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Meta‑analysis of genome‑wide association 
studies uncovers shared candidate genes 
across breeds for pig fatness trait
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Abstract 

Background:  Average backfat thickness (BFT) is a critical complex trait in pig and an important indicator for fat 
deposition and lean rate. Usually, genome-wide association study (GWAS) was used to discover quantitative trait loci 
(QTLs) of BFT in a single population. However, the power of GWAS is limited by sample size in a single population. 
Alternatively, meta-analysis of GWAS (metaGWAS) is an attractive method to increase the statistical power by integrat-
ing data from multiple breeds and populations. The aim of this study is to identify shared genetic characterization of 
BFT across breeds in pigs via metaGWAS. 

Results:  In this study, we performed metaGWAS on BFT using 15,353 pigs (5,143 Duroc, 7,275 Yorkshire, and 2,935 
Landrace) from 19 populations. We detected 40 genome-wide significant SNPs (Bonferroni corrected P < 0.05) and 
defined five breed-shared QTLs in across-breed metaGWAS. Markers within the five QTL regions explained 7 ~ 9% 
additive genetic variance and showed strong heritability enrichment. Furthermore, by integrating information from 
multiple bioinformatics databases, we annotated 46 candidate genes located in the five QTLs. Among them, three 
important (MC4R, PPARD, and SLC27A1) and seven suggestive candidate genes (PHLPP1, NUDT3, ILRUN, RELCH, KCNQ5, 
ITPR3, and U3) were identified.

Conclusion:  QTLs and candidate genes underlying BFT across breeds were identified via metaGWAS from multiple 
populations. Our findings contribute to the understanding of the genetic architecture of BFT and the regulating 
mechanism underlying fat deposition in pigs.

Keywords:  Pig, GWAS, meta-analysis, Backfat thickness, QTL

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Human obesity has become an increasingly common 
social phenomenon in the past decades related to both 
quality of life and life expectancy [1]. Pig was often cho-
sen as a model animal for scientific research due to its 

similar physiology architecture with human. Up to date, 
PigQTLdb (release 48) released 35,846 quantitative trait 
loci (QTLs), expression quantitative trait loci (eQTLs), 
and associations [2], of which 3,608 associations are 
related to fatness traits. Average backfat thickness (BFT) 
is an indicator for fat deposition and directly linked to fat 
content and lean rate in pig [3, 4]. Uncovering the genetic 
characteristics of BFT can be useful for pig genetic 
improvement.

Previous studies showed that BFT is a complex trait [5–
7] with moderate or high heritability ranged from 0.2 ~ 0.6 
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[5–8]. Genome-wide association study (GWAS) in single 
population has been widely used to mine the potential 
QTLs and genes that associated with BFT [9–11]. And 
Gozalo‑Marcilla1 et al. [12] performed large scale GWAS 
of pig BFT from eight lines to highlight the genes involved 
in pathways for fat deposition. However, the power of sin-
gle population GWAS is usually limited by sample size. 
Meta-analysis of GWAS summary statistics (metaGWAS) 
is an attractive method to increase the statistical power by 
integrating data from multiple breeds and populations. In 
recent years, metaGWAS has gradually become a popular 
method to study the genetic architecture of pig complex 
trait. For instance, Cai et al. [13] performed a large-scale 
metaGWAS in pig to identify the candidate gene of aver-
age daily gain across three breeds. Zhou et  al. [14] con-
ducted both GWAS and metaGWAS in pig to reveal new 
insights into the genetic architecture of average daily gain 
and lean meat percentage. Although, several candidate 
genes associated with BFT (e.g., MC4R [15, 16], PPARD 
[17], and LEPR [18, 19]) have been reported via GWAS 
and followed by experimental validations, the potential 
shared QTLs and genes of BFT across breeds are rarely 
reported.

The objectives of this study were to identify QTLs 
and candidate genes via metaGWAS and to explore the 

genetic architecture of BFT across pig breeds. In this 
study, we performed GWAS for BFT in 19 different pop-
ulations genotyped with Porcine SNP BeadChip. Fur-
ther, metaGWAS was performed for within-breed and 
across-breed strategies. Our findings contribute to the 
understanding of the genetic architecture of BFT and the 
regulating mechanism underlying fat deposition in pigs.

