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Abstract 

Background:  Neuroblastoma (NB) is the second most common pediatric solid tumor. Because the number of 
genetic mutations found in tumors are small, even in some patients with unfavorable NB, epigenetic variation is 
expected to play an important role in NB progression. DNA methylation is a major epigenetic mechanism, and its 
relationship with NB prognosis has been a concern. One limitation with the analysis of variation in DNA methylation is 
the lack of a suitable analytical model. Therefore, in this study, we performed a random forest (RF) analysis of the DNA 
methylome data of NB from multiple databases.

Results:  RF is a popular machine learning model owing to its simplicity, intuitiveness, and computational cost. RF 
analysis identified novel intermediate-risk patient groups with characteristic DNA methylation patterns within the 
low-risk group. Feature selection analysis based on probe annotation revealed that enhancer-annotated regions had 
strong predictive power, particularly for MYCN-amplified NBs. We developed a gene-based analytical model to iden-
tify candidate genes related to disease progression, such as PRDM8 and FAM13A-AS1. RF analysis revealed sufficient 
predictive power compared to other machine learning models.

Conclusions:  RF is a useful tool for DNA methylome analysis in cancer epigenetic studies, and has potential to iden-
tify a novel cancer-related genes.
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Background
Neuroblastoma (NB) is the second most common pedi-
atric solid tumor [1, 2], and its risk has been classified 
by a variety of clinical and biological markers. Tumor 
stage is determined by the International Neuroblastoma 
Staging System (INSS) [3, 4], and reflects the progno-
sis of NB patients [5]. Amplification of the MYCN gene 
is one of the strongest prognostic markers for NB [6–8]. 
Age at onset is also a strong marker of prognosis, and 
patients under 18 months of age tend to have a favorable 
prognosis [9, 10]. The International Neuroblastoma Risk 
Group (INRG) classification system merges information 

including stage, age at onset, DNA ploidy, pathology, and 
MYCN status for prognosis [11]. Some gene statuses, 
including ATRX gene deficiency and TERT gene rear-
rangement [12, 13], have been reported to be related to 
unfavorable prognosis; however, these genomic varia-
tions have been detected in fewer than half of the patients 
with unfavorable NB.

In NB, epigenetic alterations influence NB tumo-
rigenesis and aggressiveness. DNA methylation, a major 
regulator of gene expression, of tumors is considered a 
prognostic marker for NB. The CpG island methylation 
phenotype (CIMP) marker of NB was first studied using 
cell line DNA, and its prognostic impact was confirmed 
using clinical samples [14–18]. Additionally, Genome-
wide DNA methylome analysis also showed that DNA 
methylation status is strongly related to NB prognosis. 
Decock et  al. [19] selected 43 candidate markers from 
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the methylome data of 5-aza-2′-deoxycytidine (DAC) 
treatment and MBD-seq analysis, and found a relation-
ship between DNA methylation and risk factors such as 
age, stage, and MYCN amplification. Comparative DNA 
methylome analysis of clinical samples showed that vari-
able DNA methylation sites were observed on the gene 
body and within the intragenic regions rather than the 
“promoter region” [20, 21] of a gene, and some progno-
sis marker genes, such as CCND, were proposed. Henrich 
et  al. [22] showed that the DNA methylation pattern is 
related to NB status, specifically MYCN amplification. 
To date, genome-wide DNA methylome data (Illumina 
humanmethylation 450 K beadchip Array [23]) have 
been obtained from 493 patients diagnosed with NB, and 
have three advantages for machine learning applications. 
First, unlike gene expression data obtained using various 
platforms, meta-analysis was easy to apply because the 
data format was consistent. Second, DNA methylome 
data generally ranged from 0 to 1 when using β-values, 
meaning further normalization was not required. Third, 
because the machine learning model is a data-driven ana-
lytical model, it can be easily applied to multiclass data 
such as tumor stage.

Notably, the machine learning (ML) approach has been 
applied to gene expression data in NB to construct a clas-
sifier for the prognosis of patients with NB. For example, 
Ohira et  al.selected prognosis-related genes and devel-
oped a diagnostic mini-chip system consisting of 200 
genes using a supervised machine learning algorithm 
[24]. Oberthur et  al. applied a support vector machine 
(SVM) to classify high-risk patients using microarray data 
and proposed a new risk classification system [25, 26]. A 
combination of biology-driven feature selection and arti-
ficial neural network analysis can predict the stages of NB 
[27–29]. Zhang et al. [30] integrated gene expression data 
with copy number variation data, analyzed them using 
machine learning methods, and ultimately developed two 
classes of high-risk patients with neuroblastoma. Grimes 
et al. estimated the survival time from a regression analy-
sis of RNA-seq data [31]. Giwa et  al. identified MYCN-
amplified sample-specific DNA methylation sites using 
comparative DNA methylome analysis including ML 
[32]. Lalchungnunga et  al. used unsupervised machine 
learning approach and identified low risk tumor group 
[33]. These approaches suggest that ML have a potential 
of systematic prediction for NB prognosis.

