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Abstract 

Background:  In our previous study, Citrobacter sp. XT1-2-2 was isolated from high cadmium-contaminated soils, and 
demonstrated an excellent ability to decrease the bioavailability of cadmium in the soil and inhibit cadmium uptake 
in rice. In addition, the strain XT1-2-2 could significantly promote rice growth and increase rice biomass. Therefore, 
the strain XT1-2-2 shows great potential for remediation of cadmium -contaminated soils. However, the genome 
sequence of this organism has not been reported so far. 

Results:  Here the basic characteristics and genetic diversity of the strain XT1-2-2 were described, together with the 
draft genome and comparative genomic results. The strain XT1-2-2 is 5040459 bp long with an average G + C content 
of 52.09%, and contains a total of 4801 genes. Putative genomic islands were predicted in the genome of Citrobacter 
sp. XT1-2-2. All genes of a complete set of sulfate reduction pathway and various putative heavy metal resistance 
genes in the genome were identified and analyzed.

Conclusions:  These analytical results provide insights into the genomic basis of microbial immobilization of heavy 
metals.
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Background
The Citrobacter species belong to the domain Bacteria 
[1], the phylum Proteobacteria [2], the class Gammapro-
teobacteria [3], the order Enterobacteria [4], the Entero-
bacteriaceae family [5] and Citrobacter genus [6], and was 
introduced in 1932 by Werkman and Gillen [7]. The Cit-
robacter genus typically utilizes citric acid as the primary 

carbon source [8, 9]. Citrobacter species are commonly 
found in soil, water, sewage and food, sometimes exist as 
a normal flora in the gastrointestinal tract, also in human 
and animal feces, and sometimes as opportunistic patho-
gens isolated from clinical samples [10, 11].

Citrobacter sp. XT1-2-2 was isolated from high Cd-
contaminated paddy soil. In our previous study, we found 
that the strain XT1-2-2 could tolerate a variety of heavy 
metals, and showed remarkable removal efficiency of 
Cd2+ in the solution compared with controls. Meanwhile, 
the strain could decrease the bioavailability of Cd in the 
soil and inhibit Cd uptake in rice plants. In addition, 
the strain could significantly promote rice growth and 
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increase rice biomass [12]. These effects are mainly due 
to the strain’s ability to reduce sulfate (SO4

2−) to sulfide 
ions (S2−), and then sulfide ions (S2−) can combine with 
cadmium ions (Cd2+) existing in the soil to produce cad-
mium sulfide (CdS) precipitation, thereby converting 
the highly active cadmium ions (Cd2+) into residual cad-
mium sulfide (CdS), and then reduces the absorption and 
transport of cadmium by rice [13, 14]. Therefore, these 
characteristics made the strain XT1-2-2 strong poten-
tial for application to remediate Cd-contaminated paddy 
soils. However, the genome sequence and basic proper-
ties of this organism have not been reported so far. Here 
we report the high quality draft genomic information of 
the strain XT1-2-2 and conduct comparative genomic 
analysis with the other relevant reference sequenced 
genomes.

Results
Organism classification and characteristics
The strain XT1-2-2 is Gram-negative, facultatively anaer-
obic, non-sporulating, motile and rod-shaped (Fig.  1). 
The colonies are circular, smooth and opaque with a 
regular slick edge on SRB agar plates [13]. The strain 
XT1-2-2 is a non-pathogenic and free-living bacte-
rium. Growth occurs at 15–40℃ and at pH 5–10. Opti-
mal growth occurs at 30℃ and at pH 6–8. The basic 
characteristics and classification of the strain XT1-2-2 
are shown in Table S1. The results of previous studies 
showed that the strain XT1-2-2 exhibited high resistance 

to a variety of heavy metals, and the MIC of the strain 
XT1-2-2 for Cd2+ was as high as 400 mg/L [12].

SEM analysis
The scanning electron micrograph (SEM) analysis (Fig. 1) 
showed that cell shape was significantly influenced 
under high concentrations of Cd2+ of up to 100 mg/L. 
Compared with the control group (a), some cells in the 
treatment group (b) were twisted, lysed, or even broken. 
Oxidative damage and membrane permeability changes, 
caused by high Cd concentration, might be responsible 
for the cell morphology changes.

