
Jiang et al. BMC Genomics          (2022) 23:819  
https://doi.org/10.1186/s12864-022-09026-1

RESEARCH

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Assisted clustering of gene expression data 
using regulatory data from partially overlapping 
sets of individuals
Wenqing Jiang1*, Roby Joehanes2, Daniel Levy2,3, George T O’Connor4 and Josée Dupuis1 

Abstract 

Background:  As omics measurements profiled on different molecular layers are interconnected, integrative 
approaches that incorporate the regulatory effect from multi-level omics data are needed. When the multi-level omics 
data are from the same individuals, gene expression (GE) clusters can be identified using information from regulators 
like genetic variants and DNA methylation. When the multi-level omics data are from different individuals, the choice 
of integration approaches is limited.

Methods:  We developed an approach to improve GE clustering from microarray data by integrating regulatory data 
from different but partially overlapping sets of individuals. We achieve this through (1) decomposing gene expression 
into the regulated component and the other component that is not regulated by measured factors, (2) optimizing 
the clustering goodness-of-fit objective function. We do not require the availability of different omics measurements 
on all individuals. A certain amount of individual overlap between GE data and the regulatory data is adequate for 
modeling the regulation, thus improving GE clustering.

Results:  A simulation study shows that the performance of the proposed approach depends on the strength of 
the GE-regulator relationship, degree of missingness, data dimensionality, sample size, and the number of clusters. 
Across the various simulation settings, the proposed method shows competitive performance in terms of accuracy 
compared to the alternative K-means clustering method, especially when the clustering structure is due mostly to the 
regulated component, rather than the unregulated component. We further validate the approach with an applica-
tion to 8,902 Framingham Heart Study participants with data on up to 17,873 genes and regulation information of 
DNA methylation and genotype from different but partially overlapping sets of participants. We identify clustering 
structures of genes associated with pulmonary function while incorporating the predicted regulation effect from the 
measured regulators. We further investigate the over-representation of these GE clusters in pathways of other diseases 
that may be related to lung function and respiratory health.

Conclusion:  We propose a novel approach for clustering GE with the assistance of regulatory data that allowed for 
different but partially overlapping sets of individuals to be included in different omics data.

Keywords:  Multi-omics data integration, Gene expression, Clustering, DNA methylation, Genotype, Framingham 
Heart Study

Background
DNA microarray technology has made it possible to 
study gene expression that characterizes important bio-
logical processes across collections of different or related 
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individuals. Elucidating the co-expression structure in 
the GE and discovering genes that have similar behavior 
under some conditions but behave independently under 
other conditions offer a tremendous opportunity for an 
enhanced understanding of functional genomics. A great 
deal of research is being carried out on the algorithms for 
clustering GE data [1]. Many of the clustering algorithms 
that are popular today are distance based [2]. The most 
widely used clustering algorithms for gene expression 
data include hierarchical clustering (HC) [3], K-means 
[4], and self-organizing maps (SOMs) [5]. HC algorithm 
is one of the earliest clustering algorithms for cluster-
ing GE data. However, it has been reported that HC can 
cause points to be clustered largely based on local deci-
sions – the iterative mergences are determined locally 
by the pairwise distances instead of a global criterion 
[6]. HC can be highly vulnerable if genes are scattered 
[7]. K-means clustering is based on a random selec-
tion of initial seed point of preferred clusters. It is quite 
computationally efficient but can be sensitive to outliers 
[6]. SOMs is a model-based clustering algorithm that 
maps high-dimensional data into 2D or 3D space [8]. It 
is widely used for GE clustering; however the fact that 
SOMs attempt to merge different patterns into a clus-
ter can make it ineffective and produce unstable solu-
tions [9]. These algorithms are quite simple and visually 
appealing, but their performances could all be sensitive 
to noise [10, 11].

Recent high-throughput technologies have generated 
a large amount of omics data. As omics measurements 
profiled on different molecular layers are interconnected, 
integrative approaches that incorporate the regulatory 
effect from multi-level omics data are needed. Borrow-
ing strength across multi-level omics data makes inte-
gration more comprehensive than single-level analysis. 
The ideal situation would be when the multi-level omics 
data, for example, gene expressions (GE) and their regu-
lators (copy number variation CNV, microRNA, methyla-
tion, etc.), are measured on the same individuals, making 
it possible to incorporate information across different 
molecular layers. Under this situation, there are several 
options to perform data integration, including Assisted 
Normalized Cut (ANCut), a clustering approach of GE 
with the assistance of information from regulators, devel-
oped by Hidalgo et  al. [12]. However, a more realistic 
situation would be that the multi-omic data are not meas-
ured on the same individuals, for example, when we have 
access to gene expression profiles from one set of indi-
viduals and DNA methylation profiles from another set 
of individuals. There may be some overlap between the 
two sets of individuals but the individuals included in the 
two datasets are not completely overlapping. Under this 
scenario, the availability of approaches for integration of 

GE and methylation is limited. In this paper, we develop a 
new method to cluster gene expression data with integra-
tion from other omic data types, when data come from 
different but partially overlapping sets of individuals. Our 
method borrows strengths from the previously devel-
oped ANCut approach.

Our ultimate goal is to better understand the biological 
mechanisms that lead to the development of a particular 
disease. The biological mechanisms may be described by 
a series of steps, and at each step, the activity of an entity 
alters the state of another entity [13]. Genes with similar 
expression patterns under various conditions may imply 
co-regulation or relation in functional pathways [14]. To 
investigate how genes interconnect and function with 
upstream regulators, we propose to improve GE clustering 
by integrating regulatory data from different but partially 
overlapping sets of individuals. The rationale is to decom-
pose gene expression into the regulated component and 
the other component that is not regulated by measured 
factors. Gene expression is typically measured with error, 
and by using the regulated component of gene expression, 
the clusters may be better defined – as long as the cluster-
ing structure of the genes is due mostly to the regulated 
component, rather than the non-regulated component. 
This decomposition structure has been extensively used 
in many previously developed integrative genome analysis 
approaches, including ANCut [12], PrediXcan [15], and 
iBAG [16]. ANCut, proposed by Hidalgo et al., uses a two-
stage framework to conduct integrative clustering analysis 
on gene expression [12]. First, important GE-regulator rela-
tionship is identified through elastic net where the corre-
lations among regulators (such as CNVs) can be properly 
accounted for [12]. Then, the ANCut measure incorporat-
ing weight matrices corresponding to both original and 
regulated GEs is adopted to cluster GE [12]. PrediXcan 
estimates the component of gene expression determined by 
an individual’s genetic profile and correlates the “imputed” 
gene expression with the phenotype under investigation 
to identify genes involved in the etiology of the phenotype 
[15]. PrediXcan application to a GWAS dataset consists of 
“imputing” the transcriptome using the weights derived 
from reference transcriptome datasets and correlating the 
genetically regulated GE component with the phenotype 
of interest using regression methods or non-parametric 
approaches. iBAG, propsed by Wang et  al., decomposes 
GE into two components at the level of mechanistic model, 
one component directly regulated by its regulators and 
the other component influenced by other mechanisms 
[16]. The association between patients’ survival is mod-
eled as a function of the two components of GE [16]. Both 
ANCut and iBAG require complete overlap of individuals 
between omics datasets. PrediXcan requires external ref-
erence data for application, and the overlap of individuals 
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between reference omics datasets needs to be complete as 
well. In our analysis, we do not need any reference data or 
require exactly the same set of individuals across different 
omic measurements. Instead, a certain fraction of overlap-
ping individuals between GE data and the regulatory data is 
adequate for modeling the regulation, thus improving GE 
clustering.

Methods
Modeling the GE‑methylation regulation
In the next sections, we use methylation data as an exam-
ple regulator to demonstrate the proposed approach. 
However, the method is generalizable to incorporate 
other types of regulators of interest that can be quanti-
fied (for example, regulatory genetic variants, lncRNA, 
microRNA, and copy number variation). Consider a 
dataset with n = n1 + n2 + n3 independent individuals, 
indexed by i . For individualsi = 1,… ,

(
n1 + n2

)
 , we assume 

that measurements are available on p GEs, denoted as 
Y

i
=

(
Yi1,Yi2,… ,Yip

)
 , i = 1,… ,

(
n1 + n2

)
 . In addition, for indi-

viduals i =
(
n1 + 1

)
,… ,

(
n1 + n2 + n3

)
 , we assume that meas-

urements are available on q methylation sites, denoted as 
Xi = Xi1,Xi2, . . . ,Xiq , i = (n1 + 1), . . . , (n1 + n2 + n3) . 
For individuals i =

(
n1 + 1

)
,… , (n1 + n2) , both the GE meas-

urements and methylation measurements are available, 
which enables modeling of the GE-methylation regulation 
based on these overlapping individuals. Specifically, con-
sider Yij = Xiβ j+ ∈ij , i = (n1 + 1), . . . , (n1 + n2), j = 1, . . . , p

where β j is the vector of the unknown regression coef-
ficients of gene j with dimension q × 1 , and ∈ij is the ran-
dom error, or in the matrix form

where β =
(
β1, . . . ,βp

)
 is the matrix of unknown 

regression coefficients with dimension q × p , and 
∈=

(
∈ij

) is a matrix of random errors.
We model the GE-methylation regulation relationship 

for one gene at a time,

Y = Xβ + ǫ

where ∈j=
(
∈(n1+1)j , . . . , ∈(n1+n2)j

) is the vector of ran-
dom errors.

