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Abstract 

Background:  The exact mechanism of atrial fibrillation (AF)-induced heart failure (HF) remains unclear. Proteomics 
and metabolomics were integrated to in this study, as to describe AF patients’ dysregulated proteins and metabolites, 
comparing patients without HF to patients with HF.

Methods:  Plasma samples of 20 AF patients without HF and another 20 with HF were analyzed by multi-omics 
platforms. Proteomics was performed with data independent acquisition-based liquid chromatography-tandem mass 
spectrometry (LC-MS/MS), as metabolomics was performed with LC-MS/MS platform. Proteomic and metabolomic 
results were analyzed separately and integrated using univariate statistical methods, multivariate statistical methods 
or machine learning model.

Results:  We found 35 up-regulated and 15 down-regulated differentially expressed proteins (DEPs) in AF patients 
with HF compared to AF patients without HF. Moreover, 121 up-regulated and 14 down-regulated differentially 
expressed metabolites (DEMs) were discovered in HF patients compared to AF patients without HF. An integrated 
analysis of proteomics and metabolomics revealed several significantly enriched pathways, including Glycolysis or 
Gluconeogenesis, Tyrosine metabolism and Pentose phosphate pathway. A total of 10 DEPs and DEMs selected as 
potential biomarkers provided excellent predictive performance, with an AUC of 0.94. In addition, subgroup analysis 
of HF classification was performed based on metabolomics, which yielded 9 DEMs that can distinguish between AF 
and HF for HF classification.

Conclusions:  This study provides novel insights to understanding the mechanisms of AF-induced HF progression 
and identifying novel biomarkers for prognosis of AF with HF by using metabolomics and proteomics analyses.
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Introduction
As the most common arrhythmia in clinical practice, 
atrial fibrillation (AF) happens with complex pathophysi-
ology, that causes adverse consequences of death, stroke 
and heart failure (HF) [1]. Although the incidence rate of 
stroke in AF has been decreasing due to the use of oral 
anticoagulation [2], there has been no obvious change 
in the incidence or prevalence rate of HF over the past 
decades [3]. The cumulative incidence rate of HF in AF 
was reported as 20% at 5 years, which was higher than the 
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risk of stroke [4]. HF is considered to be the most gen-
eral adverse event caused by AF following hospitalization 
and death [5]. When AF and HF coexist in patients, the 
prognosis is poorer than either single condition [6, 7]. It 
was confirmed that AF with HF shows the risk of death 
3.4 fold higher than those patients of AF without HF [4]. 
Common risk factors and pathophysiological processes 
have been observed in AF and HF [8]. Conventional risk 
factors such as advancing age, diabetes, history of cardio-
vascular disease and hypertension have been shown to 
predict AF patients for the development of HF [9]. AF has 
been proposed to drive the development of incident left 
ventricular dysfunction and cause HF [10]. Despite there 
were some understandings of the pathophysiological pro-
cesses in AF complicated with HF, the definite mecha-
nisms of HF in AF were still unclear [10]. Thus, there is 
an unmet clinical need to investigate molecular mecha-
nisms in AF with HF and probe into reliable biomarkers 
and drug therapeutic targets for effective treatments.

Proteomics and metabolomics are “omics” techniques 
that explore the whole proteome and metabolome deliv-
ered in specific biological samples [11, 12]. Not as genet-
ics, proteomics and metabolomics concern more on the 
phenotype of diseases and its progression [13]. The liquid 
chromatography-tandem mass spectrometry (LC-MS/
MS) technology has high sensitivity and can analyze the 
expression patterns of hundreds to thousands of pro-
teins and metabolites in samples [14, 15], so as to provide 
useful information for biomarkers detection and meta-
bolic pathways [16]. Integrative analysis that combined 
proteome and metabolome profiling has been shown to 
provide novel insights in the understanding of the mech-
anism of disease occurrence and development [17]. For 
better study of AF, proteomics and metabolomics tech-
niques have been combined to facilitate that. Hu et.al 
found that patients relative to sinus thythm with AF show 
dysregulated proteins and metabolites with the technol-
ogy of proteomics and metabolomics [18]. Li et.al identi-
fied the molecular mechanisms and possible biomarkers 
for chronic AF in mitral valve disease by iso baric tags 
for relative and absolute quantitation (iTRAQ)-based 
proteomics and gas chromatography-mass spectrometer 
(GC-MS)-based metabolomics [19]. To date, few stud-
ies have investigated potential biomarkers and related 
molecular mechanisms in AF patients with and with-
out HF by combined proteomics and metabolomics 
approach.

