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Abstract 

Advances in genome sequencing techniques produced a significant growth of phylogenomic datasets. This massive 
amount of data represents a computational challenge for molecular dating with Bayesian approaches. Rapid molecu‑
lar dating methods have been proposed over the last few decades to overcome these issues. However, a comparative 
evaluation of their relative performance on empirical data sets is lacking. We analyzed 23 empirical phylogenomic 
datasets to investigate the performance of two commonly employed fast dating methodologies: penalized likelihood 
(PL), implemented in treePL, and the relative rate framework (RRF), implemented in RelTime. They were compared 
to Bayesian analyses using the closest possible substitution models and calibration settings. We found that RRF was 
computationally faster and generally provided node age estimates statistically equivalent to Bayesian divergence 
times. PL time estimates consistently exhibited low levels of uncertainty. Overall, to approximate Bayesian approaches, 
RelTime is an efficient method with significantly lower computational demand, being more than 100 times faster 
than treePL. Thus, to alleviate the computational burden of Bayesian divergence time inference in the era of massive 
genomic data, molecular dating can be facilitated using the RRF, allowing evolutionary hypotheses to be tested more 
quickly and efficiently.
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Introduction
Molecular dating is an essential component of contem-
porary evolutionary studies. The idea that substitutions 
accumulate in a time-correlated manner in molecular 
sequences has greatly impacted evolutionary biology 
since it was proposed in the 1960s [1–4]. Over the last 
decades, major breakthroughs in sequencing technolo-
gies have allowed the assembly of large molecular data-
sets to estimate divergence times between species [5–8]. 
Such massive datasets pose a computational burden to 
parameter-rich molecular dating methods that rely on 
Bayesian Markov chain Monte Carlo (MCMC) sampling, 

slowing the testing and proposition of evolutionary 
hypotheses [9–12]. Because of this, phylogenomic studies 
have frequently devised alternative strategies to compute 
biological timescales, including the use of reduced data-
sets [13–19] and the summarization of time estimates 
based on data partitioning schemes [20, 21].

Such limitations prompted the development of rapid 
methods to date lineage divergences as alternatives to 
the standard Bayesian molecular dating, hence accelerat-
ing evolutionary analysis in the big data era [22, 23]. Like 
Bayesian approaches, the new methods have their own 
assumptions, including those related to how substitution 
rates vary across the phylogenetic tree. Currently, the 
most frequently used rapid molecular dating approaches 
are penalized likelihood (PL) [24] and the relative rate 
framework (RRF) [12, 25]. They have been employed in 
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several branches of the Tree of Life, from prokaryotes 
to plants and animals [26–33]. Notably, these method-
ologies are more environmentally friendly than highly 
parametric Bayesian analyses, as their associated carbon 
footprints are orders of magnitude smaller [35]. Because 
of this, they might play an important role in the grow-
ing environmental awareness of bioinformatics research, 
conforming with the green computing standards [34, 35].

Although both PL and RRF do not require rate con-
stancy, they are fundamentally distinct. PL uses a pen-
alty function to minimize rate changes between adjacent 
branches globally [24]. Therefore, it assumes autocorre-
lation of evolutionary rates, which has been suggested 
as pervasive across the tree of life [36, 37]. A key com-
ponent of PL is the smoothing parameter (λ), which con-
trols the global level of rate variation and is optimized 
by a cross-validation method. The lower the value, the 
greater the rate variation across the phylogeny. PL was 
first implemented in the r8s software [38], and was later 
refined to deal with large phylogenies [39, 40]. In turn, 
RRF minimizes the difference in evolutionary rates of 
ancestral and descendant lineages individually [12]. This 
eliminates the need for a global penalty function and still 
accommodates rate differences between sister lineages 
[23]. As a result, RRF does not require any additional 
analytical step, such as the cross-validation procedure, to 
select an optimal level of rate variation. It is also impor-
tant to mention that although the rates estimated by RRF 
are autocorrelated, RRF deals with lineage rates instead 
of branch rates [12], the standard modeling of Bayesian 
autocorrelated methods [41]. RRF is implemented in the 
RelTime routine of the software MEGA [42].

As they are currently implemented, PL and RRF also 
differ in the treatment of calibration information. While 
PL requires calibration information to be hard-bounded 
by minimum and/or maximum values [38], RRF via Rel-
Time allows for the use of calibration densities [43]. Addi-
tionally, the uncertainty associated with the estimates of 
node ages are dealt with distinctly. PL can be combined 
with a bootstrap approach to asses uncertainty [38, 44], 
whereas RelTime adopts an explicit analytical equation 
to calculate confidence intervals [43]. Both frameworks 
reduce computational requirements compared to Bayes-
ian relaxed clock methods. Because the algorithms of PL 
and RRF are different, results may be different, and their 
relative performances compared to Bayesian approaches 
have not been evaluated yet with empirical datasets.

As PL and RRF have been increasingly used to esti-
mate timescales over the last years, it is essential to carry 
out large-scale evaluation against the popular Bayesian 
framework. While previous studies investigated both 
fast dating methods separately [22, 25, 40, 45–48], a joint 
assessment of their performance with empirical data is 

lacking [49]. Moreover, treePL, which is the most popu-
lar implementation of PL for large phylogenies, was not 
extensively compared to any Bayesian method whatso-
ever, and there is little information on how they behave 
comparatively with real data. In this regard, the phylog-
enomic datasets that have been produced in the last years 
provide the ideal opportunity to investigate the relative 
performances of rapid and Bayesian methods.

Material and methods
We collected empirical datasets from 23 phylogenomic 
studies to assess the relative performance of fast dating 
methods compared to Bayesian methods. Studies were 
selected based on the availability of Bayesian timetrees or 
the input files used to carry out Bayesian inference plus 
molecular sequence alignments deposited in public data-
bases or as supplementary information. Data retrieved 
comprise DNA and amino acid sequences from diverse 
taxonomic groups with divergences as old as the Pre-
cambrian. The number of sequences ranged from tens 
to nearly a thousand, and alignment lengths from ~ 5 kb 
to > 4 Mb. Alignment lengths, data types, number of ter-
minals, calibration information, methodology originally 
employed, and the labels used to refer to each study, are 
summarized in Table 1.

The original studies have employed a Bayesian relaxed 
clock methodology as implemented in BEAST, MCMC-
Tree, or PhyloBayes, except for Kuntner et  al. (2019), 
who estimated divergence times using the RRF. In 
this case, the Bayesian timescale was inferred for the 
first time. Whenever possible, timetrees were directly 
obtained from the original works. Otherwise, diver-
gence times were estimated using the input files pub-
lished. We tried to keep substitution models matching 
the original studies, but studies that used CAT models 
of amino acid substitution implemented in PhyloBayes 
[71] were subjected to model selection in MEGA X [42]. 
If the original study applied data partitioning with dis-
tinct substitution models, we chose the model used in 
most partitions.