Here, we applied machine learning analysis to NB 
DNA methylome data sourced from multiple databases. 
Because of the lack of an analytical model, only simple 
statistical tests have been applied to DNA methylome 
data (e.g., t-test analysis for differentiated DNA meth-
ylated regions between two classes of neuroblastoma) 

thus far. To address this statistical power gap, we used 
random forest (RF) [34] to analyze DNA methylation 
array data. RF has the advantage of multiclass classifi-
cation, which is a known characteristic of NB [22]. We 
found that: (1) novel intermediate-risk patient groups 
are identified using RF-based multiclass analysis of 
intermediate risk subgroups using DNA methylation 
data, (2) enhancer DNA methylation is the best annota-
tion group for predicting MYCN status. (3) RF has suf-
ficient power for prognosis, and a longer time course 
resulted in better prediction. Overall, our analyses 
revealed that the machine learning model is a strong 
tool for the analysis of tumor DNA methylation status 
as an epigenomic biomarker of malignant NB tumors.

Results
DNA methylome data from multiple studies
We collected Infinium HumanMethylation450 meth-
ylation data from four research projects: TARGET 
(n = 211), Henrich et al. [22] (n = 80), Ackermann et al. 
[35] (n = 58), and Japan Childhood Cancer Group Neu-
roblastoma Committee (JCCG-JNBSG) (JNB, n = 144, 
Ohira M et  al., manuscript in preparation) (Table S1). 
Because the research interests may primarily focus on 
high-risk patients in these projects, 68% of data col-
lected were from stage IV samples, introducing a bias 
toward later stages in the datasets.

We checked data source bias among the research 
projects using principal component analysis (PCA) 
(Fig.  1A and Fig. S1). Further, β-values were obtained 
using the same protocol from deposited idat files (see 
Materials and Methods). The PCA results indicated 
that there was no strong bias in the view of the data 
source (Fig.  1A and Fig. S1A). When the INSS stage 
was focused (Fig. S1B), stage IV showed a weak, but not 
apparent cluster. This may be due to the fact that most 
of the samples were from stage IV cases, or because 
the DNA methylation pattern of stage IV was variable. 
In contrast to the INSS stage, MYCN amplification 
showed a distinct cluster (Fig. S1C), indicating that the 
MYCN amplification status affects DNA methylation 
patterns. Patients under the age of 1.5 years at diagnosis 
also look weak cluster, indistinguishable from stage IV 
(Fig. S1D). From these results, we set the following four 
classes for machine learning analysis (Fig.  1B): Group 
A, patients with MYCN amplification; Group B, INSS 
stage IV cancer patients without MYCN amplification; 
Group C: INSS stage IVs cancer patients; and Group D: 
INSS stage I, II, and III patients without MYCN ampli-
fication. This classification accurately reflects prognosis 
and confirms consistency among the datasets (Fig. 1C).
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Classification of NB stage by methylome data
To evaluate the adequacy of our classification, we 
applied RF analysis to 450 K data. To reduce sampling 
bias, a hold-out train-test-split with 1000 replications 
was applied. Table 1 shows the results of the prediction 
scores of the NB methylome dataset. When we focused 
on the high-risk class (groups A and B), the mean pre-
cision (plus standard deviation), the recall for A and B 
was 0.946 ± 0.039 and 0.798 ± 0.028, 0.855 ± 0.060 and 
0.963 ± 0.021 respectively, indicating that high-risk NB 
is associated with changes in DNA methylation patterns. 
In contrast, the prediction ability of the low-risk class 
was not good, indicating that either DNA methylation 
status was not characteristic, or our classification was 
inappropriate. When setting stage III as an independent 
class, the mean precision score was 0.053, while the mean 
recall score was 0.009. This indicated that stage III was 
not a characteristic category of DNA methylation status 

in this dataset. When classification was performed across 
all datasets, the results were not very different, with the 
exception of the JNB data (Fig. S2). We also evaluated 
sampling bias toward high risk patients by controling 
sample size, and confirmed the result was consistetnt.