To estimate β =
(
β1, . . . ,βp

)
 , we consider the follow-

ing penalized estimate for each gene j,

where YO
j  is the vector consisting of Yij ’s of the overlap-

ping individuals, i = (n1 + 1), . . . , (n1 + n2), with dimen-
sion n2 × 1 ; XO is the matrix consisting of Xi ’s of the 
overlapping individuals, i = (n1 + 1), . . . , (n1 + n2), with 
dimension n2 × q respectively; and �j > 0 and 0 ≤ αj ≤ 1 
are data-dependent tuning parameters of gene j , as pro-
posed by Hidalgo et al. [12].

We assume that only a subset of the individuals has 
both GE and methylation data, but our approach is 
equivalent to that of Hildago et al. when both omic data 
are available from all individuals [12]. In our approach, 
the regulation model is constructed based only on the 
overlapping individuals instead of the full data, adding 
flexibility to the approach. Moreover, we propose meth-
ods to estimate the optimal number of clusters, and these 
estimation methods can be applied to both our novel 
method and the original approach assume complete 
overlap between omics datasets.

The data structure is visually described in Fig. 1.
A penalization approach is adopted to accommodate the 

high data dimensionality and for variable selection pur-
poses: for a specific gene, its expression level is determined 
by only a few methylation sites. To address the potential cor-
relation among methylation at different sites, the elastic net 
penalty is adopted. In data analysis, this estimation is effec-
tively realized using the R package glmnet . The two tuning 
parameters, � and α , are selected using V-fold cross-valida-
tion (V = 5 in our simulation study and data analysis). The 
expression level of a gene is usually regulated by methylation 

Yj = Xβj+ ∈j , j = 1, . . . , p

(1)�̂j = argmin
�j

{
‖
‖‖
YO
j
− XO�j

‖
‖‖

2

2
+ �j

(
(
1 − �j

)‖
‖‖
�j
‖
‖‖

2

2
+ �j

‖
‖‖
�j
‖
‖‖1

)}

,

Fig. 1  Visualization of GE-methylation regulation model data structure and framework for the proposed assisted clustering method
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located near the transcription start site since distant meth-
ylation sites would be less likely to regulate a given gene. For 
this reason, we believe genes have different methylation reg-
ulators. Thus, we model one gene at a time to allow different 
sets of methylation predictors for each gene.

With the estimate β̂ , we denote the predicted GE val-
ues as Ŷ = X β̂ , where X is the matrix consisting of Xi ’s 
of all the individuals with available methylation measure-
ments, i = (n1 + 1), . . . , (n1 + n2 + n3), with dimension 
(n2 + n3)× q . This captures the component of GEs regu-
lated by the methylation sites included in X for individu-
als i = (n1 + 1), . . . , (n1 + n2 + n3).

Assisted clustering with partially overlapping sets 
of individuals
Consider the similarity matrix S =

(
sjl
)
p×p

 , where the 
non-negative element sjl measures the similarity between 
genes j and l . We define sjl to be equal to the inverse of 
their Euclidean distance between the original GE meas-
urements ( Y  ) for genes j and l . Further, we define Ŝ , 
which is obtained in a similar way as S but using Ŷ = X β̂ , 
the predicted regulated component of GEs given X . Note 
that Y  and Ŷ  are available on a different set of individuals, 
because the GE data and methylation data come from 
different sets of individuals.

Denote A1, . . . ,AK  as a partition of {1, . . . , p} which 
leads to K  disjoint clusters of genes, assuming K  is 
known. For Ak , denote Ac

k as its complement. We define 
the ANCut.overlap measure of between-cluster similarity 
over the within-cluster similarity ratio for each cluster,

where

and

The objective function is defined as the total ANCut.
overlap measure, the sum of the between-cluster similar-
ity over the within-cluster similarity ratio,

For a fixed K  , the optimal clustering minimizes the 
total ANCut.overlap measure, as originally proposed by 

(2)ANCut.overlap(Ak) =
cut

(
Ak ,A

c
k; S

)

cutvol
(
Ak; Ŝ

) ,

(3)
cut

(
Ak ,A

c
k; S

)
=

∑

j∈Ak ,l∈A
c
k

sjl ,

(4)cutvol
(
Ak ; Ŝ

)
=

∑

j,l∈Ak

ŝjl .

(5)ANCut .overlap
(
A1,… ,AK

)
=

K∑

k=1

ANCut .overlap
(
Ak

)
.

Hidalgo et al. [12]. The difference is that we use S and Ŝ 
computed based on different but partially overlapping 
sets of individuals. Figure 1 summarizes the flow of the 
method described above. We refer to this algorithm as 
ANCut.overlap.

Choosing K
Next, we want to remove the assumption that K is known, 
selecting K by comparing clustering results for various values 
of K. Two approaches are adopted and are described below.

(1)	Average Silhouette method [17].

The average Silhouette method computes the average 
within- and between-cluster distances between observa-
tions for varying numbers of clusters (K). It determines 
how well each observation lies within its assigned clus-
ter. A high average Silhouette indicates that the obser-
vation is well matched to its assigned cluster and poorly 
matched to neighboring clusters. The Silhouette for an 
observation is given by

where a(i) is the average Euclidean distance between 
gene i and all other genes within the same cluster, b(i) 
is the lowest average Euclidean distance of gene i to all 
the genes in any other cluster, of which i is not a mem-
ber. Note that distance a(i), b(i)are defined as the inverse 
of the predicted similarity of two genes, Ŝ

−1
 , instead of 

the observed distance, S−1 , to incorporate information 
from regulatory data. The average Silhouette is calcu-
lated by taking the mean of the Silhouette values of all 
observations. We refer to this approach as ANCut.silh, 
application of ANCut.overlap using the average Silhou-
ette method to choose the optimal number of clusters K 
instead of assumming that K is known.

(2)	Elbow method [18].

The Elbow method computes the total within-cluster 
sum of squares (WCSS) for a varying number of clusters 
(K). WCSS measures the compactness of the clustering 
and we want WCSS to be small. One should choose the 
number of clusters so that adding another cluster does 
not further reduce the total within-cluster sum of squares.

The within-cluster sum of squares for a cluster is 
given by

(6)

silh(i) =
b(i) − a(i)

max{a(i), b(i)}
if||Ci

|| > 1 and silh(i) = 0 if||Ci
|| = 1,

(7)WCSS =
1

p

p∑

j=1

∑

l=j+1

d2jl ,
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where djl is the Euclidean distance between gene j and 
gene l within the same cluster, calculated based on the 
inverse of the predicted similarity of two genes, Ŝ

−1
 , 

instead of the observed distance, S−1 , to incorporate 
information from regulatory data. For a particular num-
ber of clusters K  , the total WCSS is calculated by sum-
ming WCSS over all K  clusters. We refer to this approach 
as ANCut.elbow, application of ANCut.overlap using the 
Elbow method to choose the optimal number of clusters 
K instead of assumming that K is known.

Computation
To optimize the objective function defined in (2), we 
adopt the simulated annealing (SA) technique [19]. The 
algorithm proceeds as follows.

Let t be the iteration index. At iteration t , we denote 
A(t)

=

{
A
(t)

1
,… ,A

(t)

K

}
 as the partition (clustering result) and 

ANCut.overlap(t) as the value of the objective function.

Step 1. Randomly initialize A(0) =

{
A
(0)
1 , . . . ,A(0)

K

}
.

Step 2. Based on the partition in iteration t , compute 
m

(t)
k  as the number of gene pairs 

(
j, l

)
 with j, l ∈ A

(t)

k
 for 

k = 1, . . . ,K  . Draw two clusters, A(t)
k(−)

 and A(t)
k(+)

 , 
from 

{
A
(t)
1 , . . . ,A(t)

K

}
 with probabilities proportional 

and inversely proportional to m
(t)
k∑K

k=1m
(t)
k

 , respectively. 

Clusters A(t)
k(−)

 and A(t)
k(+)

 are the clusters that we will 
possibly update in iteration t + 1.
Step 3. At iteration t + 1 , draw gene i randomly from 
cluster A(t)

k(−)
 . Set A(t+1)

k(+)
= A

(t)

k(+)

⋃
{i} , A(t+1)

k(−)
= A

(t)

k(−)
�{i} , 

and A(t+1)
h := A

(t)
h  for h  = k(−), k(+).