Fast divergence time inference
We used the same alignment and topology as originally 
employed by the authors to estimate absolute times in Rel-
Time [12, 25] and treePL [40]. Temporal calibration infor-
mation was also extracted from the studies and applied 
according to the specificities of each method. To standard-
ize computation, all analyses were carried out on a machine 
with a 3.2 GHz 6-Core Intel® i7 processor and 64 GB 
2667 MHz DDR4 RAM. All branch lengths (in substitutions 
per site) used by both methods were estimated in MEGA X. 
RelTime calculations were performed with the command 
line version of MEGA X, and the confidence intervals (CI) 
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of divergence times were calculated analytically, as imple-
mented by the method.

In treePL, the program was firstly run using the 
option ‘prime’ to select the best optimization parame-
ters. Then, a cross-validation procedure was performed 
to optimize the smoothing parameter values for each 
dataset [24], totalling 10 optimization iterations and 

1017 simulated annealing iterations. The ‘cvstart’ and 
‘cvstop’ parameters were set to 1017 and 10− 19, respec-
tively, resulting in 37 smoothing parameter values 
tested. All analyses were run with the ‘thorough’ option. 
Confidence intervals of time estimates were calculated 
from 100 bootstrap replicates summarized in TreeAn-
notator [72].

Table 1  Detailed information about the phylogenomic datasets analyzed

a N nucleotide, AA amino acid
b The model that was used for most partitions, if applicable. The number of discrete categories to approximate the Gamma distributions is shown

Data reference Label Biological group Data typea Site count Taxa count Calibration 
count

Software used Substitution 
modelb

Allio et al. (2020) [50] Allio20 Arthropoda AA 288,446 61 5 PhyloBayes JTT + F + G5 + I

Anderson et al. 
(2017) [51]

Anderson17 Annelida AA 16,541 39 3 PhyloBayes JTT + G5 + I

Blaimer et al. (2018) 
[52]

Blaimer18 Arthropoda N 33,874 155 7 BEAST GTR + G5

Borowiec (2019) [53] Borowiec19 Arthropoda N 44,079 162 3 BEAST GTR + G4

Chazot et al. (2019) 
[54]

Chazot19 Arthropoda N 6260 994 22 BEAST GTR + G5

Delsuc et al. (2018) 
[55]

Delsuc18 Chordata AA 66,593 63 11 PhyloBayes LG + G5
c

Delsuc et al. (2019) 
[56]

Delsuc19 Chordata N 15,157 40 4 PhyloBayes GTR + G4

dos Reis et al. (2018) 
[57]

dosReis18 Chordata N 61,132 372 17 MCMCTree GTR + G4

Fang et al. (2018) 
[58]

Fang18 Chordata N 8079 128 3 BEAST GTR + G5

Feng et al. (2017) 
[59]

Feng17 Chordata N 88,302 164 20 MCMCTree GTR + G5

Hedin et al. (2019) 
[60]

Hedin19 Arthropoda N 71,483 27 3 PhyloBayes GTR + G5

Hughes et al. (2018) 
[61]

Hughes18 Chordata N 10,203 305 31 MCMCTree HKY + G5

Irisarri et al. (2017) 
[20]

Irisarri17 Chordata AA 14,043 100 14 PhyloBayes JTT + F + G4 + I

Johnson et al. (2018) 
[62]

Johnson18 Arthropoda N 131,013 193 23 MCMCTree GTR + G5

Kuntner et al. (2019) 
[63]

Kuntner19 Arthropoda N 89,212 34 2 MCMCTree HKY + G5

Pereira et al. (2017) 
[64]

Pereira17 Chordata N 12,354 294 22 MCMCTree GTR + G5

Pessoa-Filho et al. 
(2017) [65]

PessoaFilho17 Streptophyta N 135,255 30 1 BEAST GTR + G4

Peters et al. (2017) 
[66]

Peters17 Arthropoda AA 75,904 174 14 MCMCTree JTT

Peters et al. (2018) 
[67]

Peters18 Arthropoda AA 1,469,006 48 3 MCMCTree JTT

Ran et al. (2018) [68] Ran18 Streptophyta N 4,246,454 16 4 MCMCTree GTR + G5

Sann et al. (2018) 
[69]

Sann18 Arthropoda N 284,607 184 10 MCMCTree GTR + G4

Wolfe et al. (2019) 
[19]

Wolfe19 Arthropoda AA 5994 95 19 PhyloBayes JTT + G4
c

Yonezawa et al. 
(2017) [70]

Yonezawa17 Chordata N 873,274 45 6 MCMCTree GTR + G8



Page 4 of 10Costa et al. BMC Genomics          (2022) 23:798 

Regarding calibration information, whenever the 
original studies employed uniform priors, the bounds 
of the uniform distributions were provided as minimum 
and maximum boundaries of node age in treePL, while 
in RelTime, they were set as lower and upper limits of 
a uniform distribution. When probability distributions 
other than the uniform were originally used, namely, 
the normal, lognormal, exponential and skew-t dis-
tributions, they were also used in RelTime, except for 
the skew-t distribution, which is currently unavailable 
in this software. It was thus approximated by a normal 
distribution using the sn [73] and fitdistrplus packages 
[74] in R [75]. As treePL implements only minimum 
and maximum values as calibrations, we derived mini-
mum and maximum bounds based on the lower 2.5% 
and upper 97.5% quantiles, respectively, of the den-
sity distributions. For the skew-t distribution, we did 
the same procedure, but using the normal distribution 
approximated for RelTime.

Because treePL works with rooted trees, the outgroup 
was removed before running the analyses. In RelTime, 
the outgroup was provided only to root the ingroup, but 
no calibrations were placed within it, and it was later 
removed from the estimated timetrees.

For the Kuntner et  al. (2019) dataset, we inferred a 
Bayesian timescale in MCMCTree [76, 77] using the 
same calibration information, employing the independ-
ent rates prior with the HKY + G(5) substitution model 
[78]. Markov chain Monte Carlo analysis was run twice 
to check for convergence, each chain was sampled every 
100th cycle until ESS values to approximate the posterior 
were greater than 200.

Evaluation of relative performance
To contrast RelTime and treePL estimates to those 
derived with Bayesian methods, we calculated a series of 
metrics. For Bayesian time estimates, either the means or 
the medians of the posterior distribution of divergence 
times were used, depending on which value was reported 
in the original study. For each dataset, we performed lin-
ear regressions of RelTime and treePL estimates against 
Bayesian estimates. The coefficient of determination (R2) 
and the slope (β) of the linear regression through the ori-
gin were used as summary statistics to assess the strength 
of the association between fast and Bayesian dating 
methods.

