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Abstract 

Background:  Structural variations (SVs) have recently become a topic of great interest in the area of genetic diversity 
and trait regulation. As genomic sequencing technologies have rapidly advanced, longer reads have been used to 
identify SVs at high resolution and with increased accuracy. It is important to choose a suitable sequencing platform 
and appropriate sequencing depth for SV detection in the pear genome.

Results:  In this study, two types of long reads from sequencing platforms, continuous long reads from Pacific Bio-
sciences (PB-CLR) and long reads from Oxford Nanopore Technologies (ONT), were used to comprehensively analyze 
and compare SVs in the pear genome. The mapping rate of long reads was higher when the program Minimap2 
rather than the other three mapping tools (NGMLR, LRA and Winnowmap2) was used. Three SV detection programs 
(Sniffles_v2, CuteSV, and Nanovar) were compared, and Nanovar had the highest sensitivity in detecting SVs at low 
sequencing depth (10–15×). A sequencing depth of 15× was suitable for SV detection in the pear genome using 
Nanovar. SVs detected by Sniffles_v2 and CuteSV with ONT reads had the high overlap with presence/absence varia-
tions (PAVs) in the pear cultivars ‘Bartlett’ and ‘Dangshansuli’, both of them with 38% of insertions and 55% of deletions 
overlapping with PAVs at sequencing depth of 30×. For the ONT sequencing data, over 37,526 SVs spanning ~ 28 Mb 
were identified by all three software packages for the ‘Bartlett’ and ‘Dangshansuli’ genomes. Those SVs were anno-
tated and combined with transcriptome profiles derived from ‘Bartlett’ and ‘Dangshansuli’ fruit flesh at 60 days after 
cross-pollination. Several genes related to levels of sugars, acid, stone cells, and aromatic compounds were identified 
among the SVs. Transcription factors were then predicted among those genes, and results included bHLH, ERF, and 
MYB genes.

Conclusion:  SV detection is of great significance in exploring phenotypic differences between pear varieties. Our 
study provides a framework for assessment of different SV software packages and sequencing platforms that can be 
applied in other plant genome studies. Based on these analyses, ONT sequencing data was determined to be more 
suitable than PB-CLR for SV detection in the pear genome. This analysis model will facilitate screening of genes related 
to agronomic traits in other crops.
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Introduction
Structural variation (SV) is generally defined as a large-
scale structural difference in a region of genomic DNA 
that is inherited and polymorphic [1]. SV types include 
insertion (INS), deletion (DEL), inversion (INV), dupli-
cation (DUP), and translocation (TRA)/breakend (BND) 
[2]. Structural variation studies in plants are increasingly 
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common and have been applied to understand genomic 
changes during evolution, domestication, and breeding 
[3]. Recently, several pan-genome studies have been con-
ducted in different plant species, and presence/absence 
variation (PAV) diversity has been investigated [4].

Previous studies have shown that SVs can directly 
affect crop phenotypes such as fruit yield and quality [3]. 
It is now highly feasible to identify the extent and impact 
of SVs in crop genomes as genome sequencing technolo-
gies continue to evolve, especially as it becomes easier to 
produce accurate long sequence reads at a genome-wide 
scale [3]. In grapes, strong purifying selection acts on 
SVs, especially inversions and translocations. SVs accu-
mulate as recessive heterozygotes in clonal lineages [5]. 
Sicilian blood oranges originated from the insertion of a 
Copia-like retrotransposon adjacent to the gene encod-
ing Ruby, a MYB transcriptional activator of anthocya-
nin production [6]. In the Pyrus betuleafolia (Pbe-SD) 
genome, an insertion SV was identified in the promoter 
region of barely any meristem 1 (BAM1, Chr12.g42983), 
which may influence the morphogenesis and cell differ-
entiation of plant meristems [7]. In the ‘Zaosu red’ pear 
(Pyrus) cultivar, a 14-bp nucleotide deletion in the coding 
region of the PpBBX24 gene was identified and may be 
associated with the red skin trait [8]. It remains unclear 
whether agronomic trait differences between Asian and 
European pear varieties are related to SVs.

Pear is an economically important fruit tree grown 
worldwide, with thousands of cultivars of five domesti-
cated (and dozens of wild) species [9]. Asian and Euro-
pean pears show distinct phenotypic traits [9]. European 
pears are typically pear-shaped fruits with soft, smooth 
flesh, few stone cells, and strong aroma and flavor, 
whereas Asian pears are round fruits with crisp flesh, 
high sugar content, low acid content, minimal aroma, 
and mild flavor [9]. Reference genomes were assembled 
for the cultivars ‘Dangshansuli’ and ‘Bartlett’ in 2013 and 
2014, respectively [10, 11]. The ‘Bartlett’ genome (Bart-
lettDHv2.0) was improved using a combination of PacBio 
RSII long-read sequencing, Bionano optical mapping, 
chromatin interaction capture (Hi-C), and genetic map-
ping in 2019 [12]. The SVs responsible for the observed 
phenotypic differences in fruit traits between Asian and 
European pears have not been well explored.

Pacific Biosciences® SMRT Sequencing (PacBio) [13] 
and Oxford Nanopore sequencing (ONT) [14] can both 
produce long reads (> 10 kb), giving them an advantage 
in comprehensive detection of SVs because they can 
span repetitive or other faulty regions [15]. For PB-CLR 
(Pacbio-CLR), the N50 read length from platform Sequel 
II was 30–60 kb, the maximum of read length was over 
200 kb. The average throughput per flow cell was 50–100 
Gb and the estimated cost per Gb was $13–26. The read 

accuracy was 87–92%. For ONT, the N50 read length 
from platform PromethION was 10–60 kb, the maximum 
of read length was over 1000 kb. The average throughput 
per flow cell was 50–100 Gb and the estimated cost per 
Gb was $21–42. The read accuracy was 87–98% [16]. To 
account for the increased error rate of these long-read 
sequencing technologies, new alignment tools have been 
developed, such as Minimap2 [17], NGMLR [18] and 
LRA [19]. The aligner Winnowmap2 was developed for 
more sensitive SV detection in repeat sequences [20].