Step 4. If ANCut.overlap(t + 1) ≤ ANCut.overlap(t), accept the 
update of A(t+1) in step 3. If not, accept the update 
of A(t+1) in step 3 with probability 
exp

(
−

ANCut.overlap(t+1)−ANCut.overlap(t)

T (t+1)

) , where T (t) = Llog(t + 1) is 
the temperature function with L user-defined as a 
large number ( L = 10,000 in our simulation study 
and data analysis); and otherwise reject the update 
in step 3, A(t+1) = A(t).
Step 5. Repeat steps 2–4 until t reaches a pre-specified 
large number of iterations B , e.g. 10,000 in our simu-
lation study and data analysis. Convergence of the SA 
algorithm has been established in the literature [19]. 
The value of B is not important, as long as it is large 
enough [12]. B = 3,000 has been shown to be large 
enough to achieve convergence for datasets of dimen-
sion n = 200, p = 500, q = 500 [12]. With a similar 
number of genes measured on more individuals in our 
simulation study, B = 10,000 is selected and should be 
large enough to achieve convergence. The sufficiency of 
B = 10,000 is further confirmed by additional simula-
tions with B = 20,000 , the results with B = 20,000 

and the results with B = 10,000 are similar. Because we 
want the algorithm to determine the optimal number 
of clusters without pre-specifying K  , our computa-
tion process includes a repeat of the SA algorithm for 
choosing the optimal number of clusters.

Option 1: Using the average Silhouette method to 
determine the optimal number of clusters.

Step 1. Compute clustering algorithm (e.g., SA) for differ-
ent values of K . For instance, K varies from 1 to 10 clusters.
Step 2. For each K  , calculate the average Silhouette 
of all observations (avg.sil).
Step 3. Plot the curve of avg.sil according to the 
number of clusters K .
Step 4. The location of the maximum is considered as 
the appropriate number of clusters.

Option 2: Using the elbow method to determine the 
optimal number of clusters.

Step 1. Compute clustering algorithm (e.g., SA) for 
different values of K  . For instance, K  varies from 1 to 
10 clusters.
Step 2. For each K  , calculate the total within-cluster 
sum of squares WCSS.
Step 3. Plot the curve of WCSS according to the 
number of clusters K .
Step 4. The location of a bend (i.e. max 2nd deriva-
tive) in the plot is generally considered as an indica-
tor of the appropriate number of clusters.

Application to the Framingham Heart Study (FHS)
The Framingham Heart Study (PMID: 474,565, 
17,372,189) is a longitudinal study of three generations 
of participants focused on cardiovascular diseases. It 
comprises three generations of participants: the Origi-
nal cohort followed since 1948; the Offspring cohort 
consisting of their offspring and spouses of the off-
spring, followed since 1971; and Generation 3 cohort 
composed of the children and their spouses from the 
largest Offspring families, enrolled in 2002. The Origi-
nal cohort enrolled 5,209 men and women who com-
prised two-thirds of the adult population then residing 
in Framingham, MA and survivors continue to receive 
biennial examinations. The Offspring cohort of 5,124 
participants (including 3,514 biological offspring), have 
been examined approximately once every 4–6 years. 
Generation 3 cohort included 4,095 individuals that 
have been examined on 4 occasions.

The gene expression profiling has been described in 
detail by Joehanes et al. [20]. Briefly, fasting peripheral 
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whole blood was collected during clinical visits. Whole 
blood gene expression was measured by the Affymetrix 
Human Exon 1.0st Array. The raw data were quantile-
normalized and log2 transformed, followed by sum-
marization using Robust Multi-array Average [21]. The 
data was further adjusted for batch effects and technical 
covariates, including the first principle component of 
the expression data, batch effect, and the all-probeset-
mean residual. GE profiles for 17,873 genes are avail-
able on 5,626 participants from the Offspring cohort 
who attended exam 8 (2005–2008) and the Generation 
3 cohort who attended exam 2 (2008–2011). Out of the 
5,626 participants, more than 2,000 participants from 
the Generation 3 cohort had complete blood count 
(CBC) values. For the other participants, their CBC 
values were imputed by PLS (Partial Least Square) and 
normalized by replacing negative values with zero and 
adjusting total percentage to 100%. Details have been 
described elsewhere [20].

The DNA methylation profiling was performed using 
the Illumina Infinium Human Methylation 450 K Bead-
Chip. Samples were extracted from peripheral whole 
blood. Methylation profiles, measured in beta values, for 
443,298 CpG sites are available on 4,161 participants. 
There are 21,836 CpG sites with missing values for at 
least 1 participant, and a total of 1,335 CpG sites con-
tain missing values for more than 1% of the participants. 
One hundred and thirty-three CpG sites contain missing 
values for more than 5% of the participants. One CpG 
site contains missing values for 2,941 participants. This 
is the maximum proportion of missing we observe from 
FHS methylation profiles, 2,941/4,161 = 70.7%. To bor-
row information from methylation regulators and assist 
in GE clustering, we perform imputation of the miss-
ing methylation data. We use methyLImp, a simple and 
computationally efficient imputation method based on 
linear regression, to estimate the missing methylation 
values [22, 23]. The rationale for the approach is that 
methylation levels exhibit both long- and short-range 
correlations that can be captured by simple linear regres-
sion [24, 25]. The missing values are imputed by itera-
tively performing linear regression with pseudo-inverse 
transformation on the available data. We implement 
the imputation in R using the freely available R-package 
methyLImp.

It has been reported that the inter-individual vari-
ation is heritable and can be mapped as quantitative 
trait loci (QTLs) [26, 27]. Indeed, mapping studies 
have revealed that the associations between GE and the 
QTLs are common and often with large effects. These 
regulatory variants can act either locally or at a distance 
to participate in modulating various regulatory epige-
netic processes [28]. Therefore, we incorporate genetic 

variants in addition to methylation as regulators of gene 
expression, i.e. additional predicting factors in the GE-
regulator relationship models. FHS participants were 
genotyped on the Affymetrix 550  K single nucleotide 
polymorphism (SNP) array, and imputed to the Haplo-
type Reference Consortium reference panel release 1.1 
using the minimac3 software on the Michigan Imputa-
tion Server. Imputed genotypes for 5,608,682 common 
variants with minor allele frequency (MAF) > = 5% were 
available from 8481 participants after quality control 
procedures were applied to omit individuals with low-
quality genotypes.

There is an overlap of 3673 individuals between the GE 
dataset and the methylation dataset, an overlap of 5257 
individuals between the GE dataset and the genotype 
dataset, and an overlap of 3855 individuals between the 
methylation dataset and the genotype dataset. Overlap 
between the GE dataset, the methylation dataset, and 
the genotype dataset includes 3419 individuals. Figure 2 
summarizes the structure of the three datasets.

The objective of this analysis is to perform cluster-
ing on the genes related to lung function, to gain better 
insight into genes and pathways affecting pulmonary 
traits and disease. To select genes with high expression 
in lung tissues, we extract the expression level, measured 
as the number of transcripts per million RNA molecules 
(TPM), in lung tissues for ~ 20k protein-coding genes 
from the GTEx database (https://​gtexp​ortal.​org/​home/). 
The trait of interest is the FEV1/FVC ratio. FEV1/FVC 
ratio represents the proportion of a person’s vital capac-
ity that they are able to expire in the first second of 
forced expiration (FEV1) to the full, forced vital capac-
ity (FVC). The ratio is often used to diagnose pulmonary 
diseases such as chronic obstructive pulmonary disease 
(COPD).

Fig. 2  Visualization of FHS data structure

https://gtexportal.org/home/


Page 7 of 19Jiang et al. BMC Genomics          (2022) 23:819 	

Identification of GE regulators
To identify GE regulators, we map methylation sites 
and genetic variants to genes based on their positions. 
Methylation sites that are located near a gene, i.e. +/- 
50  kb around the transcription start site of the gene, 
and genetic variants that are located near that gene, 
i.e. +/- 50  kb around the transcription start site or 
stop site of the gene are identified as candidate regula-
tors of the GE.

Modeling the GE‑methylation‑genotype regulation
There is an overlap of 3419 participants between the GE 
dataset, the methylation dataset, and the genotype data-
set. Based on the overlapping individuals, we construct 
linear mixed effect models of expression for the genes 
using the methylation sites and the SNPs mapped to the 
gene, adjusting for the imputed proportions of various 
cell types such as white blood cell, red blood cell, plate-
let, lymphocyte, monocyte, eosinophil, basophil as addi-
tional covariates in the regression models. In addition, 
we account for family structure through a kinship matrix 
when selecting predicting variables through elastic net 
regularization:

where � > 0 and 0 < α < 1 are data-dependent tun-
ing parameters, selected using V-fold cross-validation 
(V = 5).

Note that we model one gene at a time so that each 
gene can be predicted by a different set of predictors, i.e. 
local CpG sites, local SNPs, and cell type proportions. 
Each gene has its own value for the tuning parameters. 
In our data analysis, this estimation is implemented 
using the R package ggmix to account for the family cor-
relation structure among the FHS participants using a 
kinship matrix.