Results
Data summary and population stratification
The detail information (i.e., breed, sample size, geno-
types, and phenotypes) of 19 populations used in this 
study were presented in Table  1. In total, we used data 
from 15,353 pigs consisting of 5,143 Duroc in seven 
populations, 7,275 Yorkshire in seven populations, and 
2,935 Landrace in five populations. The average values 
(± standard deviation) of BFT for Duroc, Yorkshire, and 
Landrace were 10.87 (± 2.20  mm), 12.07 (± 3.36  mm), 
and 12.60 (± 4.28 mm), respectively.

Principal component analysis (PCA) based on genotypes 
of all pigs (Fig.  1) and each of three breeds (Additional 
file  1: Figure S1) showed that samples from three breeds 
were clustered clearly. The first two genotype principal 
components (PCs) explained for 14.66% and 7.49% of total 
population variance, respectively.

Table 1  Summary of experimental data

Chip a: GeneSeek GGP-Porcine Beadchip (Neogen Corporation, Lansing, MI, USA) with 50 K

Chip b: Illumina PorcineSNP60 BeadChip (Illumina, San Diego, CA, USA) with 60 K

Chip c: “ZhongxinI” Porcine Breeding Chip (Beijing Compass Agritechnology Co., Ltd., Beijing, China) with 50 K

Chip d: GeneSeek GGP-Porcine Beadchip (Neogen Corporation, Lansing, MI, USA) with 80 K

Population Breed Number of 
Sample

Number of SNPs Mean
(mm)

Minimum
(mm)

Maximum
(mm)

SD
(mm)

CV
(%)

Chip

PP1 Duroc 1,993 39,311 9.82 4.58 17.45 1.66 16.94 a

PP2 [8] Duroc 1,071 23,766 12.45 6.68 21.02 2.10 16.91 ab

PP3 Duroc 1,048 40,139 10.90 5.18 22.88 2.27 20.81 a

PP4 Duroc 353 39,082 12.47 8.98 16.59 1.45 11.64 b

PP5 Duroc 328 31,680 10.07 6.27 20.81 1.51 15.02 c

PP6 Duroc 190 39,927 12.07 8.06 19.71 2.02 16.70 a

PP7 Duroc 160 37,074 9.86 5.05 15.72 1.93 19.61 a

PP8 Yorkshire 2,179 41,314 11.14 3.02 23.35 2.51 22.55 ad

PP9 Yorkshire 1,794 41,360 10.74 4.29 29.09 2.73 25.41 ad

PP10 Yorkshire 1,259 45,002 11.77 5.03 22.01 2.42 20.56 a

PP11 Yorkshire 1,146 44,434 13.13 6.61 26.06 2.92 22.20 a

PP12 Yorkshire 406 44,200 16.25 7.17 22.76 2.36 14.51 a

PP13 Yorkshire 314 31,564 18.76 8.02 29.76 4.51 24.01 c

PP14 Yorkshire 177 40,070 12.02 7.53 17.33 1.66 13.83 c

PP15 Landrace 1,094 43,304 10.31 5.30 19.52 2.20 21.30 a

PP16 Landrace 556 30,705 18.89 8.66 29.69 4.51 23.86 c

PP17 Landrace 554 45,132 12.17 7.20 22.20 2.29 18.86 a

PP18 Landrace 552 43,644 12.00 5.75 22.87 2.71 22.59 a

PP19 Landrace 179 33,809 9.69 6.20 14.41 1.37 14.14 c
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Meta‑analysis within breed
To overcome the limitation of power of single popula-
tion GWAS, we then performed metaGWAS by inte-
grating GWAS summaries from multiple populations 
with the same breed. As a basis for metaGWAS, we first 
conducted GWAS in each of 19 populations separately 
(Additional file 2: Table S1). In single population GWAS, 
the number of significant SNPs (P < 1 × 10− 5) ranged 
from 0 to 43. 105 SNPs were significant (P < 1 × 10− 5) 
only in one of 19 single population GWAS. 85 SNPs were 

significant (P < 1 × 10− 5) only in one of four metaGWAS 
(within-breed and across-breed), and 49 SNPs were sig-
nificant in at least one metaGWAS. 28 SNPs were signifi-
cant both in single population GWAS and metaGWAS 
(Additional file 3: Figure S2). The genomic inflation fac-
tor ( � ) values for within-breed metaGWAS of Duroc, 
Yorkshire, and Landrace were 1.07, 1.05, 1.00, respec-
tively (Table 2) and were within the normal range.