There are several software packages designed to detect 
SVs from both Pacbio and ONT reads. Sniffles is a read-
alignment-based SV detector. It can use both within-
alignment and split-read information to detect SVs; small 
insertions/deletions (InDels) can be found within a single 
alignment, whereas large or complex events lead to split-
read alignments. Sniffles_v1 excels at filtering false SV 
signals from noisy reads [18]. Sniffles_v1 (v1.0.11) [18] 
was reported to detect SVs with higher accuracy than 
another tool, SVIM [21], using PacBio sequencing data 
for the ‘Yali’ pear genome [22]. Furthermore, the latest 
version of Sniffles_v2 (v2.0.6) is capable of detecting more 
SVs across different coverages (https://​doi.​org/​10.​1101/​
2022.​04.​04.​487055). CuteSV is also a read-alignment-
based SV detection tool. CuteSV has high SV detection 
sensitivity, especially for lower-coverage datasets, and it 
can achieve a nearly linear multiple-thread speed dur-
ing data processing [23]. Nanovar was developed for SV 
detection in low-depth ONT data from human patients. 
It uses a neural-network-based algorithm for high-confi-
dence detection and zygosity estimation of all SV classes 
[24].

It is important to identify an appropriate sequencing 
depth for long-read platforms to allow optimal alloca-
tion of limited resources. Human genomes have been 
used to compare the number of SVs detected and the 
recall rate at different sequencing depths using both 
PacBio and ONT data; a depth of 10× was sufficient to 
infer SV breakpoints, but increased sequencing depth 
was associated with a higher recall rate [18]. The impact 
of different sequencing depths on SV detection in long-
read sequencing data remains unclear. A next-generation 
sequencing depth of 50× is appropriate for detecting 
SVs in the pear genome [22]. However, the most suitable 
sequencing depth for detecting SVs from long reads has 
not yet been determined in pear.

We here evaluated the effectiveness of three SV 
detection software packages (Sniffles_v2, CuteSV, and 
Nanovar) on Pyrus data derived from two long-read 
sequencing platforms (PB-CLR and ONT). The Asian 
pear cultivar selected was ‘Dangshansuli’ (P. bretschnei-
deri), which is one of the primary pear cultivars grown 
in China. The reference genome used was the updated 
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release of the European pear ‘Bartlett’ (P. communis), 
BartlettDHv2.0 [12]. We conducted a systematic analy-
sis starting with four different mapping tools, Minimap2 
[17], NGMLR [18], LRA [19] and Winnowmap2 [20]. The 
effects of different sequencing depths and long-read plat-
forms on SV detection were investigated, and the most 
appropriate sequencing depth for detecting SVs in Pyrus 
was determined by comparing the number and precision 
of SVs detected. Furthermore, we investigated the SVs 
identified by all three tested SV detection programs and 
compared those identified from PB-CLR and from ONT 
sequencing data. The identified SVs were then annotated, 
and differentially expressed genes (DEGs) within the SVs 
were determined by comparing transcripts between ‘Bar-
tlett’ and ‘Dangshansuli’ fruit flesh. DEGs were screened 
using GO terms and KEGG pathway annotations to 
identify genes that potentially affect differing agronomic 
traits between Asian and European pear. Our findings 
lay the foundation for subsequent studies of SVs in other 
crop species; the pipeline constructed for this study can 
be used to explore genes within SVs that may cause dif-
ferences in agronomic traits between varieties of crop 
species.

Results
Long‑read sequencing and mapping of ‘Dangshansuli’ pear
Long-read sequencing data was generated for ‘Dangshan-
suli’ using the PB-CLR and ONT platforms. The resulting 
sequencing depth for both platforms was 30×. After fil-
tering out low quality reads, a total of 1,002,476 PB-CLR 
subreads were obtained. The average subreads length was 
over 20 kb and the N50 was > 27 kb. For the ONT data, a 
total of 907,633 reads with a mean read length over 18 kb 
were obtained, and the N50 length was > 18 kb. Seqtk was 
used to randomly extract sequences to different depths 
(10, 15, 20, 25, and 30× coverage). The size of ‘Bartlett’ 
pear genome is 528 Mb [12]. All of the resulting sequenc-
ing reads from both PB-CLR and ONT were mapped to 
the ‘Bartlett’ reference genome using Minimap2 [17], 
NGMLR [18], LRA [19] and Winnowmap2 [20].

Among the four aligners, Minimap2 has the highest 
mapping rate on both PB-CLR and ONT data across dif-
ferent sequencing coverages (10×, 15×, 20×, 25× and 
30×) (Fig.  1). For Minimap2, the primary mapping rate 
ranged from 97.41–99.30%; the range was 84.13–84.44% 
for NGMLR. For Minimap2, the mapping rate was higher 
for ONT (99.28–99.30%) than for PB-CLR sequencing 
data (97.41–97.46%) (Fig.  1A). The mapping rate level 
of LRA was second only to Minimap2, which was for 
PB-CLR data (96.17–96.25%) and for ONT data (99.09–
99.12%). The mapping rate for NGMLR was higher for 
PB-CLR (84.40–84.43%) than ONT sequencing data 
(84.13–84.17%). The mapping rate of Winnowmap2 with 

PB-CLR and ONT data showed significant difference, for 
PB-CLR is range from 77.63–77.83% while for ONT is 
range from 98.88–98.89%.