Assessing GE imputation quality
Because the imputation of GE based on the regulators 
plays an essential role in the assisted clustering algorithm, 
we examine the GE imputation quality from the regres-
sion model. Imputation quality is measured as the square 
of the correlation coefficient ( R2 ) between the predicted 
GE values and the observed GE values. In our simulation 
study, imputation quality is assessed using overlapping 
individuals. In the application to FHS data, we fit a linear 
mixed effect model based on 35% of the 3,419 overlap-
ping individuals and use the model to predict GE for the 
remaining 65% overlapping individuals. Imputation qual-
ity is then assessed based on the predicted GE and the 
observed GE of these 65% overlapping individuals.

�̂ = argmin
�

{
||Y − �X ||2 + �

(
(1 − �)||�||2 + �||�||1

)}
,

Assisted clustering with partially overlapping sets 
of individuals
With the transition matrix estimate β̂ , we can predict 
the GE level based on the methylation and SNP observa-
tions. Then we calculate the similarity matrix based on 
the observed GE, S , and the predicted GE values, Ŝ . The 
last step is to apply the ANCut.overlap algorithm using 
the computed values of S and Ŝ.

Gene set enrichment analysis
With gene clustering results from the methods above, we 
then proceed with enrichment analysis to better under-
stand the biology behind the clustered gene sets. Gene 
set analysis methods evaluate pre-specified gene sets for 
enrichment of modest associations with a disease or trait. 
Our gene set enrichment analysis (GSEA) starts with 
a linear regression framework with gene scores as the 
outcome and the gene cluster membership as the only 
exposure. This regression tests whether the gene scores 
in a gene cluster are significantly different from gene 
scores for genes not included in a specific cluster. Gene 
scores are defined as the z scores from a transcriptome-
wide association study (TWAS) between the expression 
level of each gene Y  and the outcome of interest, after 
adjusting for potential confounders. We perform TWAS 
on the genes using FHS samples through linear mixed 
effect models to account for the familial correlation 
among related participants, investigating the association 
between each gene and the outcome FEV1/FVC, adjust-
ing for sex, height, and proportions of various cell types 
such as white blood cell, red blood cell, platelet, lympho-
cyte, monocyte, eosinophil, basophil. The gene scores, 
specifically the z-scores from TWAS, are expected to 
have a mean of 0 under the null hypothesis that genes are 
not associated with the trait. Thus, there is no intercept 
included in the GSEA linear regression. For the clusters 
enriched with associations with the phenotype of inter-
est, we further analyze the genes in the cluster using 
the Kolmogorov-Smirnov test to compare the ranks of 
genes included in these clusters to the ranks of genes not 
included in these clusters.

Over‑representation analysis (ORA)
For the clusters enriched with associations with the pheno-
type, the over-representation analysis (ORA) is further per-
formed to examine the degree of over-representation of these 
genes in various KEGG pathways (https://​www.​genome.​jp/​
kegg/​pathw​ay.​html). Over-representation analysis tests if the 
genes included in these clusters include more genes from the 
pre-specified KEGG gene sets than expected by chance. For 
a particular cluster k , k = 1, . . . ,K , and a particular KEGG 
pathway, the statistical significance of over-representation 

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
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is evaluated using a hypergeometric test. A p-value < 0.05 is 
taken as statistical evidence of over-representation.

Simulation study
We evaluate our novel approach using a simulation study. 
In our simulations, we consider n individuals, p genes, and 
q CpG sites. We induce GE clustering structure by impos-
ing clusters on the regulators, i.e. the q CpG sites. K  equal-
sized methylation clusters are generated. The CpGs/GEs in 
the same cluster are correlated but the CpGs/GEs in differ-
ent clusters are uncorrelated. Within each cluster, qK  CpG 
sites regulate the expression level of pK  genes. Under this 
data generating structure, there are K  clusters of CpGs/
GEs. GEs in the k th cluster are regulated by methylation of 
CpGs in the k th cluster, k = 1, . . . ,K  . This is equivalent to 
assuming that the gene expression clusters are due to the 
component regulated by methylation, rather than the non-
regulated component independent of methylation.

Scenario I
We use the Framingham Heart Study (FHS) data as a 
benchmark for data generation in our Scenario I simula-
tion study. The methylation data matrix X , of dimension 
n× q , is first generated from a multivariate normal dis-
tribution with mean 0 and correlation matrix

where the off-diagonal elements of each Rkare fixed to 
0.1. Based on FHS data, the median value of the corre-
lation coefficients between methylation of CpGs on the 
same chromosome is around 0.1, and 90% quantile is 
around 0.3. We then apply an expit() transform on the 
X matrix to obtain values in the [0,1] range to represent 
typical methylation beta values.

Gene expression data matrix Y  and methylation values 
are connected with the following regression model:

We define the transition matrix as

such that in 95% of the columns (genes) of each Bk , 
k = 1, . . . ,K , 3 out of the qK  elements are non-zero and 
follow a normal distribution with a mean of 0.5 and a var-
iance of 0.75. In the remaining 5% of the columns (genes), 

ρ =




R1 · · · 0
...

. . .
...

0 · · · RK



 q × q

Y = Xβ + ǫ

β =




B1 · · · 0
...

. . .
...

0 · · · BK





q×p

we assign 12 non-zero elements instead of 3 non-zero 
elements.

We assume that the error matrix follows a multivariate 
normal distribution:

.
For each i = 1, . . . , p , most of the σij ’s are 0 with 5% 

of σij > 0 with correlation coefficient following a nor-
mal distribution with mean 0.05 and variance of 0.02, 
and 2% of σij < 0 with correlation coefficient following 
a normal distribution with mean − 0.05 and variance of 
0.02. This results in the following: only 5% of the genes 
can be well predicted by methylation because (1) the 
number of methylation predictors is 12 instead of 3; 
(2) the variance of the error term is 1/8 instead of 1/4. 
Imputation quality for the majority of the genes will 
be poor. This reflects what we observe in Framingham 
Heart Study (FHS) data.

We first assume that there is no missing data, i.e. we 
have access to GE and methylation measures for all indi-
viduals. This would allow the application of the method 
developed by Hidalgo et  al. [12]. We then generate data 
with varying degrees of missingness, i.e. we have access to 
a subset of individuals with GE data and another subset 
with methylation data and we then model the regulation 
based on the overlapping individuals. In the simulation 
analysis, let pcnt determine the proportion of overlapping 
individuals. We consider pcnt ∗ n overlapping individu-
als. The proportions of missing in methylation and GE 
are f ∗ (1− pcnt) and 

(
1− f

)
∗ (1− pcnt) respectively, 

where f  is the proportion of the non-overlapping indi-
viduals with available GE data. We have explored values of 
f = 0.3, 0.5, and 0.7 in the simulation analysis.

Scenario II
To evaluate the robustness of the algorithm, we consider 
a scenario where we incorrectly identify the predictors.

To simulate this scenario, the construction of the meth-
ylation matrix and the regression model remains the same 
as in Scenario I. There are certain modifications to simulate 
the transition matrix and the error matrix.

We define the transition matrix

∈∼ N

�

�,
∑

�

,
∑

=

⎡
⎢
⎢
⎢
⎢
⎣

�2

1
⋯ �1p

⋮ ⋱ ⋮

�p1 ⋯ �2

p

⎤
⎥
⎥
⎥
⎥
⎦ p×p

, �2

i
=

1

4
or

1

8
, i = 1,… , p.

β =




B1 · · · 0
...

. . .
...

0 · · · BK





q×p



Page 9 of 19Jiang et al. BMC Genomics          (2022) 23:819 	

such that there are only 2 non-zero elements follow-
ing N(0.5, 0.75) distribution in each of the block Bk , 
k = 1, . . . ,K .

We define the error matrix to follow a multivariate nor-
mal distribution:

However, for each i , 50% of σij ′s are positive with 
correlation coefficient followingN (0.30, 0.10) and 40% 
are negative with correlation coefficient following 
N (−0.30, 0.10).

Under this scenario, the correlation structure of the gene 
expression is dominated by the correlation embedded in 
the error matrix rather than from the measured regulators.

To evaluate the accuracy of the clustering algorithm, we 
consider the adjacency matrix

The accuracy is measured as the degree of consistency 
between the true adjacency matrix CT and the estimated 
adjacency matrix Ĉ , defined by

where ⊙ is the component-wise product. A larger value 
suggests a higher accuracy.

Results
Application to FHS
We apply the ANCut.overlap clustering with the aver-
age Silhouette method and the elbow method to the 
Framingham Heart Study (FHS) data. Table  1 summa-
rizes the demographic and clinical characteristics of the 
FHS participants in the GE dataset, the DNA methylation 
dataset, and the genotype dataset.