For each data set, the average difference between fast 
dating methods and Bayesian time estimates was normal-
ized to become comparable across studies that focused 
on various depths of the Tree of Life. Given n divergence 
times in a data set, for each ith node age (t), the average 
difference was calculated as follows.

Additionally, the precision of divergence time esti-
mates was also accessed. For Bayesian time estimates, 
measures of uncertainty were as reported in the origi-
nal study, either the highest posterior densities (HPDs) 
or the credibility intervals (CrIs). Because confidence 
and credibility intervals are fundamentally differ-
ent from a statistical standpoint, they were not com-
pared directly. In practice, these metrics are generally 
regarded as the measures of uncertainty associated 
with the time estimate in empirical studies, and they 
are required for evolutionary hypothesis testing. Thus, 
we reported their values for each method. For conveni-
ence, RelTime CIs, treePL CIs and HPDs/CrIs from 
Bayesian analyses will be hereafter referred to simply 
metrics of uncertainty.

For each dataset, two values were computed based 
on uncertainty metrics: the coverage and the median 
uncertainty width of each method. Coverage is a meas-
ure analogous to the success rate, as it indicates the 
frequency that node age estimates from fast methods 
were included within the credibility interval of the 
original Bayesian analyses. This frequency was com-
puted for each dataset. The median uncertainty width 
of a method for each dataset was calculated as follows. 
For each ith node age estimate, the difference between 
the maximum (tmax) and minimum (tmin) limits of the 
uncertainty metric (U) was normalized by the esti-
mated node age (t).

Therefore, uncertainty widths of a data set were 
transformed as fractions of the estimated node ages, 
and their median value was calculated. Importantly, 
this measure was computed excluding nodes that pre-
sented node ages smaller than 10− 10. This was done to 
avoid division by values near zero.

We tested whether the number of terminals, the num-
ber of sites in the alignment, and the percentage of cali-
brated nodes (the number of calibrations divided by the 
number of tree nodes) impacted the association between 
the Bayesian estimates and those from both fast-dating 
methods. Linear models were inferred using 1) the abso-
lute deviations of the slope of the regression lines from 1 
or 2) the mean squared errors (MSEs) as response vari-
ables. Besides MSE, we also tested the R2 and the RMSE 
as measures of goodness of fit with identical results. The 
importance of each feature was assessed by the varImp 
function [79] of the caret R package [80].

D =
1

n

n

i=1

| ti,FAST − ti,BAYES |

ti,BAYES
× 100%

U widthi =
ti,max − ti,min

ti
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Results
Fast methods produced time estimates highly corre-
lated with Bayesian time estimates, regardless of the 
Bayesian method employed. All the recovered R2 val-
ues of the linear regression between fast methods and 
Bayesian node ages were ≥ 0.94, with most values higher 
than 0.98. The slope of the regression lines indicated a 
great correspondence between rapid methodologies and 
Bayesian node ages (Fig.  1a). The median slope values 
were 0.98 and 0.95 for treePL and RelTime, respectively. 
Nevertheless, the slopes of the regression lines between 
treePL and Bayesian time estimates presented a larger 
variance than when we compared RelTime to Bayes-
ian node ages. For instance, in the Peters et al. dataset 
[67], the comparison of treePL and Bayesian time esti-
mates returned a β = 1.99, indicating that node ages 

were generally 99% older than MCMCTree inferred 
times. For this same dataset, RelTime node ages led to 
a β = 1.46 when compared to Bayesian divergence times. 
For three other datasets, treePL estimates showed very 
high β values when compared to Bayesian estimates: 
PessoaFilho17 [65] (βtreePL  = 1.57, βRelTime  = 1.15), 
Allio20 [50] (βtreePL = 1.58, βRelTime = 1.09) and Peters17 
[66] (βtreePL = 1.6, βRelTime = 1.16). On the other hand, 
treePL produced much younger times for the data-
set of Fang18 [58] (βtreePL  = 0.54, βRelTime  = 0.75). The 
highest β recovered for RelTime was for the dataset of 
Ran18 [68] (βRelTime  = 1.5), which was very similar to 
the β recovered for treePL (βtreePL = 1.48). The lower β 
values produced by the node ages estimated by RelTime 
were for the datasets of Hedin19 [60] (βtreePL  = 0.54, 
βRelTime  = 0.75) and Fang18 [58] (βtreePL  = 0.78, 
βRelTime  = 0.75). Comparisons between time estimates 
using Bayesian and fast methods per dataset can be 
accessed through Supporting information 1.

The distribution of treePL D values was also wider than 
the distribution of RelTime (Fig. 1b). RelTime estimates 
were, on average, more similar to Bayesian time esti-
mates, as the mean D was 26.5% for RelTime and 37.24% 
for treePL. When treePL was used to estimate divergence 
times, several datasets led to estimates that were, on 
average, more than 50% different from the Bayesian node 
ages. Conversely, RelTime molecular dates were, on aver-
age, more than 50% different than the Bayesian estimates 
for a single dataset (Ran18). For this dataset, both treePL 
and RelTime node ages were approximately 60% different 
from Bayesian times. For most datasets (70%), RelTime 
produced time estimates that were, on average, less than 
30% different from the Bayesian ones, while treePL esti-
mated node ages that were less than 30% distant from 
Bayesian times for only 39.13% of the datasets (Support-
ing information 2).

Regarding the uncertainties of time estimates, treePL 
provided very narrow uncertainty intervals, with the dis-
tribution of the median interval widths across all datasets 
analyzed centered around 19.6%. This same value was 
centered around 64.3% for Bayesian and 102.3% for Rel-
Time. For some of the datasets (52.17%), treePL uncer-
tainty intervals eventually did not include the node ages 
estimated by the method itself. In these cases, up to 9% of 
the node ages did not fall within the intervals generated 
by treePL bootstrap approach. Regarding the frequency 
in which fast methods’ divergence times were included 
within the Bayesian credibility intervals, treePL and 
RelTime presented a similar performance. Mean cover-
age values for RelTime node ages were centered around 
77.3%, while for treePL, it was placed around 75.1% 
(Fig.  2). The percentage of datasets that led to coverage 
values that included less than half of the estimated node 

Fig. 1  The performance of fast dating methodologies relative to the 
Bayesian methods for phylogenomic data. The slopes (β) of the linear 
regressions through the origin between rapid and Bayesian methods 
are shown in panel a. The mean normalized differences between 
RelTime/treePL and Bayesian node ages ( D ) are shown in b 
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ages of a phylogeny was 41% for treePL and 27% for Rel-
Time. On the other hand, for 36 and 45% of the studies, 
time estimates were covered by the Bayesian credibility 
interval with a frequency of more than 80% when using 
treePL and RelTime, respectively.