Three SV detectors (Sniffles_v2, CuteSV, and Nano-
var) were used for SV calling after mapping with the 
four aligners. More insertions and deletions were iden-
tified when Minimap2 rather than the others was used 
for mapping (Fig. 1B&C, Additional file 1). When inser-
tions and deletions were compared with PAVs identi-
fied between the ‘Bartlett’ and ‘Dangshansuli’ genomes, 
there was more overlap between SVs and PAVs when 
Minimap2 was used for mapping instead of the others 
(Fig. 1D). This established Minimap2 as a more suitable 
mapping tool, and Minimap2 was therefore used exclu-
sively in further analyses.

SV detection using three software packages on PB‑CLR 
and ONT sequencing data
We benchmarked the SV calling performance of three 
state-of-the-art SV detection programs on the datasets at 
10, 15, 20, 25, and 30× sequencing depth. The programs 
tested were Sniffles_v2, CuteSV, and Nanovar. This analy-
sis was designed to evaluate the SV detection capabilities 
of each program at different sequencing depths on both 
PB-CLR and ONT sequencing data.

To quantify the performance of the three SV callers, 
we counted four main types of SVs: insertions, dele-
tions, inversions, and duplications. The distributions of 
SVs detected by the SV callers from PB-CLR and ONT 
sequencing data at different sequencing depths are 
shown Fig. 2. Out of all combinations of SV callers and 
sequencing platforms, the highest number of SVs were 
detected using Nanovar on ONT sequencing data. Fur-
thermore, at low sequencing depths, Nanovar detected 
more SVs than the other software packages did and Snif-
fles_v2 can detect more insertion and deletions than the 
others (Fig. 2).

In the pear genome, the number of insertions and dele-
tions detected by Sniffles_v2 in ONT data were highest 
(Fig.  2A&B). Sniffles_v2 detected more SVs with ONT 
data than with PB-CLR data. Sniffles_v2 could detect 
longer duplications (log(bp) > 15) than the other two SV 
calling programs (Fig. 3C).

CuteSV also called more insertions from the PB-CLR 
than the ONT data at low sequencing depths (10 and 
15×). As the sequencing depth increased, CuteSV iden-
tified more insertions and deletions from ONT than 
PB-CLR data. There were slightly more inversions and 
duplications called by CuteSV from PB-CLR data than 
from ONT data. However, when the sequencing depth 
reached 30×, CuteSV called a bit more insertions and 
deletions than Nanovar (Fig.  2B). Among the three 
software packages, CuteSV identified deletions and 
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inversions in PB-CLR sequencing data with the shortest 
average length (Fig. 3C&D).

Compared to Sniffles_v2 and CuteSV, Nanovar has 
superior sensitivity in detecting SVs at low sequencing 
depth. The number of SVs detected by Sniffles_v2 and 
Nanovar did not significantly increase with increased 
sequencing depth. Nanovar called far more inver-
sions and duplications than Sniffles_v2 and CuteSV did 
(Fig. 2C&D). The average lengths of insertions, deletions, 

and inversions identified by Nanovar were the longest of 
the three software packages (Fig.  3A–C). Nanovar was 
found to detect more insertions and inversions with large 
segments than the other two programs did.

SVs overlapping with PAVs between the ‘Dangshansuli’ 
and ‘Bartlett’ genomes
We next identified PAVs between the ‘Dangshansuli’ 
and ‘Bartlett’ genomes using ScanSV [25], with ‘Bartlett’ 

Fig. 1  Comparison of four mapping tools (Minimap2, NGMLR, LRA and Winnowmap2) performance on PacBio and ONT sequencing data. A The 
mapping rate of four mapping tools on PB-CLR and ONT sequencing data. B, C The number of insertions (B) and deletions (C) detected by Sniffles_
v2 after using four mapping tools on PB-CLR and ONT sequencing data. D The percentage of SVs that overlapped with presence/absence variations 
(PAVs) between the pear cultivars ‘Bartlett’ and ‘Dangshansuli’ using four mapping tools on PB-CLR and ONT sequencing data



Page 5 of 14Liu et al. BMC Genomics          (2022) 23:830 	

as the reference genome against which ‘Dangshan-
suli’ was aligned. A total of 92,694 PAVs were identified 
(Additional file 2) and used as a set of known PAVs with 
which to judge the accuracy of insertions and deletions 
detected by the three software packages. More SVs that 
overlapped with PAVs were detected using ONT than 
PB-CLR sequencing data. Sniffles_v2 identified more 
overlapping SVs between the ‘Dangshansuli’ and ‘Bartlett’ 
genomes from ONT sequencing data than from PB-CLR. 
These demonstrated that Sniffles_v2 can detect more SV 
with higher accuracy.

As the sequencing depth increased, more overlapping 
SVs were detected by Sniffles_v2 and CuteSV, but not 
Nanovar (Fig. 4). However, the rate at which the number 
of overlapping SVs increased slowed as the sequencing 
depth increased (Additional file 3). Like CuteSV, Sniffles_
v2 identified more SVs that overlapped with PAVs from 
ONT rather than PB-CLR sequencing data. Sniffles_v2 
and CuteSV, detected a similar number of overlapping 
SVs at 30x sequencing depth using ONT data. Sniffles_v2 
detected 19,024 insertions and 22,594 deletions while 
CuteSV reported 20,106 insertions and 22,543 deletions, 
both significantly greater than the 10,979 insertions and 
18,403 deletions detected by Nanovar. Furthermore, 

Sniffles_v2 called more overlapping SVs than the other 
two software packages at low sequencing depth (10×) 
(Fig. 4). This suggested that the SVs detected by Sniffles_
v2 had a higher confidence level.