A total of 4152 genes with lung tissue TPM > = 1 in 50% 
of the GTEx samples are selected. GE profiles for these 
4152 genes are available on 5626 FHS participants. A figure 
that shows the distribution of these 4152 genes in the 5626 
FHS individuals is available in supplementary materials.

For each of the 4152 genes, we identify the methylation 
sites that are located near that gene, i.e. +/- 50 kb around 
the transcription start site of the gene. In total 207,865 
CpG sites are mapped to the 4152 genes. Methylation 
profiles, measured in beta values, of these 20,7865 CpG 
sites are available on 4161 FHS participants. A figure 
that shows the distribution of the distance, in base pair, 

∈∼ N

�

�,
∑

�

,
∑

=

⎡
⎢
⎢
⎣

�2

1
⋯ �1p

⋮ ⋱ ⋮

�p1 ⋯ �2

p

⎤
⎥
⎥
⎦

p×p

, �2

i
=

1

2
, i = 1,… , p.

C =
(
cjl
)
p×p

, cjl =

{
1, if gene g and gene l are within the same cluster
−1, if gene g and gene l are within different clusters

(8)Maccuracy =

∑
1≤i≤p,1≤j≤p

�
CT ⊙ �C

�

ij
∑

1≤i≤p,1≤j≤p

�
CT ⊙ CT

�
ij

,

between the methylation sites to their mapped genes is 
available in the supplementary materials. In addition, the 
Fig.  5  that shows the distribution of beta values of the 
methylation sites in the 4161 FHS participants can also 
be found in supplementary materials.

To predict gene expression most accurately, we 
include genetic variants as additional predictors. In total 
1,103,723 common SNPs with minor allele frequency 
(MAF) > = 5% are mapped to the 4,152 genes. Geno-
type data for these 1,103,723 SNPs are available on 8,481 
participants.

Based on the 3419 overlapping individuals, we model 
the regulation relationship between GE and methylation 
together with genotype. Because we perform penalized 
regression, the majority of variables are not selected to 
have any effect on GE. For many of the genes, the opti-
mal fit of the penalized regression is achieved when only 
the cell type proportions have non-zero coefficients 

– none of the local CpG sites or the local SNPs is esti-
mated to have any regulating effect on the expression 
of those genes. Out of the 4152 genes modeled, 2179 
genes are predicted by at least 1 CpG site or 1 SNP in 
the penalized regression. Because we want to incorpo-
rate the regulation information from CpGs and SNPs 
to assist in GE clustering, the following co-expression 
analysis is performed only on these 2179 genes. In this 
way, we investigate the GE clustering structure of genes 
that are regulated by the measured methylation and 
genotype.

With ANCut.overlap clustering, the Silhouette method 
determines that the best fit is achieved with 13 clusters, 
whereas the elbow method achieves optimal fit with 10 
clusters. Considering that there are a large number of 
genes, we allow for more clusters and select K = 13 to be 
used in the following analyses. Table 2 shows the degree 
of consistency between the adjacency matrices according 
to different clustering algorithms. As a comparison, we 
also perform ANCut.subset clustering with 13 clusters 
and K-means clustering with 13 clusters.

A closer examination of the ANCut.overlap clustering 
with the Silhouette method, ANCut subset clustering with 
K = 13 , and the K-means with K = 13 shows that the 
ANCut.overlap clustering and ANCut.subset clustering 
tend to give more balanced clusters in terms of the number 
of genes included in each cluster. Table 3 shows the number 
of genes assigned to each cluster, comparing the three clus-
tering approaches. Assignment by K-means provides clus-
ters with more varied numbers of genes per cluster.
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Next, we want to check if the ANCut.overlap cluster-
ing minimizes the objective function, i.e. the sum of the 
between-cluster similarity over the within-cluster simi-
larity ratio. Table 4 presents the ANCut.overlap measure 
of each of the 13 clusters A1, . . . ,A13 , defined in (2)–
(4),and the objective function, the sum of all the clusters 
ANCut.overlap =

∑13
k=1ANCut.overlap(k) , comparing 

the three clustering algorithms ANCut.silh, ANCut.sub-
set, and K-means. The ANCut.overlap(Ak) measures are 
obtained from the ANCut.overlap clustering algorithm, 
we sum up the ANCut.overlap(Ak) measures based on 

different clustering partitions assigned by the three clus-
tering approaches.

ANCut.silh clustering gives lower ANCut.overlap 
value than K-means does, 43.2 < 66.2. This confirms that 
the ANCut.overlap clustering is indeed minimizing the 
sum of the between-cluster similarity over the within-
cluster similarity ratio. Surprisingly, ANCut.subset 
algorithm gives the highest ANCut.overlap value. When 
the number of individuals with complete overlap of 
omics dataset is limited, ANCut.subset performs worse 
than K-means does, in terms of minimizing the sum 

Table 1  Demographic and clinical characteristics of the FHS participants

Characteristics Datasets

GE dataset Methylation dataset Genotype dataset

Age (years), mean ± sd 44 ± 9.1 43 ± 8.7 45 ± 9.4

Sex, N (%)

  Male 2583 (45.9%) 1925 (46.3%) 3490 (47.0%)

  Female 3043 (54.1%) 2236 (53.7%) 3940 (53.0%)

Height (inches), mean ± sd 66.4 ± 3.8 66.2 ± 3.8 66.3 ± 3.8

Weight (pounds), mean ± sd 177.3 ± 41.5 175.9 ± 40.6 176.5 ± 41.3

BMI, mean ± sd 28.2 ± 5.7 28.1 ± 5.5 28.1 ± 5.6

Smoking, N (%)

  Non-smoker 2716 (48.3%) 1907 (45.8%) 2851 (45.8%)

  Former smoker 2400 (42.7%) 1901 (45.7%) 2811 (45.1%)

  Current smoker 509 (9.0%) 353 (8.5%) 567 (9.1%)

Cigarettes per day, mean ± sd 1.3 ± 4.9 1.2 ± 4.6 1.3 ± 4.9

FEV1 (observed / predicted), mean ± sd 0.98 (0.15) 0.98 (0.16) 0.98 (0.16)

FVC (observed / predicted), mean ± sd 1.02 (0.14) 1.02 (0.14) 1.02 (0.14)

FEV1/FVC (observed / predicted), 
mean ± sd

0.95 (0.09) 0.95 (0.09) 0.95 (0.09)

Table 2  Consistency between different clustering algorithms on FHS

Consistency of Adjacency Matrix b/w 
Clustering Results

ANCut.silh (K = 13) ANCut.elbow (K = 10) ANCut.subset (K = 13) K-means (K = 13)

ANCut.silh 1 82.0% 73.1% 80.6%

ANCut.elbow 82.0% 1 69.3% 83.2%

ANCut.subset 73.1% 69.3% 1 68.9%

Kmeans 80.6% 83.2% 68.9% 1

Table 3  Comparison of gene cluster size (number of genes) across different clustering approaches

Please note that the cluster number assignment is arbitrary. There is no 1-to-1 correspondence between the ANCut.silh clustering assignment, ANCut.subset 
clustering assignment, and the K-means clustering assignment

Number of genes in cluster 1 2 3 4 5 6 7 8 9 10 11 12 13

ANCut.silh 255 127 147 133 134 221 183 124 176 117 286 169 107

ANCut.subest with K = 13 205 163 248 128 176 84 192 94 181 156 188 141 223

K-means with K = 13 323 173 102 358 148 60 39 283 101 50 254 17 271
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of the between-cluser similarity overth within-cluster 
similarity ratio.

Figure 3 compares the cluster assignment of each gene.
Comparing the results of the K-means clustering and the 

ANCut.silh clustering, K-means classifies the genes solely 
based on the means of the gene expression levels; however, 
ANCut.overlap clustering classifies the genes based on not 
just the means. For example, the cluster colored in dark 
blue spreads from 1.0 to 1.5 on the x-axis, which overlaps 
with the cluster colored in red and yellow. Also, the clus-
ter colored in red spreads from the minimum value on the 
x-axis to almost the value maximum on the x-axis.

Note that imputation is an important step in the 
ANCut.overlap clustering. We assess the imputation 
quality of GE using local methylation, local SNPs, and cell 
type proportions in FHS. Figure 4 shows the distribution 
of the imputation quality measured as R2 of the genes.

Further looking at the 13 genes highlighted in 
Fig. 4 with R2 higher than 0.7, we find that our proposed 
approach ANCut.overlap assigns these genes into 4 dif-
ferent clusters, whereas K-means assigns these genes 
into 8 different clusters. This implies that our approach, 
while borrowing information from methylation and 

genotype, is more likely to detect the correlation struc-
ture across GEs.

Next, we proceed to the gene set enrichment analy-
sis (GSEA), starting with a linear regression model with 
association gene scores as the outcome and gene cluster 
membership as the only exposure, no intercept included. 
Table 5 shows the GSEA linear model result.

We then take a closer look at genes assigned to the 
clusters with the lowest p-values, e.g. clusters 11 and 7 
from ANCut.silh clustering assignment, clusters 5 and 
3 from K-means clustering assignment. Figure 5  shows 
that there is a substantial proportion of overlap between 
the genes in these clusters.