In Duroc within-breed metaGWAS, a total of 24 sig-
nificant SNPs were detected (Additional file 4: Table S2). 

Fig. 1  Population structure for nineteen populations. PC1 = the first principal component, PC2 = the second principal component. The number in 
brackets on axis represented the proportion of eigenvalues among all components

Table 2  Summary of QTLs from metaGWAS.

Breed Lambda
(λ)

Lead SNP SSC Position
(bp)

-log10
(P-value)

QTL region Number of 
significant 
SNPs within 
QTL in 
metaGWAS

Significant 
in single 
population 
GWAS 
(P < 1 × 10− 5)

Reported 
frequency in 
pigQTLdb

Duroc 1.07 rs81284646 1 161,824,864 7.70 155,986,286 ~ 161,824,864 10 Yes 21

rs80936157 7 30,356,985 9.28 29,356,985 ~ 31,356,985 13 Yes 21

rs81236473 18 10,555,467 6.29 9,555,467 ~ 11,555,467 1 No 1

Yorkshire 1.05 rs337892438 1 160,513,631 6.96 159,513,631 ~ 161,513,631 5 No 14

rs81358998 2 49,246,142 6.86 48,246,142 ~ 50,246,142 2 Yes 0

Landrace 1.00 rs81359965 2 80,229,065 6.24 79,229,065 ~ 81,229,065 1 No 2

All breeds 1.07 rs319638368 1 53,666,889 6.80 52,666,889 ~ 54,666,889 20 No 0

rs80877507 1 160,347,188 11.84 158,589,475 ~ 162,192,627 2 Yes 21

rs81359652 2 60,697,443 7.56 59,697,443 ~ 61,697,443 1 No 2

rs80962638 7 30,716,800 10.13 29,476,173 ~ 31,569,645 16 Yes 20

rs81236473 18 10,555,467 8.16 9,555,467 ~ 11,555,467 1 No 1
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Further, we identified three QTLs on sus scrofa chromo-
some (SSC) 1, 7, and 18 respectively (Fig. 2a, Additional 
file  5: Figure S3a). The QTL on SSC7 was identified by 
the most significant lead SNP rs80936157 (7:30356985, 
-log10P = 9.28) which was located in the gene body 
of NUDT3. The QTL on SSC1 included the second 
most significant lead SNP rs81284646 (1:161824864, 
-log10P = 7.70) which was located in the gene body of 
ENSSSCG00000004911. And the QTL on SSC18 was 
detected via the lead SNP (18:10555467, -log10P = 6.29) 
which was located in the gene body of ZC3HAV1.

In Yorkshire within-breed metaGWAS, we identi-
fied seven significant SNPs (Additional file 4: Table  S2) 
and discovered two QTLs on SSC1 and SSC2, respec-
tively (Fig.  2b, Additional file  5: Figure S3b). The QTL 
on SSC1 was defined by the most significant lead SNP 
rs337892438 (1:160513631, -log10P = 6.96) which was 
located in the downstream of ENSSSCG00000045579 
with distance equal to 69,671  bp. The QTL on SSC2 
included the second most significant lead SNP 
rs81358998 (2:49246142, -log10P = 6.86) which was 
located in the gene body of SBF2.

In Landrace within-breed metaGWAS, we only identi-
fied one significant SNP (Additional file 4: Table S2) and 
one QTL on SSC2 (Fig. 2c, Additional file 5: Figure S3c). 
The lead SNP rs81359965 (2:80229065, -log10P = 6.24) 
was located in the gene body of RMND5B.