Although Nanovar detected the highest number of 
SVs overall, it detected the fewest overlapping SVs. This 
implied that the SVs detected by Nanovar may have had 
a higher false positive rate. When the sequencing depth 
was 15×, Nanovar called the most overlapping insertions 
between two genomes, and the number of overlapping 
deletions did not significantly increase at higher sequenc-
ing coverage levels in the ONT data (Fig.  4C&F). Thus, 
15× coverage may be sufficient for Nanovar, but the SVs 
detected with this program likely have a higher false posi-
tive rate than those called with Sniffles_v2 or CuteSV.

Overlapping SVs among three software packages using 
PB‑CLR and ONT sequencing data
To explore the similarities and differences of SVs detected 
with PB-CLR and ONT data, we counted the number 
of overlapping SVs from PB-CLR and ONT reads. SVs 
detected from ONT data accounted for a greater pro-
portion of overlapping SVs than those detected from PB-
CLR data (Additional file 4). When the sequencing depth 

Fig. 2  The number of SVs detected by three software packages (CuteSV, Nanovar, and Sniffles_v2) using PB-CLR and ONT data at a range of 
sequencing depths
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was > 20×, CuteSV detected a higher number of overlap-
ping insertions. Sniffles_v2 detected highest number of 
overlapping deletions.

The highest number of overlapping deletions was 
detected by Sniffles_v2 using ONT sequencing data at 
a sequencing depth of 30×. There was little difference 

Fig. 3  Comparison of the average lengths of insertions, deletions, inversions, and duplications detected by three software packages (CuteSV, 
Nanovar, and Sniffles_v2) from PB-CLR and ONT sequencing data
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between the three SV callers in detecting deletions. 
Slightly more overlapping deletions were called by the 
three software packages using ONT sequencing data 
compared to PB-CLR.

Nanovar identified the largest number of overlapping 
inversions and duplications out of the three software 
packages, whereas Sniffles_v2 and CuteSV identified 
the fewer. This suggested that although Sniffles_v2 and 
CuteSV performed well in detecting insertions, they did 
not detect inversions or duplications as well. Nanovar 
is therefore recommended for use when inversions or 
duplications are of particular importance.

We next investigated the overlap between SVs detected 
by the three SV callers from PB-CLR and ONT sequenc-
ing data at 30× sequencing depth. SURVIVOR was used 
to merge VCF files from the three SV detectors. Perfor-
mance was observed for four combinations: Sniffles_2 
vs. CuteSV, Sniffles_2 vs. Nanovar, CuteSV vs. Nanovar, 
and Sniffles_2 vs. CuteSV vs. Nanovar (Additional file 5). 
The number of overlapping SVs identified with ONT was 
higher than those identified from PacBio sequencing 
data. From ONT sequencing data, there were a total of 
37,526 SVs covering over 28 Mb in intra-chromosomes 
that overlapped among the three software packages, 
whereas there were 33,225 SVs covering over 18 Mb 
in intra-chromosomes that overlapped from the PB-
CLR sequencing data (Fig.  5A&B). The overlapping SVs 

among three software packages using ONT sequencing 
were then combined with transcriptome profiles to mine 
genes associated with important agronomic traits that 
differ between ‘Bartlett’ and ‘Dangshansuli’ pears.

Differentially expressed genes within SVs related 
to phenotypic differences between ‘Dangshansuli’ 
and ‘Bartlett’
We next investigated the relationship of overlapping 
SVs with annotated protein coding genes to assess their 
functional impact. There were 4427 SVs (12%) occur-
ring in gene regions. However, 10,137 SVs (~ 27.6%) were 
located in the promoter region, whereas only 1798 SVs 
(4.9%) occurred in the coding sequence (CDS) region.

The genes within SVs were then annotated using 
InterProscan (IPR) and GO files; they were found to be 
associated with sugar metabolic pathways, fatty acid 
metabolism, alcohol dehydrogenase, lignin biosynthe-
sis, and disease resistance (Fig. 5C&D, Additional file 6). 
Thirty-one sugar-related genes were identified, namely 20 
genes involved in sugar metabolism and 11 sugar trans-
porter genes (Additional file  6). A total of seven genes 
(Pycom09g17070, Pycom10g02840, Pycom03g12440, 
Pycom01g17140, Pycom03g06740, Pycom11g06020 and 
Pycom11g06030) were annotated in pathways involved 
in metabolism of fatty acids, which are volatile com-
pounds in pears. Seven alcohol dehydrogenase genes 

Fig. 4  Insertions and deletions detected by three software packages (Sniffles_v2, CuteSV, and Nanovar) that overlapped with presence/absence 
variations (PAVs) between the pear cultivars ‘Bartlett’ and ‘Dangshansuli’. The red and blue lines represent SVs detected from ONT and PB-CLR 
sequencing data, respectively
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Fig. 5  Expression levels of genes in regions that overlapped between SVs and presence/absence variations (PAVs) were compared between 
‘Bartlett’ and ‘Dangshansuli’ pear samples to identify genes potentially associated with important agronomic traits. A, B Venn diagram showing SVs 
identified using three different SV detection programs on PB-CLR and ONT sequencing data, respectively. C, D KEGG pathway enrichment analysis 
of differentially expressed genes (DEGs) with SVs located in the promoter region. DEGs are shown as down-regulated (C) or up-regulated (D) in 
‘Dangshansuli’ compared to ‘Bartlett’. E–H FPKM values of four candidate genes related to sugar, lignin, and fatty acid biosynthesis pathways
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(Pycom03g03290, Pycom07g06090, Pycom12g04030 
Pycom08g09680, Pycom13g19000, Pycom13g22620 
and Pycom13g22620) were related to aromatic com-
pound biosynthesis in pears. Interestingly, seven genes 
(Pycom02g11000, Pycom03g01180, Pycom08g04540, 
Pycom04g09720, Pycom10g02150, Pycom10g18940 
and Pycom15g31010) were related to stone cell forma-
tion and two cyclin-like genes (Pycom14g06300 and 
Pycom12g06480) were related to fruit size. These genes 
within SVs were submitted to the PlantTFDB website 
(http://​plant​tfdb.​gao-​lab.​org) to identify putative tran-
scription factors; 141 plant transcription factors (TFs) 
were predicted, including 15 MIKC_MADS genes, 11 
MYBs, nine NACs, eight bHLHs, seven bZIPs, seven 
HD-ZIPs, seven M-type_MADS, seven TALEs, and six 
WRKYs (Additional file 7).