For both fast-dating methods, deviation from the 
slope β =1 was significantly explained by the three fea-
tures investigated (p  < 0.001 and R2 = 0.59 for RelTime 
and p < 0.005 and R2 = 0.40 for treePL). The data feature 
with the highest importance in determining the deviation 
from a perfect fit to Bayesian estimates was the number 
of sites in the alignment (importance of 60% for RelTime 
and 37% for TrerePL). For explaining MSEs, the calibra-
tion density was the feature with the highest importance 
for RelTime (69%, p < 0.001 and R2 = 0.50), while treePL 
MSEs were not significantly predicted by any of the fea-
tures analyzed (p  > 0.05). For RelTime, increasing the 
density of calibrations resulted in more distinct time esti-
mates from Bayesian analysis.

Computational efficiency was very distinct between fast 
methods (Fig. 3). Average running times were 51.8 hours 
for treePL and 0.9 hours for RelTime. For most datasets, 
treePL took more than 24 hours to complete the calcula-
tions. In fact, RelTime usually took less than 2% of treePL 
running time, often more than 60 times faster than 
treePL (Fig. 3). Because confidence intervals are essential 
to retrieving uncertainty measures for divergence time 
estimates, treePL running times considered the estima-
tion of branch lengths for the one hundred bootstrap 
replicates used to compute confidence intervals.

Discussion
We provided the first comprehensive analysis of two 
of the most frequently used fast dating methodologies 
against Bayesian molecular dating, employing several 

empirical phylogenomic datasets from distinct biological 
groups, including up to hundreds of taxa. We measured 
differences in node age estimates, coverage of the Bayes-
ian credibility intervals, and computational time effi-
ciency. Our findings indicate that RRF, as implemented in 
RelTime, is a fast alternative to time-consuming molecu-
lar dating software. RelTime was much faster and gener-
ally provided time estimates closer to the Bayesian node 
ages than treePL. TreePL, which is considered a fast 
algorithm for performing molecular dating, required a 
significant computational time. This was due to the boot-
strapping strategy used to compute confidence intervals 
of time estimates. As measurements of uncertainty are 
necessary to interpret biological scenarios derived from 
timetrees, their calculation entailed a running time that 
was comparable to Bayesian approaches, with some run-
ning times of more than one month.

Studies that have evaluated treePL performance against 
other approaches are scarce. The original work describ-
ing its implementation performed an evaluation using 
simulated and empirical data [40]. However, simulations 
did not include alignments, as the divergence times were 
directly inferred from the true tree, and the empirical 
datasets did not consist of several loci. Previous works 
employing both Bayesian approaches and treePL com-
pared time estimates for specific taxa [81, 82], and their 
results are contrasting, with treePL leading either to 
older time estimates than BEAST in angiosperm evolu-
tion [82], or younger node ages than BEAST in a flow-
ering plant family [81]. These works also reported 
contrasting results regarding the precision of treePL time 
estimates. In the present study, treePL confidence inter-
vals were consistently narrow for all datasets analyzed. 
This result is expected because the bootstrap procedure 
leads to reduced parametric uncertainty as the number of 
sites increases, which is the case for phylogenomic data. 
Regarding time estimates, we found that treePL tended to 

Fig. 2  Frequency in which time estimates from treePL and RelTime 
were placed within the Bayesian credibility intervals as reported by 
the original studies (coverage)

Fig. 3  Computational speed ratio of RelTime to treePL for the 
phylogenomic datasets analyzed
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produce older estimates than Bayesian analyses (Fig. 1a). 
This is in agreement with other works that have compared 
PL to Bayesian and non-Bayesian approaches [83–86].

It is already known that PL may provide overly ancient 
divergence time estimates when there is no calibration 
information to limit node ages near the root because of 
optimization issues [87]. The absence of efficient time 
constraints at deeper nodes was, in fact, common to 
all the analyses where older estimates were obtained 
(β > 1.1). For most of these datasets, treePL placed the 
age of the deep nodes precisely at or very close to the val-
ues provided as loose maxima. To test if the PL approach 
would present a better performance when outgroups and 
root/outgroup calibrations were kept in the analyses, 
we have conducted all treePL analyses using all ingroup 
and outgroup sequences and calibrations (when appli-
cable). We did not find any significant performance 
improvement (Supporting  information 3). Addition-
ally, our findings corroborate Barba-Montoya et al. [49], 
which recovered a better performance for RelTime using 
simulated data. These authors found treePL to be more 
impacted by minor deviations from the molecular clock. 
While we have not quantified the clockness of the empiri-
cal datasets, this was probably one of the reasons for the 
more asymmetrical distributions of D values for treePL, 
while RelTime presented lower asymmetry (Supporting 
information 2).

Comparisons between time estimates retrieved by the 
RRF and Bayesian methods have been carried out in sev-
eral empirical studies [12, 22, 25, 43, 45, 88–90]. Mello 
et  al. (2017) and Tao et  al. (2020) employed phylog-
enomic datasets and found that RelTime produced relia-
ble time estimates compared to BEAST and MCMCTree. 
Here, we extended these findings to PhyloBayes soft-
ware, which implements more sophisticated substitution 
models. Although MEGA does not provide the option to 
use the site-heterogeneous models implemented in Phy-
loBayes, times inferred employing the simpler models 
available in MEGA exhibited good correspondence to 
PhyloBayes estimates. The equivalence between time-
scales from simple and complex homogeneous substitu-
tion models was reported elsewhere [91]. We confirmed 
this finding and showed that it could be extended to site-
heterogeneous substitution models.

If researchers need a faster alternative to Bayesian dat-
ing, our work demonstrated the good performance of 
RelTime’s RRF when compared to treePL. Besides pro-
viding node ages closer to Bayesian estimates, RelTime 
inferred ages were placed within Bayesian credibility 
intervals more frequently. Recently, using simulated 
data, Barba-Montoya et al. [49] also recovered a greater 
accuracy for RelTime when compared to other fast dat-
ing methods, particularly when autocorrelated rates 

were used. We showed that for empirical phylogenomic 
datasets, in which the true rate model is unknown, Rel-
Time also performed better than treePL to approximate 
the standard Bayesian procedure. Additionally, on aver-
age, treePL produced rather precise estimates. The nar-
row confidence intervals of treePL estimates were also 
previously recovered using simulated data [49]. Simula-
tions also have shown that RelTime confidence intervals 
exhibit equivalent or greater coverage probabilities than 
Bayesian approaches [43].