Meta‑analysis across breeds
To maximize the sample size to discover the significant 
QTLs associated with BFT, we conducted an across-
breed metaGWAS combining GWAS summary statistics 
of all 19 populations. The inflation factor ( � ) value was 
1.07 for this across-breed metaGWAS (Table 2). A total 
of 40 significant SNPs (Additional file  4: Table  S2) and 
five QTLs on SSC1, 2, 7, and 18 (Fig. 2d, Additional file 5: 
Figure S3d) were detected.

Five QTLs were detected in across-breed metaGWAS. 
Two out of the five QTLs (SSC1, 52,666,889 ~ 54,666,889 bp; 
SSC2, 59,697,443 ~ 61,697,443  bp) were not observed in 
within-breed metaGWAS, while the remaining three QTLs 
were overlapped with those in within-breed metaGWAS.

The QTL on SSC1 was defined by the most sig-
nificant lead SNP rs80877507 (1:160347188, 
-log10P = 11.84) which was located in the gene body 
of ENSSSCG00000048538. The QTL on SSC7 was 
identified by the second most significant lead SNP 
rs80962638 (7:30716800, -log10P = 10.13) which was 
located in the gene body of SNRPC. The QTL on 
SSC18 included the third most significant lead SNP 
rs81236473 (18:10555467, -log10P = 8.16) which was 
located in the gene body of ZC3HAV1. The QTL on 
SSC2 included the lead SNP rs81359652 (2:60697443, 

-log10P = 7.56) which was located in the downstream 
of ENSSSCG00000013869 with distance equal to 
14,538 bp. The remaining QTL was detected on SSC1 
by the lead SNP (1:53666889, -log10P = 6.80) which 
was located in the downstream of CEP162 with dis-
tance equal to 224,490 bp.

We also examined the linkage disequilibrium (LD) 
blocks across breed for each of the five QTLs (Additional 
file  6: Figure S4). And the two QTLs located on SSC1 
showed high regional LD while the QTL located on SSC18 
showed the low LD. Obviously, the LD pattern showed a 
high similarity across breeds.

Post‑GWAS analysis
Genomic heritability estimation and predictive ability of 
five across-breed QTLs.

To verify the reliability of metaGWAS results, we con-
ducted heritability estimation (Table  3) and predictive 
ability evaluation (Fig. 3). Given that the standard error 
of heritability estimates is influenced by sample size, we 
used the largest population in each breed for heritability 
estimation to obtain a reliable estimate of heritability.

The estimated heritability for SNPs within the five 
QTL regions was 0.01 for Duroc, 0.02 for Yorkshire, and 
0.02 for Landrace. These SNPs explained 7.25%, 8.85% 
and 9.01% additive genetic variance for Duroc, York-
shire, and Landrace respectively. It should be noted that 
the five QTL regions were 18.15, 21.63, and 22.43 folds 
enriched for heritability in Duroc, Yorkshire, and lan-
drace, respectively.

To evaluate whether the five QTLs are effective across-
breed, we conducted genomic prediction with the lead 
SNPs within these QTLs, and calculated the Pearson’s 
correlation coefficient between predicted genetic value 
and average phenotype value in all populations. Finally, 
we observed an significant predicting ability across breed 
for these QTLs (Pearson’s correlation coefficient = 0.22, 
P < 3.98 × 10− 2).

Candidate genes mapping
To investigate the gene that potentially regulates BFT, 
we conducted candidate gene mapping from total 138 
positional candidate genes via four external biological 
annotations (Table 4, Additional file 7: Table S3). Within 
the five QTLs, we identified 46 candidate genes based 
on functional annotations in Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG), 
PigQTLdb and NHGRI-EBI. Several genes were identified 
in three annotations such as MC4R (SSC1, ~ 160.8 Mb), 
PPARD (SSC7, ~ 31.2  Mb), RELCH (SSC1, ~ 159.2  Mb), 
and ITPR3 (SSC7, ~ 29.8 Mb), of which MC4R was widely 
reported in both pig (11 evidence in backfat) and human 
(24 evidence in body mass index). SLC27A1 (SSC2, 