Differentially expressed genes (DEGs) were then iden-
tified in the flesh of ‘Bartlett’ and ‘Dangshansuli’ fruits 
collected 60 days after cross-pollination (DACP). ‘Bart-
lett’ was used as the reference genome. A total of 6465 
genes were up-regulated and 6402 were down-regulated 
in ‘Dangshansuli’. Of those, 631 up-regulated genes and 
702 down-regulated genes were present within SVs. 
These genes were then annotated using GO and KEGG, 
and transcription factors were predicted. Fifty-three of 
the DEGs within SVs were predicted to be transcription 
factors, with 32 up-regulated and 21 down-regulated in 
‘Dangshansuli’. Furthermore, genes with SVs in their pro-
moter regions were also predicted; 32 of these genes were 
up-regulated and 55 were down-regulated in ‘Dangshan-
suli’ (Additional file 7).

SVs occurring in promoter regions were further inves-
tigated. We annotated SVs located in promoters and 
compared that list with the DEGs between ‘Bartlett’ and 
‘Dangshansuli’. In ‘Bartlett’, fifteen sugar-related genes 
were identified (Additional file  6). Pycom06g04890 
was expressed at an extremely high level in ‘Bart-
lett’. Pycom14g06300, which was associated with fruit 
size, highly expressed in ‘Bartlett’. Pycom12g05120, 
Pycom03g06740, Pycom07g12700, and Pycom07g20170 
were also highly expressed, and were all related to fatty 
acid metabolism (Additional file  6). In ‘Dangshansuli’ 
pear, DEGs with SVs in the promoter regions were mainly 
related to three important traits: lignin, sugar metabo-
lism, and fatty acid metabolism. Fourteen peroxidase 
genes, 18 sugar-related genes, and 12 genes associated 
with lignin were also highly expressed in ‘Dangshansuli’. 
These candidate genes were then submitted to the Plant-
TFDB website to predict TFs. Several important TFs for 
fruit growth were present, such as MYBs, MIKC_MADSs, 
and bHLHs (Additional file  7). The FPKM of 8 genes 
selected from Additional  files  6 and 7 were shown in 
Fig. 5E-L.

Discussion
The goal of this study was to detect SVs in the pear 
genome with high accuracy using long-read sequencing 
data. To facilitate future study of SVs, we established a 
workflow for SV detection based on the tools evaluated 
in this study (Additional  file  8). First, we compared the 
performance of Minimap2, NGMLR, LRA and Winnow-
map2. Second, we compared the ability of three software 
packages to detect SVs from PB-CLR and ONT sequenc-
ing data at different sequencing depths. Third, we iden-
tified PAVs between the ‘Bartlett’ and ‘Dangshansuli’ 
genomes and counted the SVs that overlapped with PAVs. 
Fourth, SURVIVOR was used to merge SVs detected 
by all three SV-detecting programs and the shared SVs 
were annotated. Finally, we mined the genes within SVs 
using genomic and transcriptomic data to identify genes 
that may contribute to differences in agronomic traits 
between the ‘Bartlett’ and ‘Dangshansuli’ pear cultivars.

Significant challenges remain in detecting SVs in plant 
genomes, especially in polyploid species. Many programs 
that have previously been developed cannot accurately 
locate SVs, particularly multiple types of SVs, at low 
sequencing depths. Although SV detector software has 
iteratively improved over time, genome analyses, par-
ticularly SV studies, benefit from continued advances in 
sequencing technologies, computational algorithms, and 
reduced sequencing costs [4]. Higher sequencing depth 
is more conducive to detecting SVs with greater accuracy 
and specificity. Moreover, compared with read length and 
sequencing error, sequencing depth might be the most 
influential factor affecting the performance of SV call-
ing. Using long reads (average 20 kb in length) with low 
error rates (7.5–10%), almost all SV callers perform well 
when the sequencing depth reaches 20× [26]. While for 
short reads, sequencing depth of 50× is appropriate for 
SV detection in the pear genome [22].

Single-molecule sequencing strategies generate con-
tiguous reads that are tens to hundreds of kilobases long, 
which can greatly improve read alignment and allow 
more direct detection of SVs [27]. It was reported that SV 
detection in the human genome was approximately three 
times more sensitive with PacBio long reads than with 
short reads [28]. In the human genome, the use of ONT 
sequencing data resulted in the discovery of similar num-
bers of SVs as PacBio sequencing data, but ONT further 
allowed identification of small deletions (< 200 bp) that 
could not be detected with PacBio data [29, 30]. In the 
present study, PB-CLR and ONT long-read sequencing 
data were compared for the first time with respect to SV 
detection in the pear genome. In general, SV detection 
was superior from ONT compared to PB-CLR sequenc-
ing data. Based on the read mapping ratio, the number 
of SVs detected, the number of SVs identified by all three 

http://planttfdb.gao-lab.org
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SV detector packages, and the number of SVs that over-
lapped with PAVs between ‘Bartlett’ and ‘Dangshansuli’, 
ONT sequencing data is recommended for future study 
of SVs.