TYGS analysis and phylogenetic relation
The phylogenetic tree inferred from the intergenomic 
distance calculated from Genome BLAST Distance 
Phylogeny (GBDP) in the Type Strain Genome Server 
(TYGS) is shown in Fig. 2. Based on the 16S rDNA com-
parison, Citrobacter sp. XT1-2-2 is the closest relative to 
Citrobacter werkmanii BF-6 (CP019986.1) (Fig. 2). Simi-
larly, the whole genome-based phylogeny also showed a 
cluster of the same species as the closest relatives of Cit-
robacter sp. XT1-2-2 (Fig. 2). All the Citrobacter species 
clustered together in a paraphyletic clade from the other 
type strains.

Genome sequencing, annotation and features
The strain XT1-2-2 was selected for sequencing par-
ticularly due to its multiple heavy metals resistance and 
heavy metal removal ability. Genome sequencing was 

Fig. 1  Scanning electron micrograph depicting effect of Cd on cellular morphology of Citrobacter sp. XT1-2-2. a Citrobacter sp. XT1-2-2 in absence 
of Cd2+. b Citrobacter sp. XT1-2-2 in presence of 100mg/L Cd2+

(See figure on next page.)
Fig. 2  Genome BLAST Distance Phylogeny method (GBDP) for phylogenetic placement analysis using FastME 2.1.6.1 with 100 bootstrap values. 
A 16S rDNA gene sequence-based phylogeny of Citrobacter sp. XT1-2-2 with the closely related type strains and whole genomes with 93.5% 
average branch support. B Whole-genome sequence based phylogeny among the closely related type strains and whole genomes with 97.2% 
branch support. The numbers above branches represent the GBDP pseudo-bootstrap value, which is greater than 60%
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Fig. 2  (See legend on previous page.)
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performed by Shanghai Majorbio Bio-pharm Technology 
Co., Ltd (Shanghai, China). The project information is 
summarized in Table S2. The constructed standard shot-
gun library generated 165575 reads totaling 1164774594 
bp and an average length of 7034.7 bp. The total size of 
the genome is 5,040,459 bp with 52.09% G + C content 
(Fig. 3). The genome properties and statistics are shown 
in Table S3. A total of 4801 genes, 4601 CDSs with pro-
tein, and 120 predicted RNA genes, including 84 tRNA, 
25 rRNA and 11 ncRNA were predicted. In addition, 
4383 (91.0%) genes are distributed into COG functional 
categories (Fig. 4).

Identification of sulfate reduction pathway
According to the KEGG prediction analysis, the strain 
XT1-2-2 contains all genes of the complete set of sulfate 
reduction pathway (Fig.  5), including cysA, cysC, cysD, 
cysH, cysI, cysJ, cysN, cysP, cysU, cysW. which provides 
the genomic basis for the strain to reduce sulfate (SO4

2−) 
to sulfide (S2−) to form CdS precipitation, thereby reduc-
ing the uptake and transport of Cd2+ by rice. The basic 
information of sulfate reduction pathway genes including 
gene ID on chromosome, gene name, gene description 

has been analyzed, and heavy metal resistance genes have 
been already compared with the reference proteins in 
the swissprot database, and all the information has been 
shown in Table S4.

Identification of heavy metal resistance genes
The results of previous studies showed that the strain 
XT1-2-2 could tolerate a variety of heavy metals (Cd2+, 
Pb2+, Zn2+, Mn2+ and Cr6+) and the removal rate of Cd2+ 
in solution is as high as 82.3 ± 2.1% within 240 min [12]. 
These results suggest that the strain XT1-2-2 has devel-
oped many evolutionary strategies to adapt the complex 
heavy metal pollution environment. According to the 
results of genome annotation, the strain XT1-2-2 con-
tains multiple putative functional proteins, which are 
related to heavy metal resistance, including transport-
ers, resistance proteins and metal reductases, and so on 
(Fig. 6). The basic information of heavy metal resistance 
genes including gene ID on chromosome, gene name, 
gene description has been analyzed, and heavy metal 
resistance genes have been already compared with the 
reference proteins in the swissprot database, and all the 
information has been shown in Table S5.