Page 5 of 11Zeng et al. BMC Genomics          (2022) 23:786 	

Fig. 2  Manhattan plots of metaGWAS within breed (a, b, c) and across breeds (d). The red lines indicate the 5% genome-wide Bonferroni corrected 
thresholds as -log10P equal to 6.14, 6.14, 6.12, and 6.20, respectively
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~ 60.2  Mb) was the gene annotated in five fat metabo-
lism processes in GO and KEGG including lipid, fatty 
acid, and triglyceride metabolic pathways, insulin sign-
aling pathway and homeostasis regulation pathway. Two 

genes, ILRUN (SSC7 at ~ 30.6  Mb) and KCNQ5 (SSC1 
at ~ 52.4  Mb) were not previously reported in pig but 
reported in human research.

Table 3  Estimated heritability of the five QTLs in across-breed metaGWAS.

h
2

QTLs : Estimated heritability of SNPs in the five QTLs in our study; h2genome : Estimated heritability of all SNPs; σ2QTLs : Genetic variance of SNPs in the five QTLs in our 
study; σ2genome : Genetic variance of all SNPs

Population Breed Number of SNPs h
2

QTLs (SE) h
2

genome (SE) Proportion
(σ2QTLs/σ

2
genome)

Enrichment

PP1 Duroc 157 0.01(0.01) 0.20(0.03) 0.07 18.15

PP8 Yorkshire 169 0.02(0.01) 0.21(0.03) 0.09 21.63

PP15 Landrace 174 0.02(0.02) 0.22(0.05) 0.09 22.43

Fig. 3  The correlation between predicted values and average phenotypes. Each point represented one genotype combination in five lead SNPs. 
Shaded part represented the 95% confidence interval

Table 4  Candidate genes in the five QTLs in across-breed metaGWAS

Superscript numbers: aGO/KEGG annotation; bPigQTLdb annotation; cNHGRI-EBI annotation

SSC QTL Position Candidate Genes

1 52,666,889 ~ 54,666,889 KCNQ5c, CYB5R4c, CEP162c, NT5Eb

1 155,986,286 ~ 161,824,864 PHLPP1bc, RELCHabc, RNF152b, CDH20b, MC4Rabc, CCBE1b, GRPc, SEC11Cc, ALPK2b

2 59,697,443 ~ 61,697,443 MAST3c, JAK3a, B3GNT3a, SLC27A1a, NXNL1a, U3c, KLF2a, KCNN1a

7 29,476,173 ~ 31,569,645 B3GALT4a, ITPR3abc, IP6K3a, LEMD2c, GRM4c, NUDT3c, PACSIN1c, SPDEFc, ILRUNc, 
SNRPCc, UHRF1BP1c, ANKS1Ac, TCP11c, SCUBE3c, PPARDabc, TEAD3c, TULP1c, 
FKBP5c

18 9,555,467 ~ 11,555,467 KDM7Ac, TBXAS1a, ZC3HAV1c, TRIM24c, AKR1D1a, CREB3L2ab, FMC1a
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Discussion
In this research, we conducted metaGWAS for BFT 
by combining 19 populations across three commercial 
breeds and identified shared QTLs across breeds. The 
BFT is a complex trait with heritability of 0.20 ~ 0.22 
in our study, which was agreed with previous stud-
ies [7, 8, 20–22]. On one hand, additive genetics vari-
ance explained by SNPs among the defined QTL regions 
ranged from 7.25 to 9.01% for the three breeds. These 
SNPs also showed high enrichment in heritability for all 
breeds, which indicated a shared genetic architecture of 
BFT across breeds at these QTL regions. On the other 
hand, across-breed metaGWAS showed a greater power 
to detect potential QTLs compared with within-breed 
metaGWAS. For instance, QTLs detected by across-
breed metaGWAS on SSC1 (~ 160  Mb) and SSC7 were 
significant in both Duroc and Yorkshire within-breed 
metaGWAS, but not significant in Landrace. Similarly, 
QTLs detected by across-breed metaGWAS on SSC1 
(~ 50  Mb) were significant in both Yorkshire and Lan-
drace within-breed metaGWAS, but not significant in 
Duroc. Finally, five QTLs were identified with a high 
enrichment of heritability and a moderate predictive abil-
ity for across breeds. These results indicate that across-
breed metaGWAS could identify shared QTLs for BFT 
across breeds.