Kolmogorov-Smirnov (KS) test is performed on clus-
ters 11 and 7 from ANCut.silh clustering. The KS p val-
ues of clusters 11 and 7 are 0.013 and 0.090 respectively. 
Figures that show KS test details are available in supple-
mentary materials.

Next, we perform over-representation analysis (ORA) 
to examine the degree of over-representation of the 
genes in several KEGG pathways. ORA p-values are 
calculated for clusters 11 and 7, the two clusters with 
the lowest GSEA enrichment p-values. As a compari-
son, ORA is also performed on clusters 6 and 9, the two 

Table 4  Comparison of ANCut .overlap (Ak) of each cluster across different clustering approaches

1 2 3 4 5 6 7 8 9 10 11 12 13 sum

ANCut.silh 2.6 3.4 3.4 3.4 3.7 3.6 2.9 3.6 2.9 3.9 2.2 3.4 4.1 43.2

ANCut.subest with K = 13 7.4 8.0 9.1 7.5 7.9 7.0 7.0 6.7 8.0 6.7 7.1 8.1 8.3 98.8

K-means with K = 13 1.7 2.9 4.0 1.4 3.3 6.6 8.3 2.0 4.3 6.5 2.0 21.3 1.9 66.2

Fig. 3  Comparison of cluster assignment across different clustering approaches. Panel (a): cluster assignment by ANCut.silh clustering 
incorporating methylation and SNPs data; panel (b): cluster assignment using K-means clustering. The x-axis shows the mean of gene expression 
level averaged over FHS samples, log transformed; the y-axis shows the coefficient of variation of gene expression level, log-transformed
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clusters with the least significant GSEA enrichment 
p-value and with a comparable number of genes. The 
significance of the over-representation analysis is sum-
marized in Table 6.

Cluster 11 is over-represented in the immune-related, 
diabetes, lung, COVID-19, liver, neuro-degeneration, 
and kidney disease pathways. Cluster 7 is over-repre-
sented in the immune-related, diabetes, lung, liver, and 

Fig. 4  Distribution of the GE imputation quality evaluated in 65%*3,419=2,222 FHS individuals

Table 5  GSEA linear model based on ANCut.silh clustering result

ANCut.silh clustering K-means clustering

Estimate Std error P value Estimate Std error P value

Cluster 1 0.102 0.076 0.180 0.039 0.068 0.561

Cluster 2 0.032 0.108 0.766 0.078 0.092 0.397

Cluster 3 0.014 0.100 0.889 -0.287 0.120 0.017

Cluster 4 0.171 0.106 0.105 0.111 0.064 0.085

Cluster 5 0.076 0.105 0.469 -0.281 0.100 0.005

Cluster 6 0.010 0.082 0.906 0.075 0.157 0.631

Cluster 7 -0.195 0.090 0.030 -0.103 0.195 0.597

Cluster 8 0.084 0.109 0.441 -0.095 0.072 0.188

Cluster 9 0.045 0.092 0.620 0.193 0.121 0.112

Cluster 10 -0.108 0.113 0.335 0.038 0.172 0.824

Cluster 11 -0.235 0.072 0.001 -0.104 0.076 0.172

Cluster 12 -0.064 0.094 0.493 -0.380 0.295 0.198

Cluster 13 0.007 0.118 0.949 0.010 0.074 0.888
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neuro-degeneration pathways. Clusters 6 and 9 are not 
over-represented in any of the pathways of interest.

Simulation studies
Scenario I
Table 7 summarizes the GE imputation quality under dif-
ferent simulation settings described for scenario I based on 
100 simulation replicates. As shown in Table 7, the maxi-
mum imputation quality can be as high as 0.7 under cer-
tain settings but the median imputation quality remains as 
low as 0.1. This is due to how we generate the data – only 
5% of the genes can be well predicted, whereas the imputa-
tion quality is poor for the remaining 95% of genes, resem-
bling what was observed in the FHS data.

Simulation study results with higher off-diagonal ele-
ments of Rk , corr = 0.3 , in the correlation matrix ρ of 
the methylation data, as well as simulation study results 
with other values of f  , 0.3 and 0.7, the proportion of the 

non-overlapping individuals with available GE data are 
summarized in the supplementary materials.

Summary statistics of clustering accuracy are presented 
in Table  8. Median values are computed based on 100 
replicates.

Scenario II
Table 9 summarizes the imputation quality with various 
parameter settings under the poor-imputation quality 
scenario based on 100 replicates. The number of genes 
p = 500 , the correlation coefficient between methyla-
tion of CpGs corr = 0.1 , and varying the proportion of 
the non-overlapping individuals with available GE data 
f = 0.5 remain fixed.

Comparison of clustering accuracy between different 
clustering approaches is presented in Table  10. Median 
values are computed based on 100 replicates. The num-
ber of genes p = 500 remains fixed.

Fig. 5  Genes of the lowest and the 2nd lowest GSEA p-value cluster membership. Panel (a): overlap (green circles) between genes assigned to 
cluster 11 from ANCut.silh clustering (red circles) and genes assigned to cluster 3 from K-means clustering (blue circles); Panel (b): overlap (green 
circles) between genes assigned to cluster 7 from ANCut.silh clustering (red circles) and genes assigned to cluster 5 from K-means clustering (blue 
circles). x-axis shows the mean of gene expression level averaged over FHS individuals, log-transformed; y-axis shows the -log of the p-value of 
association between gene expression and FEV1/FVC

Table 6  ORA p values of genes compared with KEGG pathways

Immune
(n = 337)

Diabetes
(n = 93)

Lung
(n = 126)

COVID-19
(n = 26)

Liver
(n = 221)

Colorectal
(n = 49)

Skin
(n = 47)

Neuro-
degeneration
(n = 139)

Kidney
(n = 93)

No. 11 0.018 0.054 5.3e-04 9.9e-04 5.8e-03 0.468 0.884 0.034 0.015

No. 7 0.065 0.085 0.058 0.375 2.0e-04 0.111 0.566 4.7e-03 0.152

No. 6 0.546 0.340 0.640 0.758 0.666 0.565 0.426 0.556 0.613

No. 9 0.996 0.952 0.951 0.890 0.923 0.917 0.905 0.889 0.952



Page 14 of 19Jiang et al. BMC Genomics          (2022) 23:819 

Discussion
We proposed a novel approach for clustering GE with the 
assistance of regulatory data that allowed for different but 
partially overlapping sets of individuals to be included 
in different omics data. We evaluated our approach by 
simulations and an application to FHS data. We found 
that the proposed approach showed competitive perfor-
mance in terms of accuracy compared to the alternative 
K-means method, especially when the clustering struc-
ture was due mostly to the regulated component, rather 
than the non-regulated component. Compared to the 
ANCut approach applied on the full simulated dataset 
without missing data, the proposed approach assuming 
only a subset of observations were part of both omics 
datasets showed less accurate but satisfactory perfor-
mance, because ANCut could only be applied when there 
was no missingness [12]. In real data analysis, we would 
not have access to the full data. Instead, we can apply the 
ANCut approach to only the overlapping individuals that 
have both omics data, a subset of the full simulated data-
set. Compared to this approach, our proposed approach 
showed more accurate performance when the clustering 
structure was due mostly to the regulated component.

The performance of the proposed approach depended 
on the strength of the GE-regulator relationship, the 
degree of missingness, data dimensionality, sample size, 
the number of clusters, and other factors. Across the many 
various simulation settings presented in Table 8, the pro-
posed method was observed to have competitive perfor-
mance in terms of accuracy. Specifically, clustering results 
of the proposed method (column ANCut.overlap) were 
almost always more accurate compared to that of K-means 
clustering (column K-means), and were always more accu-
rate than that of ANCut method applied to only the indi-
viduals that have both omics data (column ANCut.subset). 
The accuracy of the novel approach was not far from the 
results obtained by ANCut method assuming all samples 

were available in both omics datasets (column ANCut). 
Note that the performance of both the proposed approach 
and ANCut decayed as the number of CpG sites unassoci-
ated with GE increased. This was expected because both 
approaches involved estimating the regulation relation-
ship. In our simulation study, when we generated data, we 
assumed a fixed number of CpG regulators for each gene, 
i.e. the number of non-zero elements in the columns of the 
transition matrix β . Increasing q , the number of methyla-
tion sites, did not help but only added more noise in the 
regression model when we estimated the transition matrix. 
This was consistent with what we presented in Table  7, 
the imputation quality decreased as q increased, given the 
other parameters. The decrease in the imputation quality 
resulted in a decrease in the clustering accuracy.