Fig. 3  A graphical circular map of Citrobacter sp. XT1-2-2. From outside to center, rings 1, 4 show protein-coding genes colored by COG categories 
on forward/reverse strand; rings 2, 3 denote genes on forward/reverse strand; ring 5 shows G + C % content plot; ring 6 shows GC skew; the 
innermost ring shows the marker of genome size
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Identification of the heavy metal resisitance genomic 
island
The genomic islands in Citrobacter sp. XT1-2-2 were 
predicted by genome annotation combined with Island 

Viewer 4 software (Fig.  7), and all the genes (Table S6) 
on the genomic islands were further analyzed. Among 
all heavy metal resistance genes present on the genome, 
the membrane transporter chrA and mercury transport 

Fig. 4  Number of genes associated with the 20 general COG functional categories. The gene number of the category B, W, Y, Z and X is zero

Fig. 5  Putative sulfur metabolism pathway and assimilatory sulfate reduction genes in Citrobacter sp. XT1-2-2. a Putative sulfur metabolism 
pathway. b Assimilatory sulfate reduction gens in Citrobacter sp. XT1-2-2. c Putative sulfate transporter CysPUWA​
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system (merR, merT, merP, merC, merA, merD, and 
merE) were present on the same gene island. The region 
of the gene island ranging from nucleotide positions 
3469026 to 3490287 were annotated as heavy metal 
resistance genomic island by SIGIHMM and IslandPath-
DIMOB analysis.

Features of the core and pan‑genomes
In order to assess genetic diversity, we constructed Cit-
robacter genus core and pan genomes and compared the 
gene content of Citrobacter sp. XT 1-2-2 with other rel-
evant reference strains (Fig. 8). The basic information of 
the strains used for pan genome analysis has been indi-
cated in Table S7, including the strain name, G + C con-
tent, number of proteins, genome size and the accession 
numbers of the Citrobacter species. From the alignment 
results, 13,614 gene families were found in 16 genomes, 
of which 2,449 genes constitute the core genome. The 
functional categories of the core gene families were fur-
ther determined via the Cluster of Orthologous Group 
(COG) assignments among all the related species. The 
results showed that the core gene family presented an 
uneven distribution among functional categories (Fig. 4). 
We further analyzed the core, accessory and specific 
genes (Tables S8, S9 and S10), carefully checked the clas-
sification of the heavy metal resistance in the gene cat-
egory, and the results are shown in Table S11.

Comparative genomics analysis
The amino acid sequences of the involved twenty species 
were aligned via the OrthoMCL, and a certain thresh-
old (E-Value: 1e-5, Percent Identity Cutoff: 0, Markov 
Inflation Index: 1.5) was selected for similarity cluster-
ing to obtain homologous genes. With the help of Venn 
diagram, the common and unique homologous genes 
between species are displayed intuitively. The strain XT1-
2-2 shares 2285 proteins with the other genomes and has 
342 specific proteins. The 2285 core genes include the 
genes in the whole sulfate reduction pathway and some of 
the heavy metal resistance genes (Fig. 9).

Discussion
In this study, the complete genome of Citrobacter sp. 
XT1-2-2 was sequenced and comparative genomics 
analysis was also conducted with the other relevant ref-
erence sequenced genomes. In our previous study, the 
strain XT1-2-2 was isolated from high Cd-contaminated 
soils, and demonstrated an excellent ability to decrease 
the bioavailability of Cd in the soil and inhibit Cd uptake 
in rice. In addition, the strain XT1-2-2 could significantly 
promote rice growth and increase rice biomass. How-
ever, the genome sequence of this organism has not been 
reported so far.

The antigenic system of the Bethesna-Ballerup group 
bacteria was established by West and Edwards in 1954 
[15]. This group of bacteria is now called Citrobacter 

Fig. 6  Heavy metal resistance genes distributed in Citrobacter sp. XT1-2-2. a Zinc or cadmium transporter, b Chromate transporter, c Zinc/ 
cadmium /mercury /lead-transporting ATPase, d Zinc ABC transporter permease, e Arsenical resistance protein, f copper resistance system, g 
Mercury transport system, h Cobalt ECF transporter complex
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freundii [16]. So far, Citrobacter genus contains eleven 
species: Citrobacter freundii, Citrobacter koseri, Citro-
bacter amalonaticus, Citrobacter farmeri, Citrobacter 
youngae, Citrobacter braakii, Citrobacter werkmanii, 
Citrobacter sedlakii, Citrobacter rodentium, Citrobacter 
genomospecies 10, Citrobacter genomospecies 11 [17, 
18]. According to the results of TYGS analysis and phy-
logenetic relation, Citrobacter sp. XT1-2-2 is the closest 
relative to Citrobacter werkmanii BF-6 (CP019986.1) 
(Fig.  2). According to the physicochemical properties 
of these strains, some Citrobacter species immobi-
lized biofilms were used to bioremediate heavy metal 
contaminated soils through an acid-type phosphatase 
enzymatic activity or their ability to accumulate heavy 
metals [19–21]. In this study, genome analysis of the 
strain XT1-2-2 revealed all genes of a complete set 
of sulfate reduction pathway according to the KEGG 
analysis (Fig. 5). The occurrence of metabolic pathways 
involves the following steps: (1) Sulfate (SO4