Analysis method is crucial for association study, as 
complicated population structure and relatedness have 
the potential to lead to false signals [23–25]. Recent stud-
ies have also shown that inclusion of candidate maker 
in the SNP-derived genetic relationship matrix (GRM) 
can lead to a loss of power [26–28]. Therefore, we used 
GCTA-LOCO for single locus regression in order to 
avoid “proximal contamination” [27, 29] and corrected 
population stratification and relatedness by the mixed 
linear model and the first five PCs [30–33]. In addition, 
considering the data inconsistency among each popu-
lation, we unified them into summary statistics inde-
pendently by single population GWAS. Then we used 
summary statistics to performed metaGWAS to enhance 
the power of detecting significant SNPs.

Among the discovered candidate genes, three genes 
associated with BFT were well studied. First, MC4R 
(SSC1, ~ 160  Mb) was associated with fatness, growth, 
as well as meat quality traits reported in recent decades 
[12, 15, 34–36]. The reliability of MC4R had been vali-
dated by several studies in pigs [37–39] and in human 
[40–42]. In this study, MC4R was located in the QTL 
on SSC1 (~ 160  Mb) and was annotated with several 
homeostasis regulation pathways in GO biological pro-
cesses. Second, PPARD is recognized as an important 
gene associated with fat deposition traits in gene and 
gene expression layers [17, 43, 44], which was detected 

in our study in QTL on SSC7 and annotated by all the 
databases. Third, SLC27A1 was another detected impor-
tant genes that showed multiple evidence associated with 
fat deposition [45–47]. In addition, we identified seven 
promising candidate genes, PHLPP1, NUDT3, ILRUN, 
RELCH, KCNQ5, ITPR3, and U3. RELCH, the candidate 
gene near MC4R, belonged to sterol and lipid metabo-
lism pathway in GO database and was also identified in 
previous researches [14, 48]. ITPR3, the candidate gene 
near PPARD, belonged to insulin secretion pathway 
in KEGG database and both annotated in pig [49] and 
human. PHLPP1 (SSC1, ~ 160 Mb) and NUDT3 (SSC7), 
two candidate genes near major genes MC4R and PPARD 
respectively, were found to be associated with backfat in 
pig [8, 14, 50–53]. Three of them, ILRUN, KCNQ5, and 
U3 were reported in human associations studies in BMI 
and body weight for 15, 7, and 9 times respectively but 
not reported as the candidate genes in pig.

The sample size is a crucial factor to the power of 
GWAS. Generally, there are two strategies to enlarge the 
sample size. One is to combine individual level data (gen-
otypes and phenotypes) from multiple populations, then 
to conduct GWAS analysis. The other is metaGWAS, 
in which the GWAS summary statistics from multiple 
populations are analyzed jointly, rather than put indi-
vidual data together. In this study, we aimed at testing 
the metaGWAS strategy, in which individual data from 
different populations are not allowed to be combined 
together. The other strategy would be an interesting solu-
tion deserve further attempt in our further investigation. 
Integrating data from multiple populations could further 
increase the power of association analysis. However, the 
weakness of metaGWAS still could not be neglected. For 
example, the available SNPs were different for different 
populations, hence the number of common SNPs across 
all populations were usually too small to perform GWAS 
effectively. Therefore, a large pig genotype imputation 
reference panel was necessary for unifying the SNP maps 
for different populations.

