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Abstract 

Background:  Inferring the demographic history of a population is essential in population genetic studies. Though 
the inference methods based on the sequentially Markov coalescent can present the population history in detail, 
these methods assume that the population size remains unchanged in each time interval during discretizing the 
hidden state in the hidden Markov model. Therefore, these methods fail to uncover the detailed population history in 
each time interval.

Results:  We present a new method called Beta-PSMC, which introduces the probability density function of a beta 
distribution with a broad variety of shapes into the Pairwise Sequentially Markovian Coalescent (PSMC) model to 
refine the population history in each discretized time interval in place of the assumption that the population size is 
unchanged. Using simulation, we demonstrate that Beta-PSMC can uncover more detailed population history, and 
improve the accuracy and resolution of the recent population history inference. We also apply Beta-PSMC to infer the 
population history of Adélie penguin and find that the fluctuation in population size is contrary to the temperature 
change 15–27 thousand years ago.

Conclusions:  Beta-PSMC extends PSMC by allowing more detailed fluctuation of population size in each discretized 
time interval with the probability density function of beta distribution and will serve as a useful tool for population 
genetics.
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Background
Population history and demographic inference is a funda-
mental question in population genetic studies [1]. Over 
the past few years, many methods have been developed 
to infer population history with genome-scale data. Some 
approaches are based on allele frequency spectrum (aka, 
site frequency spectrum (SFS)) [2–6], which use diffusion 
process and coalescent process to construct SFS under 
various population history. The methods on the frame-
work of diffusion process need a predefined simplified 
population model to infer population history, which are 

not suitable for the estimation of demography under very 
complex scenarios. Although model-flexible, the exist-
ing methods on the framework of coalescent process 
assume that the population size remains constant dur-
ing the coalescent time [2, 6]. The other approaches are 
based on sequential Markov coalescent (SMC) [7–10], 
which spatially model recombination and coalescent 
events, to reveal more detailed population history using 
some form of hidden Markov model (HMM). Since the 
states of latent variables in the HMM-SMC methods are 
coalescence times which are continuous and infinite, 
HMM-SMC methods discretize them by dividing coa-
lescence-times into a finite number of time intervals and 
assume that the function �(t) , which is scaled to popula-
tion size, is a constant in each time interval. The assump-
tion is a simplified approximation, and the model can 
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describe the complex population history accurately when 
the time intervals are sufficiently small. Increasing the 
number of time intervals and discretization points dra-
matically increases the computational burden and run-
ning time, and makes the computation intractable [11].

Here, we present a new method, Beta-PSMC, that 
extends PSMC by replacing the function �(t) within each 
time interval with the probability density function of 
beta distribution, which has two positive shape param-
eters denoted by α and β . Beta-PSMC can model a wide 
variety of changes of population size in each discretized 
time interval, as the beta distribution has flexible shapes, 
including J-shape, reverse J-shape, U-shape and reverse 
U-shape. Furthermore, a constant is a specific case of 
the function �(t) in Beta-PSMC when setting α = β = 1 . 
Therefore, Beta-PSMC can elucidate fine population his-
tory by further providing unprecedented details within 
each discretized time interval.

To validate the performance of our method, we con-
ducted evaluation on Beta-PSMC using simulated data. 
We demonstrated that Beta-PSMC can uncover more 
detailed population size changes compared with PSMC, 
especially for the recent population history. We also 
applied Beta-PSMC to the genome of Adélie penguins 
to infer their population history during the Last Glacial. 
The results showed that there was negative correlation 
between the fluctuation of population size and tempera-
ture change 15–27 thousand years ago.

Results
WE validated Beta-PSMC and compared it with PSMC 
with simulated data from a population history comprised 
of multiple epochs of population growths and declines 
(details in the Supplementary Materials). In order to scale 
results to real time, we assumed 25  years per genera-
tion and a mutation rate of 2.5 × 10–8 per generation per 
nucleotide [7]. The results in Fig. 1A showed that Beta-
PSMC can recover the zigzag varying pattern of popula-
tion size with a good resolution. Moreover, Beta-PSMC 
demonstrates better performance than PSMC in infer-
ring recent population history (Fig. 1A-D). We also tried 
to improve the estimates of PSMC by refining discretiza-
tion. Although PSMC has significantly better inference 
of population history from 3 thousand years ago (KYA) 
to the more distant past (Fig. 1B-D), the estimates within 
2000 years remain poor (Fig. 1C-D).