For the same reason, we observed that the clustering 
accuracy increased as the sample size n or the overlap 
proportion pcnt increased. Particularly, we wanted to 
emphasize the impact of the overlap proportion pcnt . As 
presented in Table 8, when pcnt was as high as 1/3, the 
accuracy of the proposed approach was often quite close 
to that of ANCut without missingness, higher than that 
of ANCut applied on only the subset individuals with 
both omics data, and even higher than that of K-means. 
Remarkably, with n = 1500, q = 1000,K = 5, pcnt = 1/3 , 
the median accuracy of the proposed approach was 
74.9%, only 1.2% lower than that of ANCut, 76.1%, and 
6.1% higher than ANCut.subset, 68.8%, whereas K-means 
gave a median accuracy of 38.4%. As pcnt decreased, 
the difference between the accuracy of the proposed 
approach and ANCut increased, and the difference 
between the accuracy of the proposed approach and 
K-means decreased. When pcnt was as low as 1/9, occa-
sionally K-means outperformed the proposed approach. 
For example, with n = 300, q = 500,K = 3, pcnt = 1/9, 
the median accuracy of the proposed approach was 
26.3%, lower than that of K-means 45.1%.

Table 7  Imputation quality under various simulation coefficient settings with fixed p = 500 and pcnt = 1/3

Imputation quality under varying proportions of overlapping individuals ( pcnt ) is summarized in the supplementary materials

Median R2 (range) q

200 400 500 600 800 1000

n 300 0.056
(1e-06, 0.65)

0.039
(3e-07, 0.53)

0.036
(1e-07, 0.42)

0.036
(1e-06, 0.52)

0.033
(5e-07, 0.56)

0.039
(4e-07, 0.56)

500 0.065
(3e-06, 0.66)

0.059
(2e-06, 0.53)

0.053
(2e-07, 0.6)

0.043
(9e-07, 0.52)

0.044
(3e-06, 0.57)

0.041
(2e-06, 0.45)

1000 0.099
(1e-08, 0.72)

0.073
(4e-09, 0.6)

0.071
(1e-05, 0.57)

0.066
(5e-07, 0.6)

0.069
(3e-06, 0.53)

0.063
(6e-05, 0.5)

1200 0.111
(6e-07, 0.75)

0.083
(1e-07, 0.6)

0.084
(1e-04, 0.58)

0.087
(2e-06, 0.63)

0.076
(7e-10, 0.57)

0.06
(2e-06, 0.57)

1500 0.131
(8e-05, 0.78)

0.1
(2e-05, 0.63)

0.097
(2e-06, 0.64)

0.088
(6e-05, 0.55)

0.074
(3e-06, 0.57)

0.069
(1e-08, 0.52)
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Table 8  Clustering accuracy under various simulation coefficient settings with fixed p = 500

Column definitions:

ANCut uses Hidalgo’s assisted clustering approach to cluster gene expression, with no missing data [12]. This serves as the “gold standard” as we compare various 
clustering approaches because this approach uses the largest amount of data – the entire gene expression data matrix and methylation data matrix in Fig. 1. The true 
number of clusters K  is assumed to be known

ANCut.subset also uses Hidalgo’s assisted clustering approach to cluster gene expression but uses only the overlapping individuals that have both GE and methylation 
data. The true number of clusters K  is assumed to be known

ANCut.overlap uses the proposed approach assuming only a subset of the data is available, i.e. the X  and Y  matrices in Fig. 1. With the (pcnt ∗ n) overlapping 
individuals, we can construct a regression model between GE ( YO ) and the methylation regulators ( XO ) to improve GE clustering. The true number of clusters K  is 
assumed to be known

ANCut.silh uses the proposed approach (ANCut.overlap) with the Silhouette method to select the optimal number of clusters

ANCut.elbow uses the proposed approach (ANCut.overlap) with the Elbow method to select the optimal number of clusters

K-means uses K-means method to cluster GE, using only the Y  matrix (with missing data) in Fig. 1. The true number of clusters K  is assumed to be known

Clustering accuracy under additional simulation coefficient settings is summarized in the supplementary materials

Parameters Median Accuracy Measure Maccuracy

n q K pcnt ANCut ANCut.subset ANCut.overlap ANCut.silh ANCut.elbow K-means

300 200 3 1/3 52.0% 41.7% 43.5% 19% (K = 2) 18.7% (K = 2) 23.9%

1500 200 3 1/3 69.6% 61.8% 63.0% 63% (K = 3) 62.6% (K = 3) 36.3%

300 500 3 1/3 55.0% 38.4% 41.1% 39.9% (K = 3) 41.1% (K = 3) 30.3%

1500 500 3 1/3 64.6% 57.1% 58.3% 58.3% (K = 3) 58.6% (K = 3) 25.3%

300 1000 3 1/3 62.6% 42.8% 44.7% 43.7% (K = 3) 45.3% (K = 3) 44.1%

1500 1000 3 1/3 71.5% 64.7% 67.2% 67.1% (K = 3) 67.6% (K = 3) 28.6%
300 200 5 1/3 66.0% 48.5% 51.8% 10.9% (K = 2) 54.6% (K = 5) 45.0%

1500 200 5 1/3 73.7% 70.3% 72.3% 72.2% (K = 5) 70.5% (K = 6) 31.3%

300 500 5 1/3 61.5% 51.7% 52.6% 46% (K = 4) 33.6% (K = 3) 46.9%

1500 500 5 1/3 67.3% 63.3% 67.9% 66.9% (K = 5) 67.7% (K = 5) 22.6%

300 1000 5 1/3 70.2% 51.2% 55.0% 10.9% (K = 2) 10.5% (K = 2) 53.6%

1500 1000 5 1/3 76.1% 68.8% 74.9% 73.7% (K = 5) 71.4% (K = 5) 38.4%
300 500 3 1/5 59.0% 28.4% 30.9% 17.4% (K = 2) 16.8% (K = 2) 34.6%

1500 500 3 1/5 66.7% 56.3% 58.3% 58.3% (K = 3) 58.3% (K = 3) 24.4%

300 1000 5 1/5 67.1% 41.2% 47.6% 6.2% (K = 2) 6.7% (K = 2) 35.6%

1500 1000 5 1/5 75.2% 60.1% 66.6% 66.8% (K = 5) 66.9% (K = 5) 23.7%
300 500 3 1/9 60.9% 20.4% 26.3% 22.7% (K = 3) 25% (K = 3) 45.1%

1500 500 3 1/9 65.9% 49.6% 53.2% 53.2% (K = 3) 53.3% (K = 3) 34.1%

300 1000 5 1/9 66.9% 37.7% 40.9% 4% (K = 2) 5.2% (K = 2) 40.8%

1500 1000 5 1/9 76.9% 55.9% 56.4% 56.2% (K = 5) 55.9% (K = 5) 25.5%

Table 9  Imputation quality under the poor imputation quality scenario with various simulation coefficient settings and 
fixed pcnt = 1/3

Imputation quality under additional proportions of overlapping individuals ( pcnt ) is summarized in the supplementary materials

Median R2 (range) q

200 400 500 600 800 1000

n 300 0.011
(3e-07, 0.21)

0.013
(6e-08, 0.20)

0.009
(6e-09, 0.21)

0.008
(3e-07, 0.18)

0.008
(2e-07, 0.18)

0.009
(4e-09, 0.21)

500 0.013
(6e-11, 0.25)

0.011
(3e-07, 0.19)

0.007
(1e-09, 0.22)

0.009
(4e-08, 0.20)

0.010
(5e-07, 0.29)

0.007
(9e-08, 0.16)

1000 0.016
(2e-09, 0.33)

0.009
(1e-08, 0.25)

0.013
(5e-07, 0.25)

0.009
(1e-07, 0.27)

0.011
(2e-07, 0.21)

0.007
(3e-09, 0.15)

1200 0.022
(5e-07, 0.28)

0.014
(7e-08, 0.22)

0.014
(2e-07, 0.21)

0.011
(3e-10, 0.19)

0.011
(4e-08, 0.20)

0.012
(3e-08, 0.23)

1500 0.023
(4e-07, 0.31)

0.019
(2e-07, 0.31)

0.014
(2e-07, 0.25)

0.011
(3e-08, 0.29)

0.012
(2e-07, 0.25)

0.008
(4e-07, 0.23)
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We did not see a clear trend in the accuracy of the pro-
posed approach as we varied K . However, increasing K  
made it more difficult to select the correct number of 
clusters for both the Silhouette method and the Elbow 
method [17, 18]. As presented in Table  8, when K = 3 , 
most often, both the Silhouette method and the Elbow 
method were able to correctly identify the number of 
clusters. However, when K = 5 , for many of the simu-
lation replicates, the K  that achieved the optimal fit in 
the Silhouette method or the Elbow method was not the 
true number of clusters used in generating the simulated 
data. However, the probability of identifying the correct 
K  increased as the sample size n increased. For example, 
with K = 5 in the bottom two rows of Table 8, when pcnt 
was as low as 1/9 and q was as high as 1000, with n = 300 , 
both methods failed to identify the correct K  thus pro-
viding inaccurate clustering results (median Maccuracy of 
4% and 5.2%); but with n = 1500, both approaches were 
able to select the correct K  thus providing comparably 
accurate clustering results (median Maccuracy of 56.2% 
and 55.9%). It is expected that the accuracy was low when 
the algorithm selected the wrong number of clusters 
( K  ) – the true adjacency matrix and the estimated adja-
cency matrix could hardly be similar if they had a differ-
ent number of clusters embedded. When the algorithm 
selected the correct K , we observed very similar accuracy 
results between the columns ANCut.silh and ANCut.
elbow. This demonstrated the stability of our proposed 
approach because once ANCut.silh and ANCut.elbow 
selected the optimal K  , the remaining part of the algo-
rithms are identical to that of ANCut.overlap.

