that is also present in the 
closely related Pseudomonas sp. [45, 87–90]. This genetic 
island is characterized by the presence of luxR genes and 
acyl-homoserine lactone (AHL) efflux protein [45]. Both 
these features were identified in our MAG-Pseudomonas 
(Table 2, Supplementary Table S2). The existence of such 
quorum-sensing machinery could be used by these spe-
cific groups of bacteria to respond to quorum sensing 
signals and demonstrate as markers of pathogenic behav-
ior to plants or antifungal activity [87].

Tailoring SynComs is an important approach to pro-
vide insights into plant host-microbe interactions. 
Understanding the mechanisms and functions of host-
associated microbial populations is particularly relevant 
in the construction of these plant-associated SynComs. 
Our study showed that MAG-Pseudomonas possessed 
putative genes that were involved in the function enhanc-
ing the resilience during drought-induced conditions, 
and might performed essential microbial functions for 

generating products related to the nitrogen cycle [91], 
which could be exploited by plant host and other host-
associated microbes [92]. A SynCom consisting of six 
Pseudomonas strains isolated from the garlic rhizosphere 
has been reported to promote plant growth [93]. Thus, 
apart from the potential to contribute to the plant host’s 
well-being, our MAG-Pseudomonas might also be able to 
influence and interact with other bacteria [94], contribut-
ing to its role as an important member of the core rhizo-
biome along with other members such as Streptomyces, 
Rhizobium, Burkholderia, Nitrosomonas, Nitrospira, 
Azospirillum, Bradyrhizobium, and Azotobacter [95]. 
Overall, our study emphasized that the understanding 
of the MAG-Pseudomonas mechanism and functional 
potential might contribute to the successful construc-
tion of a SynCom that can benefit the plant-host during 
drought-induced stress [40].

Conclusion
In this study, we used cultivation and metagenomic strat-
egy to identify bacterial populations in the A. gerardii 
rhizobiome, and identified MAG-Pseudomonas as the 
candidate microbe that had significant functional poten-
tial in nitrogen transformation and stress response. In 
support of other studies, our study verified the abun-
dance of MAG-Pseudomonas in the rhizobiome and sug-
gested its potential pivotal role under drought conditions. 
In a continuing effort to understand the contributions of 
different microbiota in the plant rhizobiome, it is impor-
tant to remember that identity and relative abundance 
alone may not truly reflect the relative functional impor-
tance of the bacterial population. Instead, understanding 
the functional role of the microbe during host-microbe 
and microbe-microbe interactions might provide more 
insights. The functional potential of our resolved MAG-
Pseudomonas, resulting from a combination of conven-
tional culturing and high-throughput analysis, showed 
the immense potential to inform and refine our efforts 
to dissect the mechanistic interaction taking place in the 
rhizobiome.

Materials and methods
Sampling, and cultivation of rhizosphere communities 
from soil samples
We collected Andropogon gerardii rhizosphere samples 
from a common garden in Colby at the Kansas State Uni-
versity Agricultural Research Center located in Thomas 
County (39°23′N, 101°04′W). Further information on the 
experimental layout, ecotypes, and sampling collections 
has been described previously [43]. In this comparative 
study, we selected rhizosphere samples from native dry 
(Hays, Kansas) and wet (Carbondale, Illinois) ecotypes 
growing in Colby for microbial cultivation. We separated 
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bulk soil from the soil attached to the rhizosphere by 
handshaking the roots gently. We resuspended 0.1  g of 
the rhizosphere samples in 0.9 ml of Phosphate-Buffered 
Saline (PBS) [pH 7] buffer, serially diluted the samples 
(10–1—10–6), and spread 100  µl solution onto the Petri 
plates. We designed two culture conditions—R2A media 
(Teknova, USA) [96] and R2A media amended with a 
36% Polyethylene Glycol 8000 (PEG) (Ψ = -1.54 MPa) to 
alter the media osmotic potential and to mimic absence 
and presence of water limitation, respectively [97, 98]. 
A similar range of PEG concentrations has been used 
to simulate dry environments in other studies [99, 100]. 
To prepare the R2A-PEG media, we dissolved 36% (w:v) 
PEG powder in autoclaved MilliQ water, allowing the 
mixed solution (20 mL) to sit on top of a pre-made R2A 
plate for 24 h to diffuse throughout the agar. After 24 h, 
we removed excess solution and spread 100  µl of the 
diluted soil culture on the surface of the agar. The pre-
pared plates were incubated at 37℃ for 24–48 h until the 
appearance of the colonies. After the incubation period, 
we scraped all colonies by flooding the plate with 2 mL 
of sterile PBS buffer, transferred the liquid that con-
tained microbes and stored at -20℃ until genomic DNA 
extraction. We were interested in capturing the bacterial 
communities that grew together in different conditions, 
so instead of picking individual colonies, we scraped all 
colonies from the individual plates to sequence the full 
genome(s) [44, 101]. Rhizosphere bacterial communities 
were cultivated from dry (R2A; n = 10 and R2A + PEG; 
n = 10) and wet ecotypic A. gerardii rhizosphere samples 
(R2A; n = 10 and R2A + PEG; n = 10).