2−) from 
outside is taken up into cells by putative sulfate trans-
porter CysPUWA; (2) Sulfate (SO4

2−) entering the cell 

is first acetylated to adenylylsulphate (APS) by sulfate 
adenylyltransferases CysN and CysD; (3) The resulting 
APS is then phosphorylated to phosphoadenylyl-sul-
phate (PAPS) by the APS kinase CysC; (4) The result-
ing PAPS is further reduced to sulfite (SO3

2−) by PAPS 
reductase CysH; (5) The resulting sulfite (SO3

2−) is 
finally reduced to sulfide (S2−) by sulfite reductase CysIJ 
[14]. The reason why the strain XT1-2-2 has a signifi-
cant effect of removing cadmium is mainly because the 
strain generates sulfide (S2−) via the sulfur metabolism 
pathway, which can combine with Cd2+ in the soil to 
form the precipitated CdS, thereby reducing the uptake 
and transport of cadmium in the soil by rice plant.

Meanwhile, the strain XT1-2-2 also revealed various 
genes responsible for multiple heavy metal resistance 
(Fig. 6), which provided the genomic basis for the strain 
to adapt to the external complex harmful environment. 
CzcD is involved in resistance to the heavy metals Cd2+, 
Zn2+ and Co2+ [22]. The membrane transporter ChrA 
is responsible for the efflux of intracellular Cr(VI) from 
the cell [23]. Heavy metal-transporting ATPase (ZntA) 

Fig. 7  Identification of heavy metal resistance genomic island in the genome of Citrobacter sp. XT1-2-2. a The genomic islands were predicted 
by Island Viewer 4. Putative genomic islands predicted by the SIGI-HMM method (blue squares) or IslandPath-DIMOB method (yellow squares) or 
IslandPich (green squares). The integrated results are indicated by red squares. The inner ring indicated the G + C contents. b A vertical view of the 
genes and their description. c The gene arrangement of heavy metal resistance genes
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Fig. 8  The Citrobacter core and pan-genome plotted were constructed for 16 genome sequences of Citrobacter related species

Fig. 9  The Venn diagram depicting the core and unique genes between Citrobacter sp. XT1-2-2 and other 19 relevant reference species
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is responsible for the efflux of Pb2+, Zn2+ and Cd2+ [24]. 
The metal ABC transport system (ZnuABC) are involved 
in Zn2+ uptake [25]. ArsB, ArsC, and ArsH proteins are 
involved in the functions of arsenical pump membrane 
protein, arsenate reductase and arsenical resistance pro-
tein, respectively [26]. Cus copper resistance system con-
sists of CusCBA efflux pump, CusF periplasmic protein 
and CusS regulatory protein [27]. Mercury transport 
system (mer operon) encodes a group of proteins consist-
ing of MerR mercury regulatory proteins, MerT, MerC, 
MerP mercury transport proteins and MerA, MerD, 
MerE mercury resistance proteins [28]. The Co2+ ECF 
transporter complex is involved in Co2+ resistance and 
transmembrane transport [29].