Although our proposed approach depended on the 
GE-regulator regulation relationship, we wanted to 
emphasize the robustness of the approach. Specifically, as 
presented in Table 10, under the poor imputation quality 
scenario where the correlation structure of GE was domi-
nated by the correlation embedded in the error matrix 
rather than from the measured regulators, the accuracy 
of the proposed approach was almost always higher than 
that of K-means, and similar to that of ANCut.subset. But 
the identification of the correct K  was further challenged 
with the decrease in the strength of the regulation rela-
tionship – even when n was large and q was small, both 
the Silhouette and Elbow methods performed poorly 
in terms of finding the correct K  . Yet, again, once the 
algorithm selected the correct K  , the accuracy of the 
proposed approach was generally higher than that of 
K-means.

With real data, we do not know the true number of 
underlying clusters with 100% confidence. In our appli-
cation to the FHS samples, we allowed for more clusters 
and selected K = 13 considering that there were more 
than 4000 genes. If there is an approximately reasonable 

range of possible numbers of clusters available from prior 
analyses, e.g. at least 10 but no more than 20, we may use 
that as the candidate values of K  in the Silhouette method 
and the Elbow method. Another lesson that we learned 
from the FHS application was that we want more regula-
tors in the regression model to capture potentially more 
factors that have an impact on the clustering structure of 
GE. Generally speaking, improvement in the imputation 
quality of the regulation relationship regression model 
would lead to a more accurate clustering result.

One of the assumptions of the ANCut.overlap cluster-
ing approach is that the correlation between GEs comes 
mostly from the measured regulators. We recommend 
assessing the imputation quality of GE using the meas-
ured regulators based on the overlapping individuals, as 
shown in Fig.  4  for our application study. Even though 
the imputation quality measured as R2 varies a lot across 
the genes, with a median level of 0.12 and a maximum 
of larger than 0.80, we performed a global co-expression 
analysis of all these 2179 genes whose expression lev-
els were predicted by CpG methylation or SNP profiles, 
regardless of their imputation quality. This is because we 
have gained confidence from our simulation analysis that 
even when the imputation quality had a median level as 
low as 0.05 or below, and the maximum of no higher than 
0.40 (Table 9), there is still benefit in using our approach 
in terms of improving the overall clustering accuracy 
compared to K-means.

In our application to FHS data, one potential weakness 
comes from the imputation of the missing DNA meth-
ylation data. Some FHS participants are related, induc-
ing correlation between observations. The rationale of 
MethyLImp lies in the observation that methylation levels 
show a high degree of inter-sample correlation, and the 
imputation exploits the inter-sample correlation [24, 25]. 
It is likely that the family correlation among the FHS data 
influenced the imputation accuracy of MethyLImp, which 
further affected the accuracy of the GE-methylation regu-
lation regression and the ANCut.overlap clustering.

The other limitation in our FHS analysis is that we 
omitted genes that were not predicted by CpG methyla-
tion or SNP profiles. For those genes, the predicted val-
ues Ŷ = X β̂  were just sample means because there was 
no regulation effect from the measured CpGs or SNPs, 
according to the elastic net regularization result. The 
corresponding elements of those genes in the similar-
ity matrix Ŝ would be calculated based on their sample 
means. In this case where the measured regulators are 
not predictive of the GEs at all, then one may choose to 
perform clustering analysis based on their observed val-
ues only, as what we did in the FHS analysis, without 
having to incorporate information from the measured 
regulators. But in this way, we performed GE clustering 
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of only the genes that were predicted by the measured 
CpGs and SNPs regulators. We might miss some genes 
that have important biological functions but were not 
regulated by the measured CpGs and SNPs.

Our proposed approach inevitably has limitations, 
including the requirement on the overlapping propor-
tion, sample size, and the strength of the GE-regulator 
relationship. Moreover, GE itself is a cascade, in which 
the expression of some genes influences the expres-
sion of others. Our current approach does not take this 
into consideration because we model the GE-regulator 
relationship one gene at a time. However, our approach 
allows the integration of multi-omic data without 
restricting to individuals that are common in all omic 
datasets. This improves GE clustering with the assis-
tance of regulatory data that allows for different but 
partially overlapping sets of individuals to contribute 
omics data.

Conclusion
In this study, we propose a novel approach for clustering 
GE with the assistance of regulatory data that allowed 
for different but partially overlapping sets of individuals 
to be included in different omics data. This is achieved 

through (1) decomposing GE into the regulated com-
ponent and the other component that is independent of 
the measured regulators, where the regulated compo-
nent is obtained using a GE-regulator transition matrix 
fit based on the overlapping individuals, and (2) opti-
mizing a clustering goodness-of-fit objective function 
which incorporates information based on both the reg-
ulated component and the non-regulated component. 
Our simulation study showed that this novel approach 
yielded competitive clustering accuracy compared to 
the alternative K-means approach, and the ANCut 
approach which can only be applied when there was no 
missingness.

Currently, the approach does not consider the pos-
sible regulation relationships between the measured 
GE regulators. However, if the regulation relationship 
is strong and is believed to be critical to the cluster-
ing structure of GE, we may want to incorporate that 
relationship. For example, if the regulation relationship 
between the SNP genotype and CpG methylation plays 
an essential role in the GE clustering, then we may 
decompose methylation into the regulated component 
and the non-regulated component that is independent 
of the genotype. Because we need to include additional 

Table 10  Clustering accuracy under the poor imputation quality scenario with various simulation coefficient settings and 
fixed pcnt = 1/3

Please refer to Table 8 for an explanation of the column definitions

Clustering accuracy under the poor imputation quality scenario with pcnt = 1/5 or 1/9 are summarized in the supplementary materials

Parameters Median Accuracy Measure Maccuracy

n q K ANCut ANCut.subset ANCut.overlap ANCut.silh ANCut.elbow K-means

500 200 3 43.1% 23.9% 22.4% 8.1% (K = 2) 8.1% (K = 2) 11.5%

1500 200 3 47.6% 40.1% 40.2% 40.2% (K = 3) 40.9% (K = 3) 11.4%

3000 200 3 62.9% 54.8% 54.1% 54.4% (K = 3) 54.1% (K = 3) 12.1%

500 500 3 41.0% 24.1% 23.1% 8.6% (K = 2) 8.7% (K = 2) 11.6%

1500 500 3 49.8% 37.4% 38.1% 37.9% (K = 3) 37.9% (K = 3) 11.4%

3000 500 3 52.4% 50.4% 50.9% 50.5% (K = 3) 51.4% (K = 4) 11.4%

500 1000 3 42.7% 16.2% 20.2% 4.5% (K = 2) 5.6% (K = 2) 11.3%

1500 1000 3 52.3% 44.6% 46.2% 46.2% (K = 3) 45.9% (K = 3) 11.5%

3000 1000 3 57.0% 47.2% 46.5% 52% (K = 4) 47% (K = 3) 11.6%

500 200 5 48.8% 40.2% 40.2% 4.1% (K = 2) 2.7% (K = 2) 36.3%

1500 200 5 63.3% 54.2% 53.1% 53.5% (K = 5) 6.1% (K = 2) 36.3%

3000 200 5 63.1% 63.7% 64.7% 63.4% (K = 5) 62.7% (K = 6) 36.5%

500 500 5 51.7% 40.2% 40.8% 3.8% (K = 2) 4.5% (K = 2) 36.4%

1500 500 5 58.9% 52.3% 54.7% 44.4% (K = 4) 48.8% (K = 5) 36.2%

3000 500 5 65.1% 57.2% 58.7% 58.1% (K = 5) 58.4% (K = 5) 36.4%

500 1000 5 49.6% 39.1% 38.9% 2.2% (K = 2) 1.8% (K = 2) 36.3%

1500 1000 5 62.6% 51.3% 53.9% 44.7% (K = 4) 52.8% (K = 5) 36.4%

3000 1000 5 68.1% 61.4% 60.6% 60.2% (K = 5) 59.5% (K = 5) 36.3%
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parameters to model this relationship, there is some 
trade-off between the clustering accuracy and statisti-
cal power.

We provide an implementation of our proposed approach 
ANCut.overlap as an R package available in the GitHub res-
pository https://​github.​com/​WQ-​Jiang/​ANCut-​overl​ap.
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