Compared to groups A and B, the prediction scores 
were lower for groups C and D (Table 1). To identify the 
cause of misclassification, we checked the details of the 
misclassified samples. Specifically, if some samples were 
imitated to different classes in physiological diagnosis, it 
would result in a low prediction score. Figure 2A shows 
the true positive (TP) rate of each sample. Most of the 
samples from groups A and B were classified accurately. 
However, only approximately half of the samples from 
groups C and D were accurately classified. To test the pos-
sibility of imitation, we summarized the most assigned 
group for each sample using the result of the confusion 
matrix (Fig.  2B). In group D, 35/82 (43%) samples were 

Fig. 1  Data comparison among research project on DNA methylome data

(A) PCA result colored by data source. (B) PCA result colored by MYCN amplification status and INSS. The definition of group A, B, C, and D is 
explained in main text. (C) Survival time analysis for each dataset

Table 1  RF result of 1000 replication

A’ B′ C′ D′ 3

n 110 246 55 53 29

precision 0.931 ± 0.036 0.833 ± 0.036 0.577 ± 0.118 0.414 ± 0.127 0.053 ± 0.209

recall 0.881 ± 0.058 0.926 ± 0.030 0.730 ± 0.119 0.350 ± 0.111 0.009 ± 0.033

f1 0.904 ± 0.034 0.876 ± 0.024 0.633 ± 0.089 0.366 ± 0.093 0.015 ± 0.055
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classified as group B. It can be hypothesized that these 
samples look physiologically like low-risk patients, but 
at the DNA methylation level, they were closer to group 
B. We set new classes: D1 for group D samples pre-
dicted as group B (n = 35), and D2 for group D samples 
predicted as group D (n = 31) (Fig.  2B, Surrounded by 
thick frames). Survival time analysis showed a clear dis-
crepancy between D1 and D2 (Fig. 2C, p = 0.0054), even 
though the survival probability in group D was higher 
than that in group B. Next, we compared DNA meth-
ylation patterns among classes (Fig.  2D). The variable 
region between D1 and D2 was selected (∆β|D1-D2| > 0.3, 
3319 probes). The results of D2 looked similar to group 
C, and D1 looked similar to the poor prognosis groups, 
A and B. In most of the probes, DNA methylation levels 
were higher in the poor prognosis group D1 (3315/3319 
probes in Fig. 2D).

The next question was what types of factors contrib-
uted to the differences between D1 and D2. One pos-
sibility is the INSS stage, considering that state III was 
assigned to group D, which could explain the difference. 
However, when the proportions of stage III in D1 (16/35) 

and D2 (9/31) were compared using Fisher’s exact test, 
the difference was not significant (p = 0.2073). Next, we 
focused on the age at onset. Age of onset is an impor-
tant prognostic marker for NB [9, 10], with 1.5-years-old 
as an important prognostic marker threshold. When we 
counted the number of patients under the age of 1.5 years 
in group D and compared them using Fisher’s exact test, 
the proportion was significantly different (9/35 for D1 
compared to 30/31 for D2, p = 0.0148). Therefore age-
dependent DNA methylation changes may contribute to 
poor prognosis.

DNA methylation status changes with age [36]. We 
investigated whether the difference in DNA methylation 
with respect to age affected prognosis. We compared ∆β 
to the log-rank test’s false discovery rate (LRFDR) for all 
probes (Fig. S3). LRFDR was used as a proxy for probe 
contribution to prognosis. The 593 probes satisfied both 
criteria of ∆β|D1 − D2| > 0.3 and LRFDR < 0.01, as shown 
in the magenta section in Fig. S3A. If these probes were 
related to poor prognosis, the DNA methylation pat-
tern of those sites would be similar to poor prognosis 
groups, such as group B. Further, we established new 

Fig. 2  Details of prediction by RF. (A) Proportion of TP for each sample. X-axis is samples. Y-axis is TP rate estimated by 1000 times replications. (B) 
Summary of the most assigned class for each sample. (C) Survival time analysis for B, D1, and D2. The samples with survival data were used. (D) 
Heatmap for probes with ∆β|D1-D2| > 0.3 (n = 3319 probes). X-axis indicated sample class. Group B1 represents INSS 4 without MYCN amplification of 
< 1.5 years old patient group, while B2 is the remaining Group B samples
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group B1, which is INSS 4 without MYCN amplification 
for age < 1.5 patient group (group B1 in Fig. 2D). B1 was 
more similar to D1 than D2, particularly with respect to 
low LRFDR probes (< 10− 2) (Euclidian distance: 0. 0973 
for ∆β|B1 − D1| vs 0. 2556 for ∆β|B1 − D2|, p = 0 permutation 
test) (Fig. S3B, C). This demonstrated that DNA methyla-
tion sites were indicators of poor prognosis regardless of 
the age of onset.