Using metabolomics and proteomics of LC-MS/MS 
platform, we described the dysregulation of metabolites 
and proteins in AF patients with and without HF. This 
study also provided candidate biomarkers for identifica-
tion of AF with HF, providing available treatment strate-
gies for secondary prevention of HF in AF.

Methods and materials
Patient recruitment and sample collection
With the approvement by the Ethics Committee of the 
First Affiliated Hospital of Harbin Medical Univer-
sity (Harbin, China, IRB-AF202255), 20 persistent AF 
patients with / without HF respectively were chosen 
into the study during 2015. 02 and 2017. 01. Patients 
diagnosed of persistent AF and HF were firstly excluded 
out of the study by cardiologist under such circum-
stances: malignant tumor, simultaneous infection or 
seriously dysfunctional hepatic and renal reactions. The 
definition of persistent AF is when it lasts for more than 
7 days and requires drugs or electric shocks to restore 
sinus rhythm. The diagnosis of congestive heart failure 
was based on the European Society of Cardiology cri-
teria, including symptoms and/or signs of heart failure 
combined with abnormal systolic and diastolic function 
on echocardiography. Subsequently, AF-HF patients 
further were assigned into NYHA III and IV groups 
averagely on the basis of the functional classification 
system put forward by the New York Heart Associa-
tion (NYHA). Patients with AF-HF included 7 (35%) 
reduced ejection fraction, 7 (35%) mid-ranged ejection 
fraction and 6 (30%) preserved heart failure. After fast-
ing for 12 h, the whole blood was collected from each 
participant and saved in blood tubes vacuumly. The 
collected blood sample was immediately centrifuged at 
1323×g for 10 min, the supernatant was for preserva-
tion and kept at − 80 °C condition before use.

Proteomic LC‑MS/MS analysis
Data independent acquisition (DIA) - based proteomics 
were performed by LC-MS/MS analysis. The study was 
carried out following such procedures: proteins extrac-
tion, quantification, detection, enzyme digestion and 
desalination, fraction separation and mass spectrometry, 
etc. Detailed experimental protocol of proteomics was 
provided in the Supplementary material.

Proteomic data analysis
Fold change (FC) was calculated on the ratio of the 
mean quantization of HF group to AF group. Two-
sided unpaired Welch’s t test was to judge the signifi-
cance of each protein. Differentially expressed proteins 
(DEPs) were defined with the criteria of p value < 0.05 
and FC > 1.5 or FC < 0.67. Mapping of DEPs and path-
way analysis were achieved by KEGG pathway database 
[20–22]. The protein–protein interaction (PPI) network 
analysis of the DEPs was constructed from the STRING 
(https://​string-​db.​org) and visualized by Cytoscape (ver-
sion 3.7.1).

https://string-db.org
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Metabolomic LC‑MS/MS analysis
Untargeted metabolomics were performed by LC-MS/
MS analysis. The experimental procedures in the cur-
rent study included metabolites extraction, LC-MS/
MS detection, Data processing and metabolites identi-
fication, etc. Detailed experimental protocol of metabo-
lomics was provided in the Supplementary material.

Metabolomic data analysis
Partial least squares discriminant analysis (PLS-DA) was 
applied for the discrimination among AF patients with / 
without HF on metabolites effects. Variable importance 
in the projection (VIP) for each metabolite was deduced 
through the established model. The metabolites with 
VIP > 1 and p value < 0.05 and FC > 1.2 or FC < 0.83 were 
considered to be differentially expressed metabolites 
(DEMs). The metabolic pathways enrichment of DEMs 
was performed by KEGG database [20–22] .

Correlation analysis of proteomics and metabolomics
The correlations between DEPs and DEMs were identi-
fied by Pearson correlation analysis. Based on p value 
< 0.05 and correlation coefficient > 0.5, a correlation 
network was constructed using Cytoscape (version 
3.7.1). KEGG pathway enrichment analysis was con-
ducted on DEPs and DEMs [20–22].

Selection of biomarker panel by machine learning model
Random forest model was established to screen com-
bined biomarkers of proteomics and metabolomics. 
The mean decrease accuracy and gini were calculated 
to evaluate the variable importance measures in the 
model. Based on 10-fold cross validation, random for-
est model and area under the receiver operating charac-
teristic (AUC) analysis were used to evaluate predictive 
performance of biomarker panel.