The analysis of the core and pan genomes showed an 
uneven distribution among functional categories (Fig. 4). 
There were several notable differences in the numbers 
of genes, such as amino acid transport and metabolism 
(category E), transport and metabolism of carbohydrates 
(category G), translation (category K) and inorganic ion 
transport and metabolism (category P). In particular, 
this difference in the number of genes belonging to the 
same COG category was mainly reflected in transport 
and metabolism [5]. For KEGG annotations [30–32], 
two gene functional categories were enriched in core 
gene families including metabolism and environmental 
information processing (Fig.  10). It is noteworthy that 
the uneven distribution of genes in the COG and KEGG 
categories was related to transport, metabolism and sig-
nal transduction system [18]. The signal transduction 
systems are responsible for sensing environmental cues 
and adjusting cellular behavior. Microbial metabolism 
and transport involve complex metabolic pathway, gene 
regulation network, and environmental cues. These gene 
functional categories were enriched among the core gene 
families in response to complex environmental stimuli. 
Due to the complex and changeable external environ-
ment, strains need to respond quickly to adapt to the 
environmental changes. So we hypothesized that these 
gene categories related to transport, metabolism and 
signal transduction system might provide a competitive 
advantage to Citrobacter sp. XT1-2-2 adapt to the envi-
ronmental changes.

Determining the taxonomic position is crucial for 
classifcation, characterization and identifcation of bac-
teria. The genome of Citrobacter sp. XT1-2-2 was sub-
mitted to Type Strain Genome Server (TYGS) for whole 
genome based taxonomic analysis. TYGS compares 
the query genome with all type strain genomes avail-
able in the TYGS database [33] where the intergenomic 
or intragenomic relations can be inferred through 
the auto-generated phylogeny and digital DNA-DNA 
hybridization (dDDH) values. The pairwise comparison 

between Citrobacter sp. XT1-2-2 and the closest type 
strains using dDDH is shown in Table S12. The table 
contains dDDH values and confidence intervals for spe-
cies and subspecies close to Citrobacter sp. XT1-2-2 
using three different Genome-to-Genome Distance cal-
culator (GGDC) formulas [34].

Whole-genome sequencing technology increased the 
identification of genomic islands in bacterial genomes. 
The genomic islands are considered to be the major 
elements for disseminating resistance genes among 
bacteria, though the mechanism of transfer was rarely 
determined [35]. An increasing number of evidences 
indicated that some genomic islands can transfer 
between bacteria by conjugation autonomously or with 
the help of other mobile genetic elements (e.g. con-
jugative plasmid) [36]. In this study, we discovered a 
heavy metal resistance genomic island in the chromo-
some of Citrobacter sp. XT1-2-2. The G + C content 
of chrA is 58.87%, and G + C contents of merR, merT, 
merP, merC, merA, merD and merE are 61.25%,61.25%, 
62.68%, 65.37%, 65.68%, 69.70% and 69.20%, respec-
tively, and they differ from that of the XT1-2-2 over-
all genome (52.09%), suggesting that these resistance 
genes may be horizontally transferred genes obtained 
from other bacteria under the stress of external envi-
ronmental stress.

Conclusions
Results of comparative genomic analysis from Citrobac-
ter sp. XT1-2-2 revealed correlations between genotype 
and phenotype. Genome analysis revealed all genes of a 
complete set of sulfate reduction pathway according to 
the KEGG analysis, which provides the genomic basis 
for the strain to reduce sulfate (SO4

2−) to sulfide (S2−) 
to form CdS precipitation, thereby reducing the uptake 
and transport of Cd2+ by rice plants. Meanwhile, the 
strain also revealed various genes responsible for multi-
ple heavy metal resistance, which provided the genomic 
basis for the strain to adapt to the external complex 
harmful environment. These analytical results provide 
insights into the genomic basis of microbial immobili-
zation of heavy metals.

Materials and methods
Bacterial strain and DNA extraction
The strain XT1-2-2 was initially isolated from high Cd- 
contaminated paddy soils (~ 220 mg/kg) in Liuyang city, 
Hunan Province, China (28°01’N, 113°34’E). Based on 
previous morphological and molecular characteriza-
tion, the strain XT1-2-2 was identified as the genus Cit-
robacter. The genomic DNA of the strain XT1-2-2 was 
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extracted by QIAamp DNA Mini Kit (Qiagen, CA, USA) 
according to the manufacturer’s protocol.

Bacterial morphological characterization
The selected bacterial strain (Citrobacter sp. XT1-2-2) 
was cultivated in the liquid medium in the absence or 
presence of 100 mg/L Cd2+, and then bacteria were pre-
pared for scanning electron microscopy (SEM), by cen-
trifugation at 12000 rpm for 10 min to pellet bacterial 
cells. The pellet was resuspended in 4% p-formaldehyde 
(PFA) to fix the cells for 1 h. Then bacterial cells were 
resuspended in 200 µl of hexamethyldisilazane (HMDS), 
and 2 µl suspension was mounted onto a silicon wafer 
and dried overnight. The samples were investigated using 

an Quanta 400 FEG (Thermo Scientific, USA) in high-
vacuum conditions at 5-kV accelerating voltage.