Feature selection by probe annotation
Feature selection is a useful approach in machine 
learning when data are constructed using a large num-
ber of variables or expert knowledge is available [37]. 
Therefore, we applied this method to analyze NB 
DNA methylation array data, because the sample size 
(n = 493) in the NB DNA methylome data was smaller 
than the number of variables (p > 480,000). Although 
probes were designed using expert knowledge (e.g., 
around TSS, CGI, and enhancer), the probe annota-
tion groups that contributed to the classification were 
unknown. To evaluate the prediction power of the 
probe annotation groups, we compared the f1-scores 

of groups A and B, which were calculated using the 
harmonic mean of precision and recall [37] (Fig.  3A 
and B and Table S2). Probe annotation groups were 
defined by EPIC probe annotation (details in Materi-
als and Methods section). We found that Group A was 
generally accurately classified when “450K_enhancer” 
probes (probe group 14, Fig.  3A and B) were used, 
and the enhancer region is known to possess variable 
β-values in NB [20, 21]. Meanwhile, promoter regions 
with CpG islands had low prediction ability (probe 
groups 9 and 10, Fig. 3A, B).

We then investigated whether the number of variables 
was affected by the f1 score. To evaluate the effect, we 
performed two types of randomization tests: 1) random 
subsampling of probes (blue line in Fig. 3A and B) and 2) 
The select-percentile method (orange line in Fig. 3A and 
B). The select-percentile method was followed by default 
settings of the scikit-learn library (https://​scikit-​learn.​
org/​stable/), whose variables were sorted by ANOVA’s 
resulting p-values. Some of the probe groups generally, 
had better f1-score than those in the random subsam-
pling group, but they always showed worse f1-score than 

Fig. 3  Prediction power of probe groups. (A) Effect of probe groups in prediction of group A. Blue line represents the random-sampling of probes. 
Orange line shows select percentile method of scikit-learn with default setting. (B) Group B version of Fig. 3A). (C) Relationship between the 
variance of β and obs/sim f1-score for group A. (D) Relationship between the variance of β and obs/sim f1-score for group B

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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those in the select percentile (between orange line and 
blue line, in Fig. 3A and B) group.

We then investigated why the CGI and promoter 
regions showed an unexpectedly low f1 score. We pro-
pose that this may be attributed to the variance of the 
β-values. Figure  3C and D illustrate the relationship 
between variance and the obs/sim ratio, which is the ratio 
between the f1-score of the observed data and that of the 
randomly sampled data. The obs/sim ratio of the f1-score 
was used in classification as the measure of the predic-
tion power of the probe. After performing a permuta-
tion test, we observed a significant correlation between 
variance and the obs/sim ratio of the f1-score (Group 
A:r = 0.6705 and p = 0.0001; and Group B: r = 0.7400 and 
p = 0.0001.), and found that probes with CGI_promoter 
and CGI_TSS200 had smaller variances (probe groups 9 
and 10, Fig. 3C and D). Those results show that variance 
of variables is a good indicator for classification power in 
the case of NB DNA methylation data.

Random forest selected top‑score 10,000 probes for NB 
classification
Next, we searched for characteristic genes to classify each 
NB group. To evaluate the classification ability of each 
DNA methylation site, we used two indices: importance 
and Gini-impurity. Importance is the standard index for 
a decision tree, and it reflects the classification power of 
each variable [32]. The importance was calculated using 
1000,000 replications of RF analysis. Gini-impurities are 
an index of data purification power [37]. We defined the 
DNA methylation sites of group k (∈(A,B,C,D)) (CMSk) 
by Gini-impurity, which measured the contribution to 
classify a class k (details in Materials and Methods sec-
tion). The relationship between the EPIC probe anno-
tation and importance is shown in Fig. S4. The probe 
group with high classification ability would have a nega-
tive correlation between the rank of probes based on the 
importance and proportion of focal probes. We found 
that the probes “450k_Enhancer,” “Phantom5_Enhancer,” 
and “RDMR” exhibited this pattern (Fig. S4B). When 
importance and CMSk were compared, groups A, B, and 
C exhibited a negative correlation between the rank of 
importance and CMSk (top column, Fig. S5), indicat-
ing that the classification worked well for those groups. 
When the threshold for classification (θ) was controlled 
for groups A and B, even low θ accurately caught the 
classification pattern, but for group C, high θ was more 
accurate (top column, group C, θ = 0.9). In most cases, 
the relationship between the rank of importance and 
CMSk showed an L-shape in groups A and B. These 
results indicated that a small number of probes contrib-
uted to classification, which is consistent with the results 
of the select percentile patterns shown in Fig. 3A and B. 