Besides having good statistical proprieties, we expect 
fast dating methods to reduce computational time signifi-
cantly. We demonstrated that, on average, RelTime was 
60 times faster than treePL. In the age of big data, such 
speed-up makes large-scale biological hypothesis test-
ing feasible. Moreover, previous works based on simu-
lations that accessed PL performance against Bayesian 
approaches and RelTime found that it performed worse 
than these methods under various scenarios of hetero-
geneous rates [25, 92]. These findings, together with our 
results that certified the speed of RelTime, demonstrate 
the usefulness of the RRF in obtaining biological time-
scales for large datasets.

The discrepancy between divergence time estimates 
from fast-dating and Bayesian methods was primarily 
influenced by the alignment length. Longer alignments 
resulted in larger differences between methods. This 
result is expected if methods rely on different modeling 
assumptions regarding parameters and evolutionary rate 
variation. Consequently, as the sample size approaches 
infinity, estimates become significantly different. For 
RelTime, calibration density significantly impacted the 
MSE of time estimates, implying that, besides align-
ment length, increasing the number of time constraints 
also makes the differences between methods more pro-
nounced [49].

While previous work has advocated that RRF may not 
be suitable to infer divergence times for deep time data-
sets, leading to overly older time estimates [90], our anal-
yses did not support this claim. Also, in contrast with a 
previous study [89], our results indicate that the strategy 
used by RelTime to calibrate timetrees [43] is as appro-
priate as the Bayesian calibration priors, yielding excel-
lent correspondence between the timescales from both 
methods for most of the datasets (for ~ 78% of the data-
sets, β values deviated less than 0.2 from 1).

It is worth mentioning that larger differences between 
Bayesian analysis and RelTime may be retrieved at nodes 
connecting branches with lengths close to zero. Such lack 
of substitutions along branches causes RelTime to esti-
mate more recent node ages. The fact that fast methods 
use branch lengths to estimate divergence times without 
relying on priors for node ages implies that when some 
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branches have near zero substitutions, they underesti-
mate times compared to Bayesian analysis. This occurs 
because divergence time priors assign lengths > 0 even 
when no substitutions are observed, as in the coales-
cent prior [93]. This may also affect treePL estimates, as 
observed for the dataset of Fang18 (Supporting informa-
tion 2), although treePL may also assign non-zero time 
values to branches where the number of accumulated 
substitutions is effectively zero [40], leading to older 
inferred times than RelTime.

Our comparative analysis using a comprehensive 
empirical dataset has shown that fast dating meth-
ods are a viable alternative to time-consuming Bayes-
ian methods to infer node ages for large-scale datasets. 
Additionally, we demonstrated that the RRF approach 
implemented in RelTime performed better, with lower 
demand in computational times. Thus, we emphasize 
the efficacy of the RRF in establishing molecular time-
scales with excellent correspondence to those inferred by 
Bayesian approaches. Timescales from different dating 
frameworks were impacted by alignment length, suggest-
ing that their asymptotic properties are different. Fur-
thermore, the quick estimation of confidence intervals of 
node ages allows for robust testing between several alter-
nate evolutionary hypotheses, eliminating the computa-
tional burden brought forth by big data in biology.
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and fast methods’ time estimates for each of the datasets analyzed. Each 
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sion coefficient (R2) values. Calibrated nodes are represented by triangles. 
Supporting information 2. Kernel densities of the mean normalized dif‑
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of the datasets analyzed. For each node, it is computed as the difference 
between the treePL (blue) or RelTime (red) estimate and the Bayesian 
estimate divided by the Bayesian estimate. Supporting information 3. 
The performance of fast dating methodologies relative to the Bayesian 
methods for phylogenomic data. “RelTime” and “treePL (without calibra‑
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linear regressions through the origin between rapid and Bayesian methods 
are shown in the left panels. The mean normalized differences between 
RelTime/treePL and Bayesian node ages (𝐷 “) are shown in the right panels.

Acknowledgments
We thank the reviewers for their helpful comments on previous versions of 
this manuscript.

Authors’ contributions
BM conceived the ideas, and BM and FPC designed the methodology; BM 
and FPC collected the data; BM, FPC, and CGS analyzed the data; BM, FPC, 
and CGS discussed the results; BM and FPC led the writing of the manuscript. 

All authors contributed critically to the drafts and gave final approval for 
publication.

Funding
This research was supported by grants from the Brazilian Research Coun‑
cil (CNPq, 409152/2018–8 and 309165/2019–9) and Fundação Carlos 
Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ, 
E-26/211.248/2019 and E-26/201.446/2022). FPC was supported by scholar‑
ships from CNPq (132838/2019–2) and FAPERJ (E-26/200.170/2020).

Availability of data and materials
The datasets analyzed during the current study are available at the following 
link: https://github.com/biaumello/costa_et_al_2022.

Declarations

Ethical approval and consent to participate
Not applicable.

Consent to publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 28 June 2022   Accepted: 21 November 2022

References
	1.	 Doolittle RF, Blomback B. Amino-acid sequence investigations of 

Fibrinopeptides from various mammals: evolutionary implications. 
Nature. 1964;202:147.

	2.	 Margoliash E. Primary structure and evolution of cytochrome C. Proc 
Natl Acad Sci U S A. 1963;50:672–9.

	3.	 Zuckerkandl E, Pauling L. Molecular disease, evolution, and genic het‑
erogeneity. In: Kasha M, Pullman B, editors. Horizons in biochemistry. 
New York, USA: Academic Press; 1962. p. 189–225.

	4.	 Zuckerkandl E, Pauling L. Evolutionary divergence and convergence 
in proteins. In:  Evolving Genes and Proteins: Elsevier; 1965. p. 97–166. 
https://​www.​elsev​ier.​com/​books/​evolv​ing-​genes-​andpr​oteins/​bryson/​
978-1-​4832-​2734-4.

	5.	 Blair C, Bryson RW, Linkem CW, Lazcano D, Klicka J, McCormack JE. 
Cryptic diversity in the Mexican highlands: thousands of UCE loci help 
illuminate phylogenetic relationships, species limits and divergence 
times of montane rattlesnakes (Viperidae: Crotalus ). Mol Ecol Resour. 
2019;19:349–65.

	6.	 Givnish TJ, Zuluaga A, Spalink D, Soto Gomez M, Lam VKY, Saarela JM, 
et al. Monocot plastid phylogenomics, timeline, net rates of species 
diversification, the power of multi-gene analyses, and a functional model 
for the origin of monocots. Am J Bot. 2018;105:1888–910.