Statistical analysis
Continuous data were shown as means ± SD or median 
and interquartile range. Categorical data were shown 
as count and percentile. Student t test or Mann-Whit-
ney test was used to compare the continuous variables 
between AF patients with and without HF. Chi-square 
test or Fisher’s exact test was used to analyze cat-
egorical data between two groups. p value < 0.05 were 
considered statistically significant. All the statistical 
analyses were performed using R (version 4.0.3).

Results
Overall design and clinical synopsis
The study included 40 AF patients between the age of 
45 and 85 years averaging 66.1. Among the 40 patients 

confirmed AF, 20 (50%) of them were presented with 
HF, half of which were with NYHA III stage and 
another half with NYHA IV stage (Fig.  1). Table  S1 
reveals specific demographic and clinical characteris-
tics of the patients. The baseline characteristics were 
comparable among groups.

Proteomic profiling of AF patients with / without HF
A total of 50 proteins were identified with fold change 
(FC) > 1.5 or < 0.67 and p value < 0.05 (Fig.  2A) for dis-
crimination AF patients with HF from those without 
HF. Of these DEPs, there were 35 up-regulated and 15 
down-regulated proteins in HF patients compared to AF 
patients without HF (Fig.  2B). KEGG pathway enrich-
ment analysis of significant DEPs revealed 12 signifi-
cantly expressed metabolic pathways, such as Glycolysis/
Gluconeogenesis, biosynthesis of amino acids, neutrophil 
extracellular trap formation, fluid shear stress and ath-
erosclerosis, and platelet activation (Fig. 2C). The signifi-
cantly enriched pathway of Glycolysis/Gluconeogenesis 
involved in TPI1, LDHA and PGK1. PPI analysis was 
performed with the 50 DEPs in the STRING database. 
A network containing 17 up-regulated proteins and 5 
down-regulated proteins was constructed after removing 
unconnected nodes (Fig. 2D).

Metabolomic profiling of AF patients with / without HF
The PLS-DA model was used to detect differences among 
AF patients with and without HF. The PLS-DA score 
plot revealed a clear separation between AF patients in 
the ESI (+ / -) mode (Fig.  3A, B). Under the condition 
of FC > 1.2 or FC < 0.83, p < 0.05 and VIP > 1, 90 and 45 
metabolites were selected respectively by ESI (+ / -) 
mode as DEMs (Fig.  3C, D). Totally, 121 up-regulated 
and 14 down-regulated differential metabolites were dis-
covered in HF patients compared to AF patients without 
HF (Fig. 3E). Then, the DEMs between AF patients with 
and without HF were used for metabolic pathway anal-
ysis. The mainly enriched pathway of Tyrosine metabo-
lism involved in L-Dopa, Homovanillic acid (HVA) and 
Dopaquinone (Fig. 3F).

Correlation analysis of proteomics and metabolomics in AF 
patients with / without HF
We integrated datasets of DEPs and DEMs to explore a 
global correlation of proteomics and metabolomics in 
AF patients with / without HF. As a result, there was a 
strongly correlative patterns between the expressions of 
DEPs and DEMs (Fig.  4A). A correlation network was 
constructed between DEPs and DEMs with the cut-off 
value of correlation coefficient being 0.5. As a whole, the 
correlation network was mainly consisted of 30 DEPs and 
61 DEMs in AF patients with / without HF (Fig. 4B). An 
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integrated metabolic pathway analysis of proteomics and 
metabolomics was performed by MetaboAnalyst. Three 
pathways were significantly enriched at the significance 
level of 0.05, including Glycolysis or Gluconeogenesis; 
Tyrosine metabolism and Pentose phosphate pathway 
(Fig. 4C).