Beta-PSMC subdivides each time interval into k subin-
tervals for a given discretization, and employs two more 
parameters than PSMC. To compare the running time of 
Beta-PSMC and PSMC, we applied both methods to the 
same simulated data and repeated 10 times. When the 
number of time intervals is n and the number of subin-
tervals is k, the average of running time of Beta-PSMC is 

close to that of PSMC with n × k intervals (Supplemen-
tary Table S1). Although Beta-PSMC with the same n is 
slower than PSMC, Beta-PSMC needs fewer time inter-
vals when inferring population history with good resolu-
tion (Fig. 1).

We applied Beta-PSMC and PSMC to infer the popu-
lation dynamics of Adélie penguin with the published 
genome sequence [12] (Supplementary Fig. S1). The 
population history of Adélie penguin between 100 and 10 
KYA is of specific interest, since the population dynam-
ics of Adélie penguin is hypothesized to be strongly 
influenced by the Antarctic climatic variation during the 
last glaciation [12]. In contrast with PSMC, Beta-PSMC 
uncovered more detailed population history in the period 
of 15–27 KYA; the effective population size of Adélie 
decreases gradually from about 20 KYA after increasing 
gradually from 27 KYA. This fluctuation in the period 
of 15–27 KYA is contrary to the trend of temperature 
change (Supplementary Fig. S1), indicating that the effec-
tive population size of Adélie penguin may be strongly 
affected by Antarctic climate. Hu et al. [13] reconstructed 
the population history of Adélie at Ross Island over the 
past 700 years by determining organic markers in a sedi-
ment profile and found that the population sizes of Adélie 
penguin were the highest in the Little Ice Age. Their con-
clusion that the population size of Adélie was the highest 
during a cold period is consistent with our inferred his-
tory during the last glaciation.

Discussion
Beta-PSMC extends the PSMC method by splitting 
time intervals into subintervals to achieve higher accu-
racy in demographic inference, however, running time 
also increases with the number of subintervals (Supple-
mentary Table S1). We analyzed the effect of subinterval 
numbers using simulated data by running Beta-PSMC 
with different subinterval numbers: k = 2, k = 3, k = 5, 
and k = 7 respectively. The results showed that the esti-
mates were rough when k = 2 (Supplementary Fig. S2A) 
and the similar performance with good resolution could 
be achieved when k = 3, k = 5, and k = 7 (Supplementary 
Fig. S2B-D). This implies that a smaller subinterval num-
ber, e.g., k = 3 is sufficient for the accuracy of most demo-
graphic scenarios.

Another advantage of Beta-PSMC over PSMC is on the 
inference of recent demographic history. PSMC provides 
poor estimates of population sizes for recent history 
(< 10KYA) due to limited information of recombina-
tion and coalescence events during that time range from 
a single individual genome. The accuracy of estimates 
even declined with the increase of number of discretized 
time intervals when inferring the population history with 
one sharp bottleneck followed by an exponential growth 
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within 10KYA (Supplementary Fig. S3A-D). This is due to 
the fact that refining discretization results in the decline 
of recombination events in each recent discretized time 
interval, which further reduces the power of PSMC. In 
order to increase the power of Beta-PSMC for inferring 
recent demographic history, we combine the first three 
discretized time intervals to accumulate more recombi-
nation events, and use the shape of the probability den-
sity function of beta distribution to allow for population 
size fluctuation during the time interval. The simulation 
results indicate that the strategy is valid (Supplemen-
tary Fig. S3E-F). Compared with PSMC, Beta-PSMC 

improves the inference accuracy and resolution for the 
recent population history by using the probability density 
function of beta distribution. However, the above strat-
egy is not available for the recent population history with 
one sharp bottleneck followed by an instant growth (Sup-
plementary Fig. S4A-B). Although more recombination 
events are helpful to increase the power of Beta-PSMC 
for inferring recent demographic history, there exists the 
instant change of population size in the combined discre-
tized time interval. Regrettably, the shape of the probabil-
ity density function of beta distribution is continuous and 
not available for the instant change of population size in 