	7.	 Tarver JE, dos Reis M, Mirarab S, Moran RJ, Parker S, O’Reilly JE, et al. The 
interrelationships of placental mammals and the limits of phylogenetic 
inference. Genome Biol Evol. 2016;8:330–44.

	8.	 Yang L, Su D, Chang X, Foster CSP, Sun L, Huang C-H, et al. Phylogenomic 
insights into deep phylogeny of angiosperms based on broad nuclear 
gene sampling. Plant Commun. 2020;1:100027.

	9.	 Battistuzzi FU, Billing-Ross P, Paliwal A, Kumar S. Fast and slow implemen‑
tations of relaxed-clock methods show similar patterns of accuracy in 
estimating divergence times. Mol Biol Evol. 2011;28:2439–42.

	10.	 Bromham L, Duchêne S, Hua X, Ritchie AM, Duchêne DA, Ho SYW. Bayes‑
ian molecular dating: opening up the black box. Biol Rev Camb Philos 
Soc. 2018;93:1165–91.

	11.	 Crosby RW, Williams TL. Fast algorithms for computing phylogenetic 
divergence time. BMC Bioinformatics. 2017;18:514.

	12.	 Tamura K, Tao Q, Kumar S. Theoretical Foundation of the RelTime method 
for estimating divergence times from variable evolutionary rates. Mol Biol 
Evol. 2018;35:1770–82.

https://doi.org/10.1186/s12864-022-09030-5
https://doi.org/10.1186/s12864-022-09030-5
https://www.elsevier.com/books/evolving-genes-andproteins/bryson/978-1-4832-2734-4
https://www.elsevier.com/books/evolving-genes-andproteins/bryson/978-1-4832-2734-4


Page 9 of 10Costa et al. BMC Genomics          (2022) 23:798 	

	13.	 Aardema ML, Stiassny MLJ, Alter SE. Genomic analysis of the only blind 
cichlid reveals extensive inactivation in eye and pigment formation 
genes. Genome Biol Evol. 2020;12:1392–406.

	14.	 Del Cortona A, Jackson CJ, Bucchini F, Van Bel M, D’hondt S, Škaloud P, 
et al. Neoproterozoic origin and multiple transitions to macroscopic 
growth in green seaweeds. Proc Natl Acad Sci U S A. 2020;117:2551–9.

	15.	 Helmstetter AJ, Béthune K, Kamdem NG, Sonké B, Couvreur TLP. Individu‑
alistic evolutionary responses of Central African rain forest plants to Pleis‑
tocene climatic fluctuations. Proc Natl Acad Sci U S A. 2020;117:32509–18.

	16.	 Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. Whole-genome 
analyses resolve early branches in the tree of life of modern birds. Sci‑
ence. 2014;346:1320–31.

	17.	 Percequillo AR, do Prado JR, Abreu EF, Dalapicolla J, Pavan AC, de Almeida 
Chiquito E, et al. Tempo and mode of evolution of oryzomyine rodents 
(Rodentia, Cricetidae, Sigmodontinae): a phylogenomic approach. Mol 
Phylogenet Evol. 2021;159:107120.

	18.	 Smith SA, Brown JW, Walker JF. So many genes, so little time: a practical 
approach to divergence-time estimation in the genomic era. PLoS One. 
2018;13:e0197433.

	19.	 Wolfe JM, Breinholt JW, Crandall KA, Lemmon AR, Lemmon EM, Timm LE, 
et al. A phylogenomic framework, evolutionary timeline and genomic 
resources for comparative studies of decapod crustaceans. Proc R Soc B 
Biol Sci. 2019;286:20190079.

	20.	 Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire J-Y, Kupfer A, et al. Phy‑
lotranscriptomic consolidation of the jawed vertebrate timetree. Nat Ecol 
Evol. 2017;1:1370–8.

	21.	 Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, et al. 
A comprehensive phylogeny of birds (Aves) using targeted next-genera‑
tion DNA sequencing. Nature. 2015;526:569–73.

	22.	 Mello B, Tao Q, Tamura K, Kumar S. Fast and accurate estimates of diver‑
gence times from big data. Mol Biol Evol. 2017;34:45–50.

	23.	 Tao Q, Tamura K, Kumar S. Efficient methods for dating evolutionary 
divergences. In: Ho SYW, editor. The molecular evolutionary clock. Cham: 
Springer International Publishing; 2020. p. 197–219.

	24.	 Sanderson MJ. Estimating absolute rates of molecular evolution and diver‑
gence times: a penalized likelihood approach. Mol Biol Evol. 2002;19:101–9.

	25.	 Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S. Esti‑
mating divergence times in large molecular phylogenies. Proc Natl Acad 
Sci. 2012;109:19333–8.

	26.	 Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I. 
Phylogenomics resolves a spider backbone phylogeny and rejects a 
prevailing paradigm for orb web evolution. Curr Biol. 2014;24:1765–71.

	27.	 Daane JM, Auvinet J, Stoebenau A, Yergeau D, Harris MP, Detrich HW. 
Developmental constraint shaped genome evolution and erythrocyte 
loss in Antarctic fishes following paleoclimate change. PLoS Genet. 
2020;16:e1009173.

	28.	 Fernández-Mazuecos M, Vargas P, McCauley RA, Monjas D, Otero A, 
Chaves JA, et al. The radiation of Darwin’s Giant daisies in the Galápagos 
Islands. Curr Biol. 2020;30:4989–4998.e7.

	29.	 Harvey MG, Bravo GA, Claramunt S, Cuervo AM, Derryberry GE, Bat‑
tilana J, et al. The evolution of a tropical biodiversity hotspot. Science. 
2020;370:1343–8.

	30.	 Marin J, Battistuzzi FU, Brown AC, Hedges SB. The Timetree of prokary‑
otes: new insights into their evolution and speciation. Mol Biol Evol. 
2016;34(2):437–446.

	31.	 Qiao J, Zhang X, Chen B, Huang F, Xu K, Huang Q, et al. Comparison of the 
cytoplastic genomes by resequencing: insights into the genetic diversity 
and the phylogeny of the agriculturally important genus Brassica. BMC 
Genomics. 2020;21:480.

	32.	 Roxas BAP, Roxas JL, Claus-Walker R, Harishankar A, Mansoor A, Anwar 
F, et al. Phylogenomic analysis of Clostridioides difficile ribotype 106 
strains reveals novel genetic islands and emergent phenotypes. Sci Rep. 
2020;10:22135.

	33.	 Shingate P, Ravi V, Prasad A, Tay B-H, Venkatesh B. Chromosome-level 
genome assembly of the coastal horseshoe crab (Tachypleus gigas). Mol 
Ecol Resour. 2020;20:1748–60.