Selection of biomarker panel using machine learning
To predict whether AF patients were with HF using prot-
eomic and metabolomic data, we built a random forest 
machine learning model by the prioritization of 10 impor-
tant variables. As presented, 5 proteins and 5 metabolites 
were selected as potential biomarkers (Fig.  5A, B). AUC 
analysis was to predict the performance of the biomarkers. 
The AUC values were as follows: UBADC1 (AUC = 0.7875), 
Quinic acid (AUC = 0.86), Diosmetin (AUC 0.805), IGK 
(AUC = 0.835), alpha-Ergocryptine (AUC = 0.87), Fludro-
cortisone acetate (AUC = 0.845), 2,6-Di-tert-butylbenzo-
quinone (AUC = 0.8675), NBL1 (AUC = 0.8375), NPC2 
(AUC = 0.865), SNCA (AUC = 0.8725) (Fig.  5C). As 
expected, the combination of these 10 biomarkers implied 
high possibility of HF presence at the AUC of 0.94 (Fig. 5D). 
Notably, The AUC value of NT-proBNP was 0.78 for 

prediction of AF-HF (Fig. 5E). The relative concentrations 
of these 10 biomarkers and concentration of NT-proBNP 
between the two groups were shown in Fig. 5F.

Subgroup analysis of HF classification
According to NYHA classification, HF patients were fit-
ted into NYHA class III and NYHA class IV for subgroup 
analysis of metabolomics. The PLS-DA score plot revealed 
a clear separation between HF patients with class III and 
class IV in both the ESI+ mode and ESI- mode (Fig. 6A, B), 
94 and 42 metabolites respectively, to discriminate NYHA 
class III from HF class IV. (Fig.  6C, D). We investigated 
9 DEMs that can distinguish between AF and HF for HF 
classification, which involved in Methyl jasmonate, Biotin, 
N6-Succinyl Adenosine, 13-HOTE, 3-(1-Propyl-3-piperidi-
nyl) phenol, 8-Hydroxyicosa-5,9,11,14-tetraenoate, PE 
(3:0/18:2), Homovanillic acid and 12,13-DHOME (Fig. 6E).

Discussion
Arrhythmia and HF are both epidemics that commonly 
coexist and exacerbate each another, and AF is the most 
important factor of arrhythmia induced cardiomyopa-
thies (AIC) in adults [23, 24]. The previous study had well 

Fig. 1  Flowchart of the study workflow
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elaborated the relations between AF and AIC. The related 
mechanisms of AF induced cardiomyopathies include: 
irregular rhythm, atrial systolic disfunction, and genetic 
factors. However, the specific molecular mechanism 
of AF induced HF is unclear. Recently, proteomics and 
metabolomics are a newly developing and novel tool not 
only to test for new risk factors but also to reveal under-
lying mechanisms in cardiovascular disease [18, 19]. In 
our study, we analyzed through the dysregulated mol-
ecules in AF with and without HF plasma samples and 
found remarkable changes in proteins and metabolites. 
The comprehensive multi-omics data indicated that char-
acteristic pathways and dysregulated molecules in AF 
and AF-HF proteomic profiling or metabolomic profiling 

may help to reveal the potential biomarkers and underly-
ing mechanism of AF induced HF.

Recent advances in high-throughput technologies 
make large-scale molecular profiling possible. Several 
studies had found some special genetics pattern in 
AF. However, relative to genetics, there are strong link 
between the proteomics or metabolomics and the phe-
notype of diseases. The proteomics or metabolomics 
can better display the occurrence and development of 
diseases. Several studies had found some metabolomics 
pattern in AF [25]. It was demonstrated that the mean 
ketone substrate during body metabolism such as beta-
hydroxybutyrate increases along with ketogenic amino 
acids and glycine in AF [26]. Changes were also noticed 

Fig. 2  Proteomics analysis in patients with AF-HF compared to AF. The volcano plot (A) and heatmap (B) showed different proteins in AF compared 
AF-HF samples. C KEGG enrichment analysis of differently expressed proteins. D PPI network. Red represents the up-regulated proteins, as green for 
the opposite, respectively

(See figure on next page.)
Fig. 3  Metabolomic analysis in patients with AF-HF compared to AF. To distinguish AF-HF patients from without HF, PLSDA score plot were 
exhibited in positive ion (A) and negative ion (B). The volcano plot of positive ion (C) and negative ion (D) showed the metabolites between AF and 
AF-HF samples. (E) The heatmap showed the differently expressed metabolites in different samples. (F) Pathway analysis of differently expressed 
metabolites
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Fig. 3  (See legend on previous page.)
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in purine metabolic pathway by means of pathway 
enrichment analysis, as well as fatty acid metabolism in 
AF [27]. The pathological process of HF is accompanied 
by metabolic remodeling. The previous study identi-
fied novel risk biomarkers indicating left ventricular 
function weakened through metabolomics, indicating 
that under the impairment of LV-EF, patients show 
improved polyamine metabolite acisoga [28]. Further-
more, metabolic remodeling takes a vital role in cardiac 
remodeling. PKA and AMPK signaling crosstalk regu-
lates metabolic remodeling in HF [29].