Fig. 1  The inferred history of the simulated data from a population history with a series of population growth and decline. For Beta-PSMC, the 
number of discretized time intervals is 20 and the number of subintervals of each time interval is 3. A The number of discretized time intervals for 
PSMC is 64. B The number of discretized time intervals for PSMC is 104. C The number of discretized time intervals for PSMC is 154. D The number of 
discretized time intervals for PSMC is 204. g, generation time; μ, mutation rate
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the combined discretized time interval (Supplementary 
Fig. S4A). If the instant growth happened more early, the 
inference accuracy was improved due to the continuous 
population size in the combined discretized time interval 
(Supplementary Fig. S4B).

It should be emphasized that the probability density 
function of beta distribution in Beta-PSMC is used to 
approximate the varying population size in each discre-
tized time interval based on the observed sequences, and 
is different from another smoothing step for the esti-
mated population sizes from different time intervals. For 
each discretized time interval, there are five main types of 
the fluctuation of population size: gradual growth, grad-
ual decline, gradual growth after gradual decline, gradual 
decline after growth, and no fluctuation. The above five 
types can be described by the probability density func-
tion of beta distribution with two parameters, which has 
flexible shapes, such as J-shape, reverse J-shape, U-shape, 
reverse U-shape and straight line shape. Although a 
second-order polynomial can also be used to approxi-
mate the five types of the fluctuation of population size, 
there are three parameters in the second-order polyno-
mial. The other type of spline, such as cubic spline and 
B-spline, can be used to approximate the more compli-
cated fluctuation of population size, but there are more 
parameters to be estimated.

Although Beta-PSMC improves the performance of 
PSMC, it has three disadvantages. The first disadvantage is 
that Beta-PSMC failed to improve the inference accuracy 
for the instant change, especially in the recent population 
history (Supplementary Fig. S4A-B). This is because the 
shape of the probability density function of beta distribu-
tion is continuous and not available for the instant change 
of population size in the given time interval. The second 
disadvantage is that the curve of population size gener-
ated from Beta-PSMC is not smooth at the joint between 
adjacent time intervals (Supplementary Fig. S5A-B). This 
is due to the singular boundary point of each discretized 
time interval. In order to smooth the curve of population 
size, a quadratic curve fitting was used at the joint between 
adjacent time intervals (Supplementary Fig. S5C-D). The 
last disadvantage is that the choice of some parameters can 
significantly influence the estimation results. Firstly, the 
number of subintervals can affect the estimation results 
(Supplementary Fig. S2A-D). According to the simulation 
results, we advise to choose the number of subintervals 
of 3. Secondly, the pattern of parameter vectors can also 
affect the estimation results. In order to improve the esti-
mation, we adopt the strategy as follows: Each discretized 
time interval is spanned by one parameter vector; If the 
estimated result is singular in one discretized time interval 
(Supplementary Fig. S3E), the discretized time interval is 

combined with adjacent discretized time intervals and then 
spanned by one parameter vector until the estimated result 
is no longer singular (Supplementary Fig. S3F).

Conclusions
PSMC can infer the demographic history accurately using 
a single personal genome for a wide time range, serving as 
a very popular tool in population genetic studies. The Beta-
PSMC method presented in this paper extends PSMC by 
allowing more detailed fluctuation of population size in 
each discretized time interval with the probability density 
function of beta distribution. This is especially useful for 
some scenarios that the population size fluctuates and thus 
improves the fine-scale inference of complex demographic 
history during some short time intervals; Furthermore, 
Beta-PSMC in some degree improves the accuracy and 
resolution for the recent population history inference. We 
expect Beta-PSMC to supplement PSMC towards a flexible 
tool for inferring population history using genomic data.