The choice of SV detection software, sequencing costs, 
the types of SVs detected, and the accuracy of SV detec-
tion must be considered. In a previous study, Sniffles_v1 
was reported to have increased accuracy compared to 
SVIM [22]. Newer algorithms have been developed since 
that time. Of the three SV detection software packages 
tested here, Sniffles_v2 had the highest sensitivity in 
detecting insertions and the highest accuracy in detecting 
all SVs, especially from ONT data. Additionally, we com-
pared the Sniffles_v2 (v2.0.6) and Sniffles_v1 (v1.0.12) 
in SV detection with bam files generated by Minimap2. 
Sniffles_v2 showed better performance than Sniffles_v1 
(Additional file 9). Nanovar had advantages in detecting 
SVs at low sequencing depth, but the SVs were detected 
with lower accuracy. There was little difference in the 
ability of SV callers to detect deletions. Where sequenc-
ing cost or the detection of duplications and inversions 
are concerns, Nanovar would be the recommended 
choice. Some similarity analysis was conducted in both 
studies. Duan et al. paid more attention to the advantages 
and disadvantages of each genotyping method using 
human genome and sequencing data [31]. We have some 
similar conclusion: CuteSV did better in detecting inser-
tions and deletions.

Sequencing costs can limit the study of SVs, especially 
at a population-wide level [32]. The current sequenc-
ing price of ONT is cheaper than PB-CLR. To be more 
specific, the estimated cost per Gb for CLR generated 
from the latest platform of Sequel II is about $22, for 
ONT PromethION, it is about $19. For Sniffles_v2 and 
CuteSV, higher sequencing depths increased the number 
of SVs detected. In contrast, Nanovar was developed with 
low sequencing depth (8×) ONT data [24]. In the pear 
genome, Nanovar detected a large number of each type 
of SVs. Considering only the SVs that overlapped with 
PAVs between the two pear cultivar genomes, the num-
ber of insertions called by Nanovar from ONT sequenc-
ing data was highest at 15× coverage, and the number of 
deletions did not increase significantly from 10× to 15×. 
Therefore, Nanovar could be used to optimally detect SVs 
in the pear genome at 15× sequencing depth.

The length of SVs identified using ONT and PB-CLR 
data showed high difference. SURVIVOR was used to 
merge three vcf files from SV detection tools and the 
bed file was generated with location and types of SVs. 
The minimum size was set to 50 bp, and maximum size 
was set to 10,000 bp. ONT data detected an additional 
10 Mb of overlapping SVs (Fig. 5), of which ~ 8 Mb more 
deletions were identified with ONT sequencing data 

compared to PB-CLR data (Additional file 10). The num-
ber of SVs detected using ONT data were more than 
using PB-CLR data (Fig.  2). Additionally, the length of 
deletions detected using PB-CLR and ONT data was 
significantly different (Fig.  3), which may have led to 
the differences (including 8 Mb deletions and other SVs) 
between ONT and PB-CLR data.

SVs represent an important component of genetic 
diversity in plants and have great impacts on pheno-
typic variation. Mining the genes contained within SVs 
can be conducive to identification of genetic differences 
that affect agronomic traits [4]. The ancient Pyrus lineage 
likely originated in the mountainous regions of South-
western China [33]. It then spread east and west along 
the mountains, and geographic differences have led to 
the observed variations in biological characteristics of 
Asian and European pears [9]. The agronomic trait dif-
ferences in Asian and European pear fruits include lev-
els of sugars, acid, stone cells, and volatile compounds; 
flesh softness; and disease and stress resistance [9]. An 
SV occurred in the promoter of Pycom05g31470 (PRX) 
(Fig. 5G, Additional file 6), which is reportedly involved 
in lignified secondary cell walls throughout stem devel-
opment in Arabidopsis thaliana [34]. Pycom05g31470 
was here found to be highly expressed in the ‘Dang-
shansuli’ cultivar and low expression in ‘Bartlett’. It was 
reported that Asian pear has higher stone cell content 
and Pycom05g31470 may associated with stone cell con-
tent [9].

It has been well established that many genes in a vari-
ety of plant tissues are regulated by key TFs. These TFs 
are typically classified into different families based on 
the conserved motifs that encode the DNA-binding 
domains [35]. SVs occurring in the promoter region may 
affect transcriptional binding sites, leading to differential 
expression of transcription factors. The bHLH, EFR, and 
MYB TF families are reportedly related to lignin, sug-
ars, and fatty acids, respectively. BSE1 (Pycom02g12160) 
was expressed at higher levels in ‘Bartlett’ than in 
‘Dangshansuli’(Fig.  5L); in tomato (Solanum lycoper-
sicum), SlBES1 promotes fruit softening during fruit 
ripening and postharvest storage [36]. The regulatory 
mechanisms of these candidate TFs require further veri-
fication in multiple pear cultivars.