Conclusion
In this study, we conducted metaGWAS for BFT on 
15,353 pigs from diverse genetic backgrounds. We iden-
tified 40 genome-wide significant SNPs located in five 
QTL regions and annotated 46 candidate genes based on 
across-breed metaGWAS. Among the candidate genes, 
MC4R, PPARD, and SLC27A1, had been well studied. 
Additionally, seven candidate genes, PHLPP1, NUDT3, 
ILRUN, RELCH, KCNQ5, ITPR3, and U3, were identified 
to be promising candidate genes associated with BFT. 
Our results provided useful reference for understanding 
the genetic architecture of BFT and the regulating mech-
anism underlying fat deposition in pigs.
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Materials and methods
Population and data
A total of 15,353 pigs (5,143 Duroc, 7,275 Yorkshire, and 
2,935 Landrace) from 19 populations in 12 Chinese pig 
farms were used in this analysis. The average age of pigs 
was 156, 172, and 164 days for Duroc, Yorkshire, and 
Landrace respectively. The backfat thickness was meas-
ured by living B-ultrasonic within each population at the 
end of test. The measurements were adjusted to body 
weight at 100  kg using within farm genetic evaluation 
system. Details about the populations, phenotypes, and 
genotypes were shown in Table 1.

All pigs were genotyped with one of the following SNP 
chips, GeneSeek GGP-Porcine Beadchip 50 and 80  K 
(Neogen Corporation, Lansing, MI, USA), Illumina Por-
cineSNP60 BeadChip 60  K (Illumina, San Diego, CA, 
USA), “ZhongxinI” Porcine Breeding Chip 50 K (Beijing 
Compass Agritechnology Co., Ltd., Beijing, China). The 
annotation of all SNPs has been unified to Ensemble Sus 
scrofa 11.1 reference genome version. And the missing 
genotypes were phased within each population using 
Beagle 5.1 [54]. Quality control on genotypes were car-
ried out within each population using PLINK v1.9 [55] 
with the criterion of minor allele frequency > 0.01 and 
P > 1 × 10− 6 for Hardy-Weinberg equilibrium test. SNPs 
with no position information or located on sex SSC were 
removed. After quality control, the number of SNPs 
within each population was shown in Table 1.

Population structure analysis
To correct the population structure in GWAS model and 
investigate the population structure, we performed PCA 
using GCTA-PCA (1.94.0beta) [30, 56] in single popula-
tion and mixed population, respectively. After that we 
visualized the result using R package ggplot2 [57].

Single population GWAS
We performed GWAS in each single population sepa-
rately using GCTA-LOCO [29, 56] with the following 
mixed linear model:

where y is an n× 1 vector of phenotypic values; Xsnp is 
the SNP genotype indicator variable coded as 0, 1 or 2 with 
its additive effect bsnp ; Xc is the incidence matrix of fixed 
covariates (test farm, test year, test season, sex and the first 
five principal components) with their corresponding coef-
ficient bc ; g− is the accumulated genetics effect captured 
by all SNPs except those on the chromosome where the 
candidate SNP is located via g− ∼ N 0,Gσ 2

g  , where G is 
the SNP-derived genetic relationship matrix follows the 
formula [58]:  G = ZZ ′

2
∑

pi(1−pi)
 , where Z was the minor 

y = Xsnpbsnp + Xcbc + g− + e

allele frequency (MAF) adjusted genotype matrix with ele-
ments ( 0− 2pj ), ( 1− 2pj ), and ( 2− 2pj ); e is a vector of 
residuals with e ∼ N

(

0, Iσ 2
e

)

 . The variance-covariance 
matrix of y is V = Gσ 2

g + Iσ 2
e .

Meta‑analysis of GWAS
To perform meta-analysis of GWAS, we utilized the 
GWAS summary statistics from single population GWAS 
as input for METAL (released on 2011-03-25) [59], in 
which inverse-variance weighted fixed-effects model was 
implemented with parameters “SCHEME STDERR” and 
“GENOMICCONTROL ON”. We set the genome-wide 
significant threshold of metaGWAS via Bonferroni cor-
rection (0.05/number of SNPs). The Manhattan plots 
and Quantile-Quantile (Q-Q) plots as well as � [60] were 
performed using R program. To detect the QTLs within 
and across breed, we performed metaGWAS with GWAS 
summary statistics from a single breed or all breeds, 
which were defined as within-breed and across-breed 
metaGWAS, separately. To fairly compare single popula-
tion GWAS with metaGWAS, we used the same genome-
wide significance level (1 × 10− 5) for both method in the 
comparative analysis.