Methods
Beta‑PSMC model
Beta-PSMC method is an extension of the widely used 
PSMC method [7]. It is different from PSMC in modeling 
the scaled population size in each discretized time interval 
when discretizing coalescence-times. PSMC sets 
0 ≤ t0 < t1 < · · · < tn < tn+1 = ∞ and assumes the func-
tion �(t) , which is scaled to population size, is a constant 
�i(i = 0, · · · , n) in each discretized time interval [ti, ti+1) . 
Given a maximum of the most recent common ancestor 
(TMRCA) Tmax, PSMC sets the boundaries of discretized 
time intervals to be ti = 0.1exp

[

i
/

n log
(

1 + Tmax

)

]

− 0.1, i = 0,⋯ , n . 
For each discretized time interval [ti, ti+1) when 0 ≤ i < n , 
Beta-PSMC adopts a form of the function �(t) as follows,

where f (x;αi,βi) is the probability density function of 
beta distribution and (αi,βi) are two shape parameters of 
beta distribution; x =

t−ti
ti+1−ti

 and ti ≤ t < ti+1 ; �i is a con-
stant. In the time interval [tn, tn+1) , Beta-PSMC assumes 
the function �(t) to be a constant �n . In order to estimate 
the shape parameters of the beta distribution in each dis-
cretized time interval [ti, ti+1) , �(t) is discretized into 
�i,j j = 0, · · · , k − 1  subintervals according to the follow-
ing equation,

where ti,j = ti +
j

k

(

ti+1 − ti
) and ti+1,j = ti +

j+1

k

(

ti+1 − ti
)

, j = 0,⋯ , k − 1.

�(t) = f

(

t − ti

ti+1 − ti
;αi,βi

)

× �i(1)

�i,j =
1

ti+1,j − ti,j

∫ ti+1,j

ti,j

�(t)dt(2)
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Then, the n × k scaled population sizes, which are func-
tions of the parameter vector (�i,αi,βi)0 ≤ i < n , and 
�n are estimated by fitting the likelihood function to the 
observation data using the expectation–maximization 
(EM) algorithm similar to PSMC. Finally, the probabil-
ity density function of beta distribution with the esti-
mated parameters (�i,αi,βi)0 ≤ i < n is used to present 
the fluctuation of population size in the discretized time 
interval [ti, ti+1).

Coalescent simulation
One hundred haploid sequences of 10 Mb were simulated 
in three scenarios. In each scenario, the number of sam-
ples is 100 and all sample size is one genome. In the first 
scenario, the population experiences a series of popula-
tion growths and declines (Fig. 1). In the second scenario, 
a sharp bottleneck is followed by an exponential expan-
sion (Fig. S3). In the third scenario, a sharp bottleneck is 
followed by an instant growth (Fig. S4). We assumed the 
generation time of 25 years. The neutral mutation rate was 
chosen to be 2.5 × 10–8 per generation per site. The pro-
gram msHOT was used to generate the simulated data.

User‑specified parameter settings for Beta‑PSMC
To improve the accuracy and resolution of demographic 
inference, blocks of adjacent discretized time intervals 
can be combined to have the same parameter vector via 
a user-specified pattern. When analyzing the simulated 
data from the first scenario, the setting for Beta-PSMC 
is ‘20*1’, which means each of the 20 parameter vectors 
spans one discretized time interval. For the simulated 
data from the second scenario, the setting is ‘1*3 + 17*1’, 
with the first parameter vector spanning the first three 
discretized time intervals and each of the next 17 param-
eter vectors for one discretized time interval. In addition, 
one discretized time interval or combined discretized 
time interval can also be divided equally into independ-
ent intervals, each of which is spanned by one parameter 
vector.

Scaling to real time and population size
θ0 = 4N0µ Of Beta-PSMC, which is similar to that of 
PSMC, is the scaled mutation rate, where µ is the point 
mutation rate. The estimated TMRCA is in units of 2N0 
generations, and �(t) is scaled to N0 as well. The mutation 
rate should be specified to estimate N0 = θ0/4µ . To con-
vert generations to years, the generation time is specified.