Conclusion
Here, we conducted a comparison of SVs detected from 
PB-CLR and ONT sequencing data for two pear culti-
vars. Four mapping tools were compared, Minimap2, 
NGMLR, LRA and Winnowmap2. Minimap2 had a 
higher mapping ratio and was used in further analyses. 
Three SV callers (Sniffles_v2, CuteSV, and Nanovar) 
were tested on PB-CLR and ONT sequencing data at a 
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range of sequencing depths. CuteSV had higher sen-
sitivity in detecting insertions and deletions, whereas 
Nanovar performed better in detecting inversions and 
duplications using ONT sequencing data. The SVs 
detected by Sniffles_v2 had the highest accuracy using 
ONT sequencing data at 10× sequencing depth. How-
ever, the performance of Nanovar using ONT sequencing 
data showed that 15× coverage was sufficient to identify 
SVs in the pear genome. The SVs that were called by all 
three software packages were integrated with transcrip-
tome data to identify genes related to agronomic traits 
that differ between the ‘Bartlett’ and ‘Dangshansuli’ pear 
cultivars. The candidate genes identified that are associ-
ated with levels of sugars, acid, stone cells, and aromatic 
compounds should be studied in more depth. The infor-
mation uncovered here regarding SV detection from 
long reads, suitable sequencing depth, and integration of 
multi-omics data will promote and simplify the process 
of mining genes in SVs that affect agronomically impor-
tant traits that differ between cultivars. This study pro-
vides significant insights into the selection of long-read 
sequencing platforms and SV detection programs that 
can be applied in future studies of crop genomes.

Methods
Pear materials
Young leaves were collected from ‘Dangshansuli’ pear 
trees in the germplasm orchard at Wenyangtian, Shan-
dong Agricultural University. Young fruits were col-
lected from ‘Bartlett’ and ‘Dangshansuli’ pear trees at 
Wenyangtian Modern Agricultural Industrial Park, 
Shandong Agricultural University 60 days after cross-
pollination (DACP). Samples were screened at random 
for size uniformity and the absence of visible mechani-
cal damage. Fruit and seed morphology were examined 
in a portion of samples, and the remainder were cut into 
pieces, immediately frozen in liquid nitrogen, and stored 
at − 80 °C prior to further analyses.

Library construction and long‑read sequencing
For ONT sequencing, DNA repair, end repair, and 
adapter ligation were conducted during library prepa-
ration. First, 49 μg of DNA from each sample was frag-
mented using the g-TUBE system (Covaris, Woburn, 
MA, USA). DNA repair was performed using the NEB-
Next FFPE DNA Repair Mix (New England Biolabs 
[NEB], Ipswich, MA, USA; M6630). End repair was con-
ducted with the NEBNext End Repair/dA-Tailing Mod-
ule (NEB, E7546). Adapter ligation was performed with 
the NEBNext Quick Ligation Module (NEB, E6056) and 
the Ligation Sequencing Kit 1D (ONT, SQK-LSK109). 
Only library fragments > 3 kb were retained for further 
analyses. DNA was purified between each step using 

Agencourt AMPure XP beads (Beckman Coulter, Brea, 
CA, USA). The flow cell chemistry was R9.4.1 and Pro-
methION flow cell were used for sequencing DNA. The 
pear samples were multiplexed.

SMRTbell libraries were constructed following the 
standard PacBio protocol (Pacific Biosciences, Menlo 
Park, CA, USA) with 15 kb preparation solutions. The 
main steps for library preparation were as follows: (1) 
genomic DNA was sheared to ~ 20 kb; (2) removal of 
single-strand overhangs; (3) DNA damage repair; (4) 
end repair for blunt-end ligation; (5) blunt-end ligation; 
(6) template purification; (7) size selection with the Blue-
Pippin System; (8) sequencing primer annealing to the 
SMRTbell template; (9) sequencing polymerase binding 
to the SMRTbell template; and (10) sequencing prepara-
tion. For each sample, 3 μg of genomic DNA was sheared 
with a g-TUBE. The PacBioCLR library preparations were 
conducted with the SMRTbell Express Template Prep Kit 
1.0 as instructed by the manufacturer. The CLR SMRT-
bell template–polymerase complexes were sequenced on 
a PacBioSequel instrument using the Sequel Sequencing 
Kit 3.0 with 6 Sequel™ SMRT® Cells 1 M v3, taking a 10-h 
movie per cell. Finally, the libraries were sequenced on a 
PacBio Sequel II platform using 2.0 chemistry.

Read extraction to generate a range of sequencing depths
Using the program Seqtk (https://​github.​com/​lh3/​seqtk), 
the command ‘seqtk sample’ was used to randomly 
extract subsamples of cleaned reads at different depths. 
Long reads were sampled to depths of 10, 15, 20, 25, and 
30× coverage.

Read mapping
For PacBio reads, SMRTlink v6.0 (https://​www.​pacb.​
com/​wp-​conte​nt/​uploa​ds/) was used to filter out low 
quality reads. For ONT reads, Guppy (https://​pypi.​org/​
proje​ct/​ont-​pygup​py-​client-​lib/) was used for real-time 
base calling and Nanoplot (https://​github.​com/​wdeco​
ster/​NanoP​lot) was to count the raw reads. ‘Bartlett’ (v2) 
and ‘Dangshansuli’ (v1.1) genome assembly files were 
obtained from the Genome Database for Rosaceae (GDR) 
[37]. Minimap2 [17], NGMLR [18], LRA [19], Winnow-
map2 [20] were used for read mapping. NGMLR was 
used to map long reads to the ‘Bartlett’ reference genome 
(parameters: ‘ngmlr -t 50 -r Bartlett.fa -q dangshansuli.fq 
-o dangshansu.sam’). The parameters used for Minimap2 
were as follows: ‘minimap2 -ax map-pb bartlett.fasta -t 
50 dangshan_pac.fq >dangshan_pac.sam’ and ‘minimap2 
-ax -ax map-ont bartlett.fasta -t 50 dangshan_ONT.fq 
>dangshan_ONT.sam’. The long reads were mapped to 
‘Bartlett’ genome using LRA need two steps: ‘lra index 
–CLR/ONT Bartlett.fa’ and ‘lra align –CLR/ONT –t 50 
Bartlett.fa dangshansuli.fq –p s > dangshansuli.sam’. For 