We selected the top 10,000 importance probes located on 
135 transcripts and 78 gene symbols (Additional file 2 for 
top 10,000 importance probes and Additional file  3  for 
135 transcripts) to confirm the development of the gene-
based analytical model and identify candidate genes asso-
ciated with disease progression.

One characteristic example of the effect of MYCN 
amplification on DNA methylation is the MYCN gene 
locus methylation status (Fig. 4A). We focused on probes 
within 10 kb of the transcription start site (TSS),100 kb 
was the conservative threshold of regulation by enhancer 
[38]. We found hypomethylation of the enhancer regions 
in the MYCN locus, and among the 41 probes located 
within approximately ±100 kb of TSS, 27 probes were 
included in the top 10,000 importance probes and 15 out 
of the 27 probes were CMS-A,l (red lower right triangle), 
which indicated hypomethylation in group A samples 
Ten probes were located on “450k_Enhancer,” and eight 
probes were classified as CMSA. These results empha-
size the significance of the lack of DNA methylation in 
the MYCN genetic region, including its enhancer region. 
That high importance was consistent with SHAP method 
(Fig. S8) [39].

Group A-specific genes had noticeable changes in DNA 
methylation patterns in the enhancer region (Fig. 4B, C, 
and D, Table S4). EDAR had 25/36 CMSA with 24 CMSA.u, 
and 6/25 probes were “450k_Enhancer” FAM13A had 
5/16 CMSA,u, and 5/5 top importance probes, and 3/5 
important probes were “450k_Enhancer” PRDM8 has 
24/88 CMSA with 21 CMSA,u, 15/24 were top importance 
probes, and 5/15 probes were “450k_Enhancer” These 
results support the hypothesis that MYCN amplification 
is related to enhancer DNA methylation.

Prognosis of patients using DNA methylation data
In this section, we tested the predictive power of the 
DNA methylation signature for patient prognosis. We 
used three kinds of survival information: outcomes (“cen-
sored” or “not censored” for the event including death of 
disease, progression or relapse) at two years, five years, 
and eight years after diagnosis. Outcomes at two years 
imply how aggressive the tumor character is, and survival 
probability at eight years after diagnosis nearly exhib-
its a plateau even with the MYCN-non-amplified cases. 
We tested five classification algorithms: RF, convolu-
tional neural network (CNN), support vector machine 
with kernel type rbf (SVM_rbf), support vector machine 
with kernel type linear (SVM_linear), and logistic regres-
sion. The mean accuracy score across the algorithms was 
approximately 0.6 (Fig. 5). As expected, in all classifiers, 
8 yr-EFS exhibited the highest accuracy score, and 2 yr-
EFS exhibited the lowest. Because the survival status at 
eight years after diagnosis is close to the overall survival 
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Fig. 4  (A) DNA methylation pattern of MYCN gene (NM_005378) and its neighbor regions at approximately ±100 kb of TSS. Samples were classified 
as group A, B, C, D1, and D2. From top, annotated genes on refseq (“UCSC_RefGene_Group”), relation to CpG island (“Relation_to_UCSC_CpG_
Island”), enhancer annotation (450 K enhancer), classified group by CMSk, and top 10,000 importance probes. Annotated genes, relation to CpG 
island, and enhancer annotation are followed by EPIC manifest. Colors of “UCSC_RefGene_Group” and “Relation_to_UCSC_CpG_Island” are shown 
in right panel. Upper left triangle and lower right triangle indicate the isolation pattern of the class. For example, red upper left triangle means high 
β-value is observed in most of group A sample and not observed in other groups. Details of annotation method of CMSk are described in Materials 
and Methods. (B) EDAR. (C) FAM13A. (D) PRDM8 
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rate of the patients, DNA methylation signature may have 
the predictive power to closely determine each patient’s 
outcome. When probes were selected by selecting the 
percentile and data were dimension-decomposed by lin-
ear discriminant analysis (LDA), RF, logistic regression, 
and SVM_linear exhibited better scores. SVM_rbf and 
CNN exhibited larger variance, probably because of a 
lack of learning data (Table S5).

Discussion
Comparative epigenomics in cancer challenging. A 
major limitation in large-scale epigenomics data analy-
sis is data complexity, particularly compared to genome 
sequence data, in which variation patterns are well 
modeled. The application of machine learning mod-
els to DNA methylation data has progressed in recent 
years, including cancer state prediction and age pre-
diction [40–45]. We used RF as an analytical model for 
DNA methylation data in this study. RF-based analy-
sis successfully proposed a novel patient group of NB 
within pre-determined groups (D1 and D2 in Fig.  2). 
These groups showed distinct DNA methylation and 
prognosis patterns even when the age of onset variable 
was controlled (Fig. 3). This indicates that DNA meth-
ylation is a potential epigenetic marker to distinguish 
the intermediate-risk group of NB (D1) from within 
the low-risk group (D) and that RF is suitable for DNA 
methylation analysis.