	34.	 Grealey J, Lannelongue L, Saw W-Y, Marten J, Méric G, Ruiz-Carmona 
S, et al. The carbon footprint of bioinformatics. Mol Biol Evol. 
2022;39:msac034.

	35.	 Kumar S. Embracing green computing in molecular Phylogenetics. Mol 
Biol Evol. 2022;39:msac043.

	36.	 Lepage T, Bryant D, Philippe H, Lartillot N. A general comparison of 
relaxed molecular clock models. Mol Biol Evol. 2007;24:2669–80.

	37.	 Tao Q, Tamura K, U. Battistuzzi F, Kumar S. A machine learning method for 
detecting autocorrelation of evolutionary rates in large phylogenies. Mol 
Biol Evol. 2019;36:811–24.

	38.	 Sanderson MJ. r8s: inferring absolute rates of molecular evolution and 
divergence times in the absence of a molecular clock. Bioinformatics. 
2003;19:301–2.

	39.	 Paradis E. Molecular dating of phylogenies by likelihood methods: a 
comparison of models and a new information criterion. Mol Phylogenet 
Evol. 2013;67:436–44.

	40.	 Smith SA, O’Meara BC. treePL: divergence time estimation using penal‑
ized likelihood for large phylogenies. Bioinformatics. 2012;28:2689–90.

	41.	 Kishino H, Thorne JL, Bruno WJ. Performance of a divergence time estima‑
tion method under a probabilistic model of rate evolution. Mol Biol Evol. 
2001;18:352–61.

	42.	 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evo‑
lutionary genetics analysis across computing platforms. Mol Biol Evol. 
2018;35:1547–9.

	43.	 Tao Q, Tamura K, Mello B, Kumar S. Reliable confidence intervals for 
RelTime estimates of evolutionary divergence times. Mol Biol Evol. 
2020;37:280–90.

	44.	 Paradis E, Claramunt S, Brown J, Schliep K. Confidence intervals in 
molecular dating by maximum likelihood. Mol Phylogenet Evol. 2022;178.

	45.	 Battistuzzi FU, Tao Q, Jones L, Tamura K, Kumar S. RelTime relaxes the 
strict molecular clock throughout the phylogeny. Genome Biol Evol. 
2018;10:1631–6.

	46.	 Chernikova D, Motamedi S, Csürös M, Koonin EV, Rogozin IB. A late origin 
of the extant eukaryotic diversity: divergence time estimates using rare 
genomic changes. Biol Direct. 2011;6:26.

	47.	 Filipski A, Murillo O, Freydenzon A, Tamura K, Kumar S. Prospects for build‑
ing large Timetrees using molecular data with incomplete gene coverage 
among species. Mol Biol Evol. 2014;31:2542–50.

	48.	 Gunter NL, Weir TA, Slipinksi A, Bocak L, Cameron SL. If dung beetles 
(Scarabaeidae: Scarabaeinae) arose in association with dinosaurs, did 
they also suffer a mass co-extinction at the K-Pg boundary? PLoS One. 
2016;11:e0153570.

	49.	 Barba-Montoya J, Tao Q, Kumar S. Assessing rapid relaxed-clock methods 
for Phylogenomic dating. Genome Biol Evol. 2021;13:evab251.

	50.	 Allio R, Scornavacca C, Nabholz B, Clamens A-L, Sperling FA, Condamine 
FL. Whole genome shotgun Phylogenomics resolves the pattern and 
timing of swallowtail butterfly evolution. Syst Biol. 2020;69:38–60.

	51.	 Anderson FE, Williams BW, Horn KM, Erséus C, Halanych KM, Santos SR, 
et al. Phylogenomic analyses of Crassiclitellata support major northern 
and southern hemisphere clades and a Pangaean origin for earthworms. 
BMC Evol Biol. 2017;17:123.

	52.	 Blaimer BB, Ward PS, Schultz TR, Fisher BL, Brady SG. Paleotropical diversifi‑
cation dominates the evolution of the Hyperdiverse ant tribe Cremato‑
gastrini (Hymenoptera: Formicidae). Insect Syst Divers. 2018;2(5):3; 1–14.

	53.	 Borowiec ML. Convergent evolution of the Army ant syndrome and 
congruence in big-data Phylogenetics. Syst Biol. 2019;68:642–56.

	54.	 Chazot N, Wahlberg N, Freitas AVL, Mitter C, Labandeira C, Sohn J-C, et al. 
Priors and posteriors in Bayesian timing of divergence analyses: the age 
of butterflies revisited. Syst Biol. 2019;68:797–813.

	55.	 Delsuc F, Philippe H, Tsagkogeorga G, Simion P, Tilak M-K, Turon X, et al. 
A phylogenomic framework and timescale for comparative studies of 
tunicates. BMC Biol. 2018;16:39.

	56.	 Delsuc F, Kuch M, Gibb GC, Karpinski E, Hackenberger D, Szpak P, et al. 
Ancient Mitogenomes reveal the evolutionary history and biogeography 
of sloths. Curr Biol. 2019;29:2031–2042.e6.

	57.	 dos Reis M, Gunnell GF, Barba-Montoya J, Wilkins A, Yang Z, Yoder AD. 
Using Phylogenomic data to explore the effects of relaxed clocks and 
calibration strategies on divergence time estimation: Primates as a test 
case. Syst Biol. 2018;67:594–615.

	58.	 Fang B, Merilä J, Ribeiro F, Alexandre CM, Momigliano P. World‑
wide phylogeny of three-spined sticklebacks. Mol Phylogenet Evol. 
2018;127:613–25.

	59.	 Feng Y-J, Blackburn DC, Liang D, Hillis DM, Wake DB, Cannatella DC, 
et al. Phylogenomics reveals rapid, simultaneous diversification of 
three major clades of Gondwanan frogs at the Cretaceous–Paleogene 
boundary. Proc Natl Acad Sci. 2017;114:E5864–70.



Page 10 of 10Costa et al. BMC Genomics          (2022) 23:798 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	60.	 Hedin M, Derkarabetian S, Alfaro A, Ramírez MJ, Bond JE. Phylogenomic 
analysis and revised classification of atypoid mygalomorph spiders 
(Araneae, Mygalomorphae), with notes on arachnid ultraconserved 
element loci. PeerJ. 2019;7:e6864.

	61.	 Hughes LC, Ortí G, Huang Y, Sun Y, Baldwin CC, Thompson AW, et al. 
Comprehensive phylogeny of ray-finned fishes (Actinopterygii) 
based on transcriptomic and genomic data. Proc Natl Acad Sci. 
2018;115:6249–54.

	62.	 Johnson KP, Dietrich CH, Friedrich F, Beutel RG, Wipfler B, Peters RS, 
et al. Phylogenomics and the evolution of hemipteroid insects. Proc 
Natl Acad Sci. 2018;115:12775–80.