https://github.com/lh3/seqtk
https://www.pacb.com/wp-content/uploads/
https://www.pacb.com/wp-content/uploads/
https://pypi.org/project/ont-pyguppy-client-lib/
https://pypi.org/project/ont-pyguppy-client-lib/
https://github.com/wdecoster/NanoPlot
https://github.com/wdecoster/NanoPlot
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Winnowmap2 aligner, k  = 17 was founded in ‘Bartlett’ 
genome and ‘meryl count k=17 output merylDB Bartlett.
fa’ was used to count. And then, ‘meyl print merylDB > 
repetitive_k17.txt’ and ‘winnowmap -k 17 -W repeti-
tive_k17.txt -ax map-pb-clr -t 50 --MD bartlett.fa dang-
shansuli.fq > dangshansuli.sam’ were used to generate 
sam files. Aligned files in SAM format were converted to 
BAM format, then sorted using SAMtools (v1.9) [38].

Noteworthy, for ONT reads, the bam files generated 
from LRA or Winnowmap2 need ‘samtools calmd’ to 
generate ‘NM’ and ‘MD’ tag with sorted bam files.

SV detection using three different programs
After mapping reads to the reference genome, SVs were 
identified from the processed BAM files. We compared 
the performance of Sniffles_v2 (v2.0.6) (https://​github.​
com/​fritz​sedla​zeck/​Sniff​les), CuteSV [23], and Nanovar 
[24] in detecting SVs between ‘Bartlett’ and ‘Dangshan-
suli’. All three programs were able to detect SVs from 
both PB-CLR and ONT sequencing data. Insertion posi-
tions were determined by extracting the sequences 100 bp 
upstream and downstream of the predicted location. 
Insertion lengths were determined from the “SVLEN” 
values in the output SV-VCF files.

The default parameters were used for Sniffles_v2 were 
as follows: ‘sniffles --input bam_file --vcf SV.vcf ’, respec-
tively. The parameters used for CuteSV were: ‘cuteSV 
dangshan.sorted.bam bartlett.fasta cutesv.vcf --max_
cluster_bias_INS 100 --diff_ratio_merging_INS 0.3 
--max_cluster_bias_DEL 200 --diff_ratio_merging_DEL 
0.5 -t 30’. For Nanovar data, the following parameters 
were used for the PB-CLR sequencing data: ‘nanovar 
-x pacbio-clr dangshan_Pac.sorted.bam bartlett.fasta. /
nanovar_work’; for the ONT sequencing data, the fol-
lowing parameters were used: ‘nanovar -x ont dangshan_
ONT.sorted.bam bartlett.fasta. /nanovar_work’. For all 
three programs, the output files were in VCF format and 
included the chromosome number, position, SV type, 
and quality for each SV.

PAV calling between ‘Bartlett’ and ‘Dangshansuli’ pear
‘Bartlett’ and ‘Dangshansuli’ genome files were obtained 
from GDR [37]. ScanPAV [25] was used to detect PAVs 
between ‘Bartlett’ and ‘Dangshansuli’ pear genomes using 
the default parameters. The ‘Dangshansuli’ genome was 
aligned using ‘Bartlett’ as the reference genome. The 
PAVs identified are shown in Additional file 2.

SV merging and analysis
SURVIVOR (v1.0.7) [39], a tool kit for assessing SVs with 
multiple modules, was used in this analysis. The mini-
mum SV length was set to 50 bp. SURVIVOR was used 

to filter and combine the calls from VCF files with Snif-
fles_v2, CuteSV and Nanovar. It works to convert the 
method-specific output formats to a VCF format and SVs 
were filtered out if they were unique to one of the three 
VCF files. In the end, SURVIVOR produced one VCF file 
containing the so filtered calls and provided an extended 
bed file to report the locations of the simulated SVs.

Transcriptome profile analysis
Transcriptome profiles were generated from ‘Bartlett’ and 
‘Dangshansuli’ fruits at 60 DACP with three replicates. 
The raw RNA-seq data was processed using trim_galore 
(https://​github.​com/​Felix​Krueg​er/​TrimG​alore) (‘-q 25 
--phred33 --length 36 -e 0.1 --stringency 3 –paired’) to 
obtain clean data by removing low-quality reads. The 
Q20, Q30, and GC content of the clean data were also 
calculated. The following analyses were based on the 
cleaned data. The index of the reference genome was 
built using hisat2-build and clean reads were aligned to 
‘Bartlett’ (P. communis) CDS regions using hisat2 (‘hisat2 
-x bartlett -p 10 -1 fq1 -2 fq2 –S sample.sam’) [40]. Gene 
expression was calculated using the expected number of 
Fragments Per Kilobase of transcript per Millions of base 
pairs sequenced (FPKM) method, which simultaneously 
considers the effect of sequencing depth and gene length 
to normalize read counts [41]. Differential gene expres-
sion analysis was performed with the DESeq2 R package 
[42]. Genes were considered to be significantly differen-
tially expressed between pear varieties at p < 0.05.

Gene ontology and KEGG pathway enrichment
To explore the distribution of functional categories and 
biochemical pathways of the SV targets, GO term [43] 
(www.​geneo​ntolo​gy.​org) and KEGG pathway [44] enrich-
ment analyses were performed using Blast2GO [45] 
and KOBAS 2.0 [46] (http://​kobas.​cbi.​pku.​edu.​cn/). All 
GO categories and KEGG pathways were screened at a 
threshold of p < 0.05.
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