DNA extraction, shotgun sequencing, and analyses
We extracted the microbial DNA with the E.Z.N.A. Soil 
DNA Kit (Omega Bio-tek, Inc., Norcross, GA, USA) fol-
lowing the manufacturer’s protocol. Shotgun metage-
nomes were sequenced from the extracted samples on 
the Illumina NovaSeq 6000 (Illumina, San Diego, CA, 
United States), with a 150  bp paired-end sequencing 
strategy, with Nextera DNA Flex for library preparation 
and S1 flow cell. We used the program ‘iu-filer-qual-
ity-minoche’ [102] to process the short metagenomic 
reads and removed low-quality reads following cri-
teria outlined in Minoche et  al. ([103]. We organized 
the samples into 4 metagenomic groups (R2A + Wet 
ecotype; R2A + PEG + Wet ecotype; R2A + Dry ecotype; 
R2A + PEG + Dry ecotype) based on the cultivation 
conditions and ecotypes for co-assembling strategy. 
The quality-filtered short reads were co-assembled into 
longer contiguous sequences (contigs) using MetaHit 
v1.2.9 [104] with a minimum contig length of 1000  bp. 
We then used ‘anvi-gen-contigs-database’ in anvio ver 
7.0 [105] to compute k-mer frequencies and identify 

open reading frames (ORFs) in the contigs using Prodi-
gal v 2.6.3 [106], and recruited metagenomic short 
reads to the contigs. We then annotate the bacterial and 
archaeal single-copy genes using HMMER v3.2.1 [107]. 
NCBI’s Cluster of Orthologous Groups (COGs) [108] 
was used to assign functions to the ORFs. We mapped 
the metagenomic short reads to the contigs with Bow-
tie2 v2.3.5 [109], and converted mappings to BAM tiles 
with samtools v. 1.9 [110]. The converted BAM files were 
then profiled using ‘anvi-profile’ with a minimum contig 
length of 1,000 bp. We used CONCOCT v 1.1.0 [111] to 
bin the metagenomes, and used anvi’o ver 7.0 [105] to 
manually curate the bins into metagenome-assembled 
genomes (MAGs) that satisfied the conditions of > 70% 
completion and < 10% redundancy based on single 
copy genes. The MAGs were assigned to taxa using the 
single-copy core genes of bacteria and archaea. We fur-
ther used ‘anvi-compute-genome-similarity’ to calculate 
average nucleotide identity (ANI) [112], using PyANI 
v0.2.9 [113] to compare the resolved MAGs and iden-
tify non-redundant MAGs based on 95% ANI [114]. We 
analyzed the resolved MAG occurence in a sample with 
the “detection” metric, ​​detailing how much of the contig 
recruited reads to it. We considered a MAG as detected 
in a metagenome if the detection was > 0.25, which is an 
appropriate cutoff to eliminate false-positive signals in 
read recruitment results.