Although we discussed using RF, which is a relatively 
simple decision-tree based ML algorithm, there are 
more sophisticated classifier; XGBoost [46], LightGBM 

[47] and extraTrees [48]. Table S6 showed the result of 
those classifier. Because of computation time, we used 
only the probes of top 10,000 variance of β-values. 
XGBoost and LightGBM showed better score for the 
group A and B despite of computation time. The Light-
GBM showed similar score to RF for all case. The 
extraTrees showed similar score for RF. Non tree-based 
models showed worse score. Because this pilot work 
aims to evaluate of applicability of ML method to DNA 
methylation data, we took advantage of computation 
efficiency of RF. It is possible to develop more sophis-
ticated comparative DNA methylation analysis algo-
rithm if a lot of computation resources and samples are 
available.

Our probe annotation comparison showed that probes 
in the enhancer region had strong classification power 
for MYCN-amplified tumors (Fig.  3; Figs. S4 and S5), 
confirming results from previously conducted DNA 
methylation analysis for NB [20, 21]. Although DNA 
methylation around the TSS and CGI regions is gener-
ally used as a tumor epigenetic marker, its classifica-
tion power is still insufficient compared to that of the 
gene expression signature. This may be due to the low 
variance of the β-value (Table S2, var. of TSS and CGI). 
Variance of variables is an important factor for machine 
learning. This notion was supported by the positive cor-
relation between the variance of the β value and the obs/
sim ratio of the f1-score (Fig.  3C and D). In addition, 
“select percentile by ANOVA p-value” was a more cost-
effective feature selection method than probe annotation 
(Fig.  3). Those result were consistent when prediction 

Fig. 5  Prediction result of prognosis. Classification methods are listed on X-axis. Y-axis denotes accuracy score. Prediction was performed to 2-, 5-, 
and 8-year survival. selP5 means top 5% probes were selected using the select percentile method. PCA, principal component analysis; LDA, linear 
discriminant analysis; RF, random forest; CNN, convolution neural network; SVM_rbf, support vector machine with kernel type rbf; SVM_linear, 
support vector machine with kernel type linear; logistic, logistic regression
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ability was measured in accuracy (Fig. S7). Our work 
provides basis for ML-based DNA methylation analysis 
and DNA methylation of enhancer region for classifica-
tion of MYCN-amplified NBs.

To evaluate the difference at the DNA methylation site 
level, we proposed an importance and Gini-impurity-
based analysis model (Fig.  4 and Figs. S4 and S5). This 
approach was useful for visualizing the direction of DNA 
methylation changes (Fig. 4). Although this method can 
provide intuitive results, the results are parameter sensi-
tive (Fig. S4 and S5). This analysis suggests that changes 
in DNA methylation can be evaluated in specific genes. 
The most important NB prognostic marker, MYCN gene 
amplification, is accurate. We showed that MYCN-ampli-
fied samples (group A) were a distinct, characteristic 
group in the PCA of DNA methylation status (Fig.  1B). 
We also found that DNA methylation of enhancer regions 
was enriched in group A-related methylation probes, 
suggesting that MYCN amplification may play a role in 
dynamic changes in DNA methylation status in NBs, 
thereby leading the tumor cells to acquire an aggressive 
character (Fig. 4).

One of the limitations of this study is that our 
machine learning predicts known prognostic factors 
(such as tumor stage and age at diagnosis) which may 
sometimes contain certain deviations. Pure data-driven 
analysis may overcome this limitation if sufficient sam-
ple size is available.

Our approach provides new insight into the NB 
molecular data analysis. Previous reports demonstrated 
that DNA hypermethylation of promoter regions with 
CGI in some genes, such as the protocadherin β gene 
family and cytochrome p450 (CYP26C1), is also related 
to poor prognosis in patients with NB [17, 18]. Herein, 
CGI probes of these genes were included in the top 
10,000 importance probes (rank 2564 and 5613, respec-
tively), indicating that probe selection with impor-
tance/CMSk score is a useful method for identifying 
additional methylation markers for NB classification. 
Moreover, machine learning with RF enhanced the 
prognosis of NBs, particularly with high- and inter-
mediate-risk types (Fig.  1). We identified some can-
didate genes (Fig.  4), including FAM13A-AS, which is 
an autophagy-related lnc-RNA [49]. Using their DEG 
analysis, we compared stages IV and IVs NBs and 
showed that the enhancer region was hypermethylated 
in group A and hypomethylated in group C, which is 
consistent with the previous report [49]. Accordingly, 
the FAM13A-AS lower expression was associated with 
worse prognosis for NB patients (Group A, Fig. S6a), 
FAM13A expression was higher in MYCN-amplified 
cells (Fig. S6b) of NB patients with poor prognosis 