However, no elaborate understanding has been 
acquired about the patterns of the special proteomic and 
metabolomic in AF and AF-HF. In our study, we firstly 
analyzed AF patients to seek difference of proteom-
ics in AF with HF. The results revealed 35 up-regulated 
and 15 down-regulated proteins in AF patients with HF 
compared to AF patients without HF. KEGG pathway 
enrichment analysis of significant DEPs indicated sev-
eral noticeable metabolic pathways. Remarkably, Gly-
colysis/Gluconeogenesis pathway including TPI1, LDHA 
and PGK1 is the most significantly enriched pathway 
linked to HF. PPI analysis also showed a close interaction 

Fig. 4  Integrated analysis of proteomics and metabolomics. A The correlation analysis of the known distinctionally expressed proteins and 
metabolites. B Proteins-metabolites correlation networks of differentially expressed proteins and metabolites. C Pathway analysis of differently 
expressed proteins and metabolites
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Fig. 5  Biomarkers screening based on machine learning classifier. A Meandecrease accuracy of 10 candidate biomarkers in random forest analysis. 
B Mean decrease gini of 10 candidate biomarkers in random forest analysis. C Predictive performances of the 10 biomarkers. D ROC curve for 
prediction with the combined biomarkers. E ROC curve for prediction with NT-proBNP. F Relative concentrations of 10 biomarkers selected by 
random forest and concentration of NT-proBNP



Page 9 of 12Zhang et al. BMC Genomics          (2022) 23:789 	

Fig. 6  Metabolomic profiling analysis in AF-HF patients with NYHA IV compared to NYHA III. PLSDA score plot for discriminating HF patients with 
NYHA III and NYHA IV in positive ion (A) and negative ion (B). The volcano plot of positive ion (C) and negative ion (D) showed the metabolites 
between HF patients with NYHA III and NYHA IV. E Metabolite profiles of distinguishing NYHA III and NYHA IV
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between the three proteins. Interestingly, the previ-
ous study reported a significantly change of Glycolysis/
Gluconeogenesis pathway in HF by label-free shotgun 
proteomics approach [30]. It was suggested that the dis-
ordered Glycolysis/Gluconeogenesis pathway may be the 
pathogenic hub pathway for patients with AF to develop 
HF. Branched-chain amino acid metabolism are known 
for relating to the worsening adverse remodeling in the 
failing heart [31]. In our study, biosynthesis of amino 
acids was shown significantly altered in AF patients with 
HF, suggesting the synergistic effect of amino acid syn-
thesis and metabolism on HF. In addition, significantly 
enriched Neutrophil extracellular trap formation path-
way might be contribute to the pathogenesis of HF with 
preserved ejection fraction [32].

Meantime, we also analyzed AF and AF-HF plasma 
samples to evaluate the potential actions of metabo-
lomics in AF-HF. We found that 121 up-regulated and 
14 down-regulated differential metabolites were discov-
ered in HF patients to those without HF. Then, the DEMs 
between AF patients with and without HF were used for 
metabolic pathway analysis. The mainly enriched path-
way of Tyrosine metabolism involved in elevated levels 
of L-Dopa, HVA and Dopaquinone in AF patients with 
HF. In particular, HVA and Dopaquinone can be biosyn-
thesized from L-Dopa, which was the precursor of dopa-
mine [33]. As an endogenous catecholamine, dopamine 
worked as an autocrine and paracrine factor in the non-
neuronal systems [34]. It has been reported that L-Dopa 
promotes dopamine release through D1 receptors [35], 
which has been proven to trigger ventricular arrhythmia 
in chronic HF [36]. Thus, the accumulation of L-Dopa, 
HVA and Dopaquinone in AF patients with HF might 
be associated with the facilitated regulation of dopamine 
and D1 receptors on HF.