Definition of QTL and LD analysis
In this study, we defined QTL as the genomic region 
containing a set of significant SNPs, where physical dis-
tance of each neighbor pair was less than 5  Mb. If the 
length of a QTL region was less than 2  Mb, the region 
was defined as the 1  Mb on the either side of the lead 
SNP. A lead SNP was defined as the most significant SNP 
within a QTL.

To assess the LD event in each QTLs across breeds, we 
computed the coefficient of LD (r2) in the largest popu-
lation within each breed (PP1, PP8, PP15) using PLINK 
v1.9 [55], and displayed LD blocks using R package 
LDheatmap [61]. In addition, to compare the result in 
this study with that in previous studies, we summarized 
each QTL overlapped frequency between this study and 
pigQTLdb on 25 March 2022 [2] with trait “backfat” and 
distance shorter than 5 Mb.

Estimation of genomic heritability explained by SNPs
To estimate the genomic heritability explained by SNPs 
within identified QTLs, SNPs were partitioned into two sets, 
within QTLs and outside QTLs. Then they were imported 
as two variance components in mixed linear model to esti-
mate heritability using GCTA-GREML [56, 62]:

where y is an n× 1 vector of phenotypic values; X is 
the incidence matrix of fixed covariates (test farm, test 

y = Xb + Zwithinuwithin + Zoutsideuoutside + e
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year, test season and the first five PCs) with their corre-
sponding coefficient b ; uwithin and uoutside represent addi-
tive effects explained by the SNPs within or outside all 
QTL regions via u ∼ N

(

0,Gσ 2
g

)

 , where G is the SNP-
derived genetic relationship matrix follows the formula 
[58]: G = ZZ ′

2
∑

pi(1−pi)
 , where Z was the minor allele fre-

quency (MAF) adjusted genotype matrix with elements 
( 0− 2pj ), ( 1− 2pj ), and ( 2− 2pj).Zwithin and Zoutsiderep-
resented incidence matrix explained by the SNPs within 
or outside identified QTLs. e is a vector of residuals with 
e ∼ N

(

0, Iσ 2
e

)

 . The heritability proportion for the SNPs 
within QTLs was defined as σ

2
within

σ
2
within+σ

2
outside

.

Predictive ability of genotype combination of five lead 
SNPs across populations
To evaluate the predictive ability, we computed predic-
tion value of phenotype from five lead SNPs (detected 
in across-breed metaGWAS) genotype combinations via 
the formula [21]:

where ypredictionwas the prediction value of phenotype; 
β̂i denotes the estimate of marginal genetic effect in asso-
ciation summary statistics; Gi denotes the number of 
effect alleles for each genetic variant coded as 0, 1, or 2. 
The Person’s correlation between predicted values and 
average phenotypes every genotype combination (sample 
size > 30) was calculated as predictive ability.

Identification candidate genes by functional annotation
To identify the candidate genes from QTLs, we firstly 
retrieved them based on physical location (within 
QTLs detected in across-breed metaGWAS) and multi 
external biological annotations. Second, we matched 
genes within QTLs with those belong to fat regulation 
biology process (“lipid/fatty acid/sterol/triglyceride/
bile acid metabolic pathways”, “insulin signal path-
ways”, “homeostasis regulation pathways”) in GO [63, 
64] and KEGG [65, 66]. In this step, enrichment test 
was calculated based on hypergeometric distribution 
using R-package clusterProfiler [67] with commands 
“enrichGO” and “enrichKEGG”. Third, we matched 
genes within QTLs with those associated with pig 
traits (“backfat”, “obesity index”, “body weight”, “body 
mass index”, “intramuscular fat content”, lean meat 
percentage”, “feed intake”) in pigQTLdb [2]. Finally, 
we matched genes within QTLs with whose associated 
with human obesity-related traits (“body mass index”, 
“body weight”, “obesity”, “energy intake”) in NHGRI-
EBI Database  [68].

yprediction =
∑5

i=1
β̂iGi
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