Phylogenetic, pathway, and pangenomic analyses
Among the resolved MAGs, there was a MAG of inter-
est for this study: MAG-Pseudomonas. The selected 
non-redundant MAG was analyzed by the Similar 
Genome Finder service that uses the MinHash on the 
Pathosystems Resource Integration Center (PATRIC) 
web portal [115, 116]. Similar genomes deposited in 
public databases were obtained and used to estimate 
the genome distances to the MAG-Pseudomonas. We 
constructed a phylogenetic tree for the selected non-
redundant MAG and 40 closely related genomes. The 
genome status of the 40 genomes was either complete 
or at the levels of whole genome sequencing. The work-
flow used the PATRIC Codon Tree Service which used 
the amino acid sequences from a well-defined database 
of global protein families [117]. In our workflow, we 
used amino acid sequence files for each genome. For 
tree construction, genomes were used with small set 
of potential outgroup genomes. It was a two-step pro-
cess that we followed to identify the sets of homolo-
gous proteins. For the first step, a single genome from 
each distinct species was selected, and then aligned 
against each other using the BLAT alignment tool 
[118]. We clustered the top-scoring hits with Markov 
Cluster (MCL) Algorithm which defined the initial seed 



Page 11 of 15Sarkar et al. BMC Genomics          (2022) 23:784 	

sets for determining the homologous groups [119]. 
In the second step, Multiple Sequence Compari-
son by Log-Expectation (MUSCLE) was used to align 
the seed sets [120]. Hidden Markov Model (HMMs) 
were built using the hmmbuild. All genomes includ-
ing the outgroup pool were searched with hmmsearch. 
Homologous groups were then defined by hmmsearch 
top hits. Outgroup genomes were selected from the 
pool of outgroup candidates that were based on the 
total hmmsearch score. In the next stage, homologous 
groups were filtered for the taxon coverage, and MUS-
CLE was used to align the groups. Gblocks eliminated 
the poorly aligned regions, and the remaining well-
aligned regions were concatenated into a long single 
alignment. The main phylogenetic tree was then esti-
mated from the long single alignment using FastTree 
[121]. Bootstrap values can often be overly optimistic 
for long fragments. In our case, we used random sam-
ples of 50% of the homologous groups that were used 
for the main tree. This workflow was termed gene-wise 
jackknifing. In the final step, hundreds of the 50% gene-
wise jackknife trees with the support values indicated 
the times a particular branch was observed in the sup-
port trees. We used the RAxML program v 8 [122] 
to construct a tree based on the pairwise differences 
between the aligned protein families of the selected 
sequences. For inferring the trees, the maximum like-
lihood method was used. We used the comparative 
pathway tool of PATRIC to predict the metabolic path-
ways in our selected MAG. The comparative pathway 
service of the PATRIC portal allowed us to identify the 
set of pathways that was based on EC number, taxon-
omy, pathway name, pathway ID and/or the annotation 
type. In the comparative analysis tool, we compared the 
MAG-Pseudomanas genome with the genome group 
that contained the Pseudomonas genomes isolated from 
rhizospheres of cotton and soybean using the select 
genome and select genome group options available 
under the comparative pathway service. The rationale 
behind using these Pseudomonas genomes was because 
these genomes were also isolated from the rhizosphere, 
giving us the opportunity to compare different Pseu-
domonas strains that were isolated from rhizospheres 
from different plant hosts. The criteria that we used 
for the genome selections were (1) genomes must be 
complete (2) genomes were of high quality (3) genomes 
isolated from the rhizosphere. That would allow us to 
have a comparative study between the Pseudomonas 
isolated from the rhizosphere of A. gerardii with Pseu-
domonas chlororaphis subsp. aurantiaca strain ARS 38 
isolated from cotton rhizosphere and Pseudomonas sp. 
DR208 and Pseudomonas sp. DR48 from the soybean 
rhizosphere. We focused on the nitrogen metabolism 

pathway that we selected from the list of pathways 
available for MAG-Pseudomonas and the other Pseu-
domonas genomes. KEGG maps and heat maps of the 
nitrogen metabolism pathway were generated in the 
PATRIC portal.

We downloaded 6 related Pseudomonas genomes 
from NCBI RefSeq [74] and performed pangenomic 
analyses using anvi’o workflow [105, 123]. The criteria 
that we set up for efficient pangenomic analyses is to 
download only the genomes of Pseudomonas that were 
complete. The workflow uses BLASTP [124] to compute 
amino acid level similarities between all possible ORF 
pairs. We then used Markov Cluster Algorithm (MCL) 
[119] to group ORFs into homologous gene clusters and 
aligned amino acid sequences in each gene cluster using 
MUSCLE for visualization [120]. We determined the 
core gene clusters of the MAG-Pseudomonas and the 6 
additional, available Pseudomonas genomes, as well as 
the accessory gene cluster of MAG-Pseudomonas.
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