We next integrated the proteomics and metabolomics 
datasets to generate a global view of plasma profiles. Sev-
eral hub proteins and metabolites were presented with 
strong correlations. Three pathways were significantly 
enriched in integrated multi-omics, including Glyco-
lysis/Gluconeogenesis, Tyrosine metabolism and Pentose 
phosphate pathway. Deoxyribose 5-phosphate and TKT, 
which are involved in Pentose phosphate pathway, were 
significantly up-regulated in AF with HF compared to 
AF without HF. Interestingly, certain anabolic pathways 
as amino acids and pentose phosphate were abundant 
when testing knockout mice of cardiomyocyte-restricted 
[36]. It has been proposed that the activation of Pentose 
phosphate pathway plays a critical role in regulating cel-
lular oxidative stress [37]. Vimercati et.al indicated an 
important contribution of the oxidative pentose phos-
phate pathway activity to cardiac oxidative stress in HF 
[38]. Badolia et.al reported that during recovery, hearts 

could lead glycolytic metabolites into pentose-phosphate 
pathway, which can improve and protect the function of 
the heart by reducing oxidative stress [39]. In our study, 
we selected a panel of molecular signatures of proteins 
and metabolites associated with AF related HF using 
a machine learning model. A total of 5 proteins and 
5 metabolites were screened as potential biomarkers, 
including UBADC1, IGK, NBL1, NPC2, SNCA, Quinic 
acid, Diosmetin, alpha-Ergocryptine, Fludrocortisone 
acetate and 2,6-Di-tert-butylbenzoquinone. Notably, 
these ten biomarkers altogether contributed an AUC 
value of 0.94, which could possibly predict for HF in AF.

NYHA functional class plays a central role in HF 
assessment, which has important implications for mak-
ing individual clinical decisions [40]. Previous studies 
have reported amino acids and gut microbiota-depend-
ent metabolites could discriminate early-stage HF from 
advanced-stage HF [41, 42]. However, few studies have 
systematically digged into the metabolic properties of 
AF related HF with NYHA class III and IV. In our study, 
we found nine of the identified DEMs that can distin-
guish between AF patients with and without HF also 
have the ability to distinguish NYHA class III from IV 
for HF in AF. In our study, HF patients were then divided 
into the two mentioned classes for subgroup analy-
sis of metabolomics. A series of fatty acid metabolites, 
such as 12,13-diHOME, 13-HOTE, Methyl jasmonate 
and 8-Hydroxyicosa-5,9,11,14-tetraenoate were found 
to be up-regulated in AF-HF patients with NYHA class 
IV. Recent study has indicated that 12,13-diHOME pro-
motes the uptake of altered lipid, as metabolism and 
presentation, and caused IL-10 secretion decreasing 
by human dendritic cells [43], suggested that the ele-
vated 12,13-diHOME might be associated with altering 
immune cell metabolism. Pinckard et.al proposed that 
12,13-diHOME was decreased in human patients with 
heart disease in a small population [44], but the study did 
not clarify whether the selected population was from HF 
or AF patients. Therefore, the exact molecular mecha-
nism of 12,13-diHOME in AF patients with HF remains 
obscure and requires further certification. Overall, the 9 
DEMs for discriminating the classification of HF deserve 
our attention, as well as later affirmance.

As we can find, a comprehensive insight of proteomic 
and metabolomic profiles of AF patients with and with-
out HF was shown in this study. However, there may 
still be some limitations in our study. To start with, the 
restricted patient numbers may cause the precluding of 
parameters in certain proteins and metabolites as well as 
the sufficient statistical power needed to be improved. In 
addition, absolute quantitative proteomics and metabo-
lomics techniques were not used in this study, so the 
molecules identified in this study need quantitative 
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verification before being widely popularized to clinical 
application. Still, the majority of AF-HF patients in our 
study mainly included NYHA classification III and IV, so 
the multi-omic characteristics of AF-HF patients with 
early-stage have not been explored. Finally, this study 
mainly focused on the molecular profiles of HF induced 
by AF, so patients with sinus rhythm were not included. 
Thus, future studies of larger independent cohorts with 
multiple controls and quantitative multi-omic signatures 
with different HF-types and cardiomyopathy-types sam-
ples are needed to validate and complement the current 
findings.

Conclusion
Through proteomic and metabolomic analyses, we 
picked out different proteins and metabolites in AF com-
pared to AF-HF samples, and found that compared to 
AF-HF, those without HF differed in metabolic profiling 
by a large margin. So different types of patients could 
be distinguished using these two techniques as efficient 
molecular markers. In summary, novel apprehension 
to understand the mechanisms of AF-induced HF pro-
gression has been found through this study, as well as 
combining proteomics and metabolomics for the identi-
fication of novel factors for prognosis or treatment of AF 
with HF.
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