Genome sequencing and assembly
Genome sequencing was performed by Shanghai 
Majorbio Bio-pharm Technology Co., Ltd (Shanghai, 
China). The genome sequence of the strain XT1-2-2 
was obtained via the Illumina Hiseq×10 and Pacbio 
platforms, with a depth of ~ 100-fold coverage in both 
platforms. The previously extracted genomic DNA was 
randomly fragmented through Covaris or Bioruptor 
method. Fragmented DNA was purified by the QIAquick 
Nucleotide Removal Kit (Qiagen, Crawley, United King-
dom). Sequencing adaptors were ligated to A-tailed 

Fig. 10  Distribution of functional catalogs of core genes in Citrobacter sp. XT1-2-2 after KEGG annotation [30–32]
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3’ends according to the manufacturer’s instructions. A 
library for Illumina Paired-End sequencing was prepared. 
The sequencing library was sequenced via the combined 
sequencing method of Illumina Hiseq ×10 + PacBio, and 
each sample provides at least 100× PacBio sequencing 
data and 100× Illumina sequencing data of the genome 
to ensure a more complete and accurate assembly. The 
constructed standard shotgun library generated 165575 
reads totaling 164774594 bp and an average length of 
7034.7 bp. The resulting reads were de novo assembled 
with the help of SOAPdenovo v1.05 [37]. The genome 
was annotated using the NCBI Pro-karyotic Genome 
Annotation Pipeline (PGAP), and genes were identified 
by the gene caller GeneMarkS (Version 4.3). The genomic 
islands were predicted by Island Viewer 4 [38].

Identification of gene orthologous groups
OrthoMCL (version 2.0.9) was exploited to determine 
orthologous families in the pan-genome with default 
parameter (E-Value: 1e-5, Percent Identity Cutoff: 0, 
Markov Inflation Index: 1.5). The single-copy core 
gene and pan gene were extracted with the help of the 
OrthoMCL (http://​www.​ortho​mcl.​org/​common/​downl​
oads/​softw​are/​v2.0/). Their nucleotide sequences were 
extracted on the basis of protein ID.

TYGS analysis
The whole genome sequence of Citrobacter sp. XT1-2-2 
was uploaded to the Type Strain Genome Server (TYGS) 
for in silico based taxonomic analysis [33]. The pairwise 
comparison of the user strain with the type strains were 
performed using GBDP and accurate intergenomic dis-
tances inferred under the “trimming” algorithm and dis-
tance formula d5. Digital DDH values and confidence 
intervals were calculated following the recommended 
settings of GGDC 2.1 [33]. The intergenomic distances 
were used to create a balanced minimum evolution tree 
using FASTME 2.1.4 with 100 pseudobootstrap replicates 
for branch support [33].

Core and pan‑genome analysis
The comparative study on the core and pan-genome 
analysis was manipulated by the 16 genome sequences 
of Citrobacter related species according to the previously 
reported methods [5, 39]. Briefly, the gene set in Citro-
bacter sedlakii NBRC 105722 was selected and regarded 
as the Reference and the gene sets in the other 15 Cit-
robacter sp. genomes were considered as the Query. The 
Query genes in each genome were aligned against the 
Reference genes in reference strain using BLAST v2.2.26 
(http://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi) and the blast 
results were filtered by their length and identity. The 
regression analysis for the core gene cluster curve was 

performed using a weighted least square regression by 
fitting the power law n = κexp (m×N) + ϴ to means [40]. 
N is the number of genomes, n is the number of core 
gene clusters, ϴ is a constant value representing the pre-
dicted minimum number of core genes, and κ and m are 
parameters.

Gene functional category
The functional category of the core gene families was 
analyzed and classified by different database (COG/GO/
KEGG). The numbers of corresponding proteins were 
computed for each term of COG/GO/KEGG.

The main biological functions of different proteins were 
determined by functional enrichment analysis, and then 
the resulting results were visualized by GraphPad Prism 
7.0.
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