Smoothing fits
In each discretized time interval, the curve of popula-
tion size generated from Beta-PSMC is described by the 
probability density function of beta distribution with two 

inferred shape parameters. However, the connections of 
curves between adjacent time intervals are not smooth 
(Supplementary Fig. S5A-B). In order to smooth curves 
among these time intervals, 5% from the left side of the 
curve of population size and 10% from the right side are 
discarded and then a quadratic curve fitting was used to 
connect the curves of population size between adjacent 
time intervals (Supplementary Fig. S5C-D). The curve of 
population size was defined in the interval [0,1]. The 5% 
from the left side of the curve means the interval [0,0.05] 
and the 10% from the right means the interval (0.9,1). 
Three selected points of two adjacent intervals, two of 
which are at 0.8 and 0.9 of the previous interval and the 
last is at 0.05 of the next interval, are used to quadratic 
curve fitting.

Read alignment and calling the consensus sequence
Adélie penguin genomic data was obtained from the 
NCBI Sequence Read Archive (SRR1145007). These 
sequence reads were mapped by Bowtie2 [14] against 
the Adélie penguin reference genome [15]. The diploid 
consensus sequence was obtained using the ‘pileup’ com-
mand of the SAMtools software package [16]. The com-
mands are in the Supplementary Materials.

Abbreviations
SMC: Sequentially Markovian Coalescent; PSMC: Pairwise Sequentially Marko-
vian Coalescent; HMM: Hidden Markov Model.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​022-​09021-6.

Additional file 1: Table S1. The running times ofBeta-PSMC and PSMC 
on the simulation data based on the population history witha series of 
population growths and declines. Note. For Beta-PSMC, thenumber of 
discretized time intervals is 10. “n=30; k=3”: the number ofdiscretized 
time intervals is 30 for PSMC and the number of subintervals foreach time 
interval is 3. The unit of running time is minute. The number ofrepeats is 
10. Fig.S1. Population sizes through time inferred from Adélie penguin 
genomesequences. The data of temperature change is from Li et al. 
(2014). g,generation time; μ, mutation rate. Fig. S2. The population history 
inferred with Beta-PSMCwith different subinterval settings for a simulated 
data from a population witha series of growths and declines. (A) The num-
ber of subintervals for each timeinterval is 2. (B) The number of subinter-
vals for each time interval is 3. (C)The number of subintervals for each time 
interval is 5. (D) The number ofsubintervals for each time interval is 7. g, 
generation time; μ, mutation rate. Fig. S3. The population history inferred 
with PSMC and Beta-PSMC withdifferent settings for a simulated data 
from a population with one sharpbottleneck followed by an exponential 
expansion. For Beta-PSMC, the number of subintervalsfor each time inter-
val is 3. (A) The number of discretized time intervals is 20for PSMC and the 
user-specified pattern is “20*1”. (B) The number ofdiscretized time intervals 
is 30 for PSMC and the user-specified pattern is“30*1”. (C) The number of 
discretized time intervals is 40 for PSMC and theuser-specified pattern is 
“40*1”. (D) The number of discretized time intervalsis 50 for PSMC and the 
user-specified pattern is “50*1”. (E) The number ofdiscretized time intervals 
is 20 for Beta-PSMC and the user-specified patternis “20*1”. (F) The number 
of discretized time intervals is 20 for Beta-PSMC andthe user-specified 
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pattern is “1*3+17*1”. g, generation time; μ, mutation rate. Fig. S4. The 
population history inferred with PSMC and Beta-PSMC for asimulated data 
from a population with one sharp bottleneck followed by an instant-
growth. For Beta-PSMC, the number of subintervals for each time interval 
is 3. Thenumber of discretized time intervals is 20 for Beta-PSMC and 
the user-specifiedpattern is “1*4+16*1”. The number of discretized time 
intervals is 64 for PSMCand the user-specified pattern is “4+25*2+4+6”. 
g, generation time; μ, mutation rate. (A) The instant growth happened at 
20thousand years ago (KYA). (B) The instant growth happened at 80KYA. 
Fig. S5. Smoothing the connections between adjacent timeintervals 
to improve the inference of demographic history. g, generation time; μ, 
mutation rate. The number of subintervals for each timeinterval is 3.
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