(Fig. S6c, Analysis of KOCAK NB database in R2 data-
base). PRDM8 is an important gene in NB. However, 
in dyskeratosis congenita (DSK), hypermethylation 
was observed in the promoter region [50], and its pat-
tern was similar to that of group A (Fig. 4). In addition, 
knockout of this gene impaired the neuronal differen-
tiation of iPSCs. These results suggest that PRDM8 may 
play an important role in NB progression [51]. In fact, 
lower expression of PRDM8 was associated with poor 
prognosis in patients with NB (Fig. S6D, Analysis of 
SEQC NB database in R2 database). These results may 
contribute to future NB treatment.

Conclusions
In conclusion, our analysis revealed that DNA methy-
lome data can help to understand cancer molecular 
features, and machine learning is a powerful tool for 
analyzing cancer epigenome data. The advantage of 
machine learning is the use of data-driven analysis, 
which does not require a specific analysis model.

Methods
All methods were carried out in accordance with rel-
evant guidelines.

Infinium HumanMethylation450 beadchip array data 
and generating β‑value
We collected HumanMethylation450K BeadChip array 
(Illumina) dataset of patients with NB, with their clini-
cal information from four different research projects. 
Raw idat files were obtained from the Gene Expres-
sion Omnibus (GEO) database (GSE715 [22] and 
GSE120650 [37]). For the target dataset, we obtained 
an idat file from the database (https://​ocg.​cancer.​gov/​
progr​ams/​target/​proje​cts/​neuro​blast​oma). Methylome 
data obtained from Japanese NB were provided by the 
Japan Children’s Cancer Group Neuroblastoma Com-
mittee (JCCG-JNBSG) collaborative work and will be 
published elsewhere (Ohira et al., in preparation).

To enumerate and normalize the methylation data, we 
used the Minfi package (v1.26.2) in R open-source statis-
tical software (v3.5.3) [52]. Background correction and 
normalization were conducted using the ProprocessIl-
lumina method [52]. The β-value was calculated as β = M 
/ (M + U + 100), where M is the methylated value and U 
is the unmethylated value [53]. To annotate probes on the 
Illumina array, the manifestation of the EPIC array was ref-
erenced, which is enriched with enhancer information [52].

Random forest settings
RF models were implemented using the RandomForest-
Classifer class of the scikit-learn v0.17 Python package. 

https://ocg.cancer.gov/programs/target/projects/neuroblastoma
https://ocg.cancer.gov/programs/target/projects/neuroblastoma
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In all cases, the weight of the sample was controlled by 
the class_weight option.

In the case of Tables 1, 10% of the probes were selected 
by select percentile method using “chi2” option. The rank-
ing of importance in Fig. 4 was calculated in this result. 
For inter-dataset comparison, we used the whole data for 
training and testing to calculate scores. For intra-dataset 
comparison, we selected 70% of the samples for the train-
ing dataset and 30% for the test data. Max_depth was set 
as four, and n_estimator was 10,000 for RF parameters; 
the number of replications was set to 100.

For feature selection analysis in Fig. 3, we set n_esti-
mater as 10,000, and no limit was set for max_depth.

XGBoost, LightGBM and extraTrees
The version of these classifiers were below: XGBoost 
(1.6.1, pypi_0) and LightGBM (3.2.1, py310he9d5cce_0) 
and scikit-learn for extraTrees (1.0.2, py310hc081a56_0).

Survival time analysis
Survival data analysis was performed using the Lifelines 
package in Python [54]. To evaluate the survival effect of 
each probe, we calculated the log-rank p-value for each 
probe. The samples were separated by the mean β-value, 
and the p-value was collected using the Benjamini–
Hochberg method.

Definition of probe groups
All probe definitions in this study were based on the 
following Illumina manifest: “Promoter” referred to 
the probes that included any of TSS1500, TSS200, and 
1stExon. “TSS” referred to the probes of TSS1500 and 
TSS200. The term “CGI” was used for “island” in the 
“Relation_to_UCSC_CpG_Island” column. “pha5enha” 
encompassed probes that were annotated in “Phantom5_
Enhancers.” “450Kenha” referred to probes of TRUE in 
“450k_Enhancer.” “DMR,” “RDMR,” and “CDMR” were 
used for probes annotated in “DMR,” “RDMR,” and 
“CDMR” in the “DMR” column, where DMR refers to a 
differentially methylated region. RDMR refers to repro-
gramming-specific differentially methylated region. 
CDMR refers to tje cancer-specific, differentially meth-
ylated region. “DNase” included probes annotated in 
“DNase_Hypersensitivity_NAME.” “TFBS” referred to 
probes annotated in “TFBS_NAME.” “OpenChr” referred 
to probes annotated in “OpenChromatin_NAME.” and 
finally, “SNP” referred to probes of TRUE in “SNP_ID.”