	63.	 Kuntner M, Hamilton CA, Cheng R-C, Gregorič M, Lupše N, Lokovšek 
T, et al. Golden Orbweavers ignore biological rules: Phylogenomic 
and comparative analyses unravel a complex evolution of sexual size 
dimorphism. Syst Biol. 2019;68:555–72.

	64.	 Pereira AG, Sterli J, Moreira FRR, Schrago CG. Multilocus phylogeny and 
statistical biogeography clarify the evolutionary history of major line‑
ages of turtles. Mol Phylogenet Evol. 2017;113:59–66.

	65.	 Pessoa-Filho M, Martins AM, Ferreira ME. Molecular dating of phylo‑
genetic divergence between Urochloa species based on complete 
chloroplast genomes. BMC Genomics. 2017;18:516.

	66.	 Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meuse‑
mann K, et al. Evolutionary history of the Hymenoptera. Curr Biol. 
2017;27:1013–8.

	67.	 Peters RS, Niehuis O, Gunkel S, Bläser M, Mayer C, Podsiadlowski L, et al. 
Transcriptome sequence-based phylogeny of chalcidoid wasps (Hyme‑
noptera: Chalcidoidea) reveals a history of rapid radiations, convergence, 
and evolutionary success. Mol Phylogenet Evol. 2018;120:286–96.

	68.	 Ran J-H, Shen T-T, Wu H, Gong X, Wang X-Q. Phylogeny and evolutionary 
history of Pinaceae updated by transcriptomic analysis. Mol Phylogenet 
Evol. 2018;129:106–16.

	69.	 Sann M, Niehuis O, Peters RS, Mayer C, Kozlov A, Podsiadlowski L, et al. 
Phylogenomic analysis of Apoidea sheds new light on the sister group of 
bees. BMC Evol Biol. 2018;18:71.

	70.	 Yonezawa T, Segawa T, Mori H, Campos PF, Hongoh Y, Endo H, et al. 
Phylogenomics and morphology of extinct Paleognaths reveal the origin 
and evolution of the ratites. Curr Biol. 2017;27:68–77.

	71.	 Lartillot N, Philippe H. A Bayesian mixture model for across-site 
heterogeneities in the amino-acid replacement process. Mol Biol Evol. 
2004;21:1095–109.

	72.	 Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al. BEAST 2: 
a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 
2014;10:e1003537.

	73.	 Azzalini A. The R package “sn”: The Skew-Normal and Related Distribu‑
tions such as the Skew-t and the SUN; 2021.

	74.	 Delignette-Muller ML, Dutang C. fitdistrplus : an R package for fitting 
distributions. J Stat Softw. 2015;64(4):1–34.

	75.	 R Core Team. R: A language and environment for statistical computing. 2020.
	76.	 dos Reis M, Yang Z. Approximate likelihood calculation on a phy‑

logeny for Bayesian estimation of divergence times. Mol Biol Evol. 
2011;28:2161–72.

	77.	 Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol 
Evol. 2007;24:1586–91.

	78.	 Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a 
molecular clock of mitochondrial DNA. J Mol Evol. 1985;22:160–74.

	79.	 Gevrey M, Dimopoulos I, Lek S. Review and comparison of methods to 
study the contribution of variables in artificial neural network models. 
Ecol Model. 2003;160:249–64.

	80.	 Kuhn M. Building predictive models in R using the caret package. J Stat 
Softw. 2008;28(5):1–26.

	81.	 Cai L, Xi Z, Peterson K, Rushworth C, Beaulieu J, Davis CC. Phylogeny of 
Elatinaceae and the tropical Gondwanan origin of the Centroplacaceae 
(Malpighiaceae, Elatinaceae) clade. Plos one. 2016;11:e0161881.

	82.	 Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández 
T. A metacalibrated time-tree documents the early rise of flowering plant 
phylogenetic diversity. New Phytol. 2015;207:437–53.

	83.	 Britton T, Anderson CL, Jacquet D, Lundqvist S, Bremer K. Estimating 
divergence times in large phylogenetic trees. Syst Biol. 2007;56:741–52.

	84.	 Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö 
M, et al. Diversification of Neoaves: integration of molecular sequence 
data and fossils. Biol Lett. 2006;2:543–7.

	85.	 Mulcahy DG, Noonan BP, Moss T, Townsend TM, Reeder TW, Sites JW, et al. 
Estimating divergence dates and evaluating dating methods using phy‑
logenomic and mitochondrial data in squamate reptiles. Mol Phylogenet 
Evol. 2012;65:974–91.

	86.	 Pérez-Losada M, Høeg JT, Crandall KA. Unraveling the evolutionary radia‑
tion of the Thoracican barnacles using molecular and morphological evi‑
dence: a comparison of several divergence time estimation approaches. 
Syst Biol. 2004;53:244–64.

	87.	 Sanderson MJ, Thorne JL, Wikström N, Bremer K. Molecular evidence on 
plant divergence times. Am J Bot. 2004;91:1656–65.

	88.	 Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S. A protocol for 
diagnosing the effect of calibration priors on posterior time estimates: 
a case study for the Cambrian explosion of animal Phyla. Mol Biol Evol. 
2015;32:1907–12.

	89.	 Beavan AJS, Donoghue PCJ, Beaumont MA, Pisani D. Performance of a 
priori and a posteriori calibration strategies in divergence time estima‑
tion. Genome Biol Evol. 2020;12:1087–98.

	90.	 Lozano-Fernandez J, dos Reis M, Donoghue PCJ, Pisani D. RelTime rates 
collapse to a strict clock when estimating the timeline of animal diversifi‑
cation. Genome Biol Evol. 2017;9:1320–8.

	91.	 Tao Q, Barba-Montoya J, Huuki LA, Durnan MK, Kumar S. Relative efficien‑
cies of simple and complex substitution models in estimating divergence 
times in Phylogenomics. Mol Biol Evol. 2020;37:1819–31.

	92.	 Ho SYW. Accuracy of rate estimation using relaxed-clock models 
with a critical focus on the early metazoan radiation. Mol Biol Evol. 
2005;22:1355–63.

	93.	 Mello B, Tao Q, Barba-Montoya J, Kumar S. Molecular dating for phylog‑
enies containing a mix of populations and species by using Bayesian and 
RelTime approaches. Mol Ecol Resour. 2021;21:122–36.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Assessing the relative performance of fast molecular dating methods for phylogenomic data
	Abstract 
	Introduction
	Material and methods
	Fast divergence time inference
	Evaluation of relative performance

	Results
	Discussion
	Acknowledgments
	References