Classification power for genes
To evaluate the classification power for the single-probe 
level, we introduced the CMSk index, which is based on 

Gini-impurity. First, we set G(r) as a Gini-impurity for a 
β-value, r. We used the equation

where pk, u(r) and pk, l(r) are the fractions of class k 
∈(A,B,C,D) with the upper and lower values of r. r0 is the 
r value when G(r) is at the least value.

We calculated r0 for each probe across all samples.
Next, we evaluated the degree of classification at the 

point of r0. We defined pk, u(r) and pk, l(r) as the propor-
tion of group k (∈(A,B,C,D)) samples upper and lower β 
values than r, respectively. r_0 was calculated in RF result 
of max depth was 2.

If pk, u(r) was over a threshold (θ), we define those 
probes as CMSk. In the case of cg12343591 (Fig.  5), 
r0 = 0.767339, and pk, u(r) and pk, l(r) were below: { pA, u(r) 
= 0.163, pB, u(r) = 0.918, pC, u(r) = 0.982, pD, u(r) = 0.927} 
vs { pA, l(r) = 0.836, pB, l(r) = 0.082, pC, l(r) = 0.018, pD, 

l(r) = 0.073}. In this case, cg12343591 was CMSA,u when 
θ = 0.8 was chosen, but not CMSA when θ = 0.9. The 
effect of θ on the CMSk is shown in Fig. S4. In this study, 
we chose θ = 0.8 as our threshold.

Patient prognosis
We used two classes of outcomes: no event or event, 
which represented death from disease and relapse. Five 
percent of probes were chosen using the select-percentile 
method. Data pre-processing was performed using PCA 
or LDA. The dimensions of the PCA were tuned by a grid 
search and fixed at 2. Parameter tuning was performed 
using the RandomizedSearchCVfunction in scikit-
learn. For RF, max_depth = 3,4,5,6 n_estimators were 
fixed at 1000. For the logistic regression, C = [0,100). 
Solver = lbgf, multi_class = auto, max_iter = 1000. For 
the SVM, the kernel functions of “linear” and “rbf” were 
compared in independent classifiers, “SVM_linear” and 
“SVM_rbf,” respectively. The tuned parameters were the 
same, and C = [0,100), gamma = [0,1). For the CNN, hid-
den_layer_sizes: [(50,),(50,50),(100,),(100,100),(100,10
0,100),(200,),(200,200)], max_iter:[100,500,1000], and 
batch_size: [10] were used.

Hyper parameter of classifier model comparison
We used the probes with top 10,000 variance of β-value. 
For tree-based classifier, for time efficiency, we fixed 
max_depth as 5, and 10% of probes were selected by 

G(r) = 1−

K

k=1

pk ,u(r) pk ,l(r)

r0 = arg min
r∈{0,1}

G(r)



Page 11 of 12Sugino et al. BMC Genomics          (2022) 23:852 	

select percentile. For non tree-based classifier which 
overfitting does matter, we used “grid search” algorithm 
to seek the best parameter of select percentile, with the 
range as [1, 3, 5, 7, 9]. In addition, other parameter tun-
ing was performed. For logistic regression, C = [0,1). For 
SVM and CNN, the parameter was same as the section, 
“Patient prognosis”.
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amc.​nl/). Kocak data were selected. “Scan” option was selected for sample 
grouping. B) Gene expression level of FAM13A for the data of Henrich et al. 
[22]. Box plot of FAM13A gene expression in MYCN-amplified (n = 33) and 
non-amplified (n = 72) tumors. C) Kaplan–Meier survival curves of 476 
patients with NB divided by FAM13A expression, with same setting of Fig. 
S6A. D) Kaplan–Meier survival curves of 498 patients with NB divided by 
PRDM8 expression with same setting of Fig. S6A. Gene expression data 
were obtained from the SEQC data. Fig. S7 Remake Fig. 3 for accuracy 
as index. Fig. S8 Probe contribution of classification measuring by SHAP 
value. Table S1. Number of samples used in this study. Table S2. Predic-
tion ability of each probe annotation for group A and B, Table S5. Mean 
accuracy and its standard deviation, Table S6. Classification ability was 
compared.
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