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Abstract 

Background:  Publicly available RNA-seq datasets are often underused although being helpful to improve functional 
annotation of eukaryotic genomes. This is especially true for filamentous fungi genomes which structure differs from 
most well annotated yeast genomes. Podospora anserina is a filamentous fungal model, which genome has been 
sequenced and annotated in 2008. Still, the current annotation lacks information about cis-regulatory elements, 
including promoters, transcription starting sites and terminators, which are instrumental to integrate epigenomic 
features into global gene regulation strategies.

Results:  Here we took advantage of 37 RNA-seq experiments that were obtained in contrasted developmental and 
physiological conditions, to complete the functional annotation of P. anserina genome. Out of the 10,800 previously 
annotated genes, 5’UTR and 3’UTR were defined for 7554, among which, 3328 showed differential transcriptional 
signal starts and/or transcriptional end sites. In addition, alternative splicing events were detected for 2350 genes, 
mostly due alternative 3’splice sites and 1732 novel transcriptionally active regions (nTARs) in unannotated regions 
were identified.

Conclusions:  Our study provides a comprehensive genome-wide functional annotation of P. anserina genome, 
including chromatin features, cis-acting elements such as UTRs, alternative splicing events and transcription of non-
coding regions. These new findings will likely improve our understanding of gene regulation strategies in compact 
genomes, such as those of filamentous fungi. Characterization of alternative transcripts and nTARs paves the way to 
the discovery of putative new genes, alternative peptides or regulatory non-coding RNAs.
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Introduction
If coding sequences define protein primary structures, 
messenger RNAs (mRNAs) direct their cytoplasmic 
expression. From pre-mRNA processing to transla-
tion initiation, their untranslated regions (UTRs) con-
trol most of the post-transcriptional gene regulation 

aspects, including nucleo-cytoplasmic transport, sub-
cellular localization, mRNA stability and translation 
efficiency [1, 2]. To initiate gene expression at tran-
scriptional start sites (TSS), transcriptional factors, his-
tone chaperones [3] and chromatin remodelers [4] bind 
to cis-acting DNA sequences known as core-promoter, 
to recruit the RNA polymerase II complex. Conversely, 
transcription termination at specific transcription end 
sites (TES) prevent read-through transcription into 
adjacent genes, an acute concern in fungal compact 
genomes [5]. Both 5’UTR and 3’UTR present a vari-
ety of canonical cis-acting elements that are bound by 
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trans-acting elements [6, 7]. In addition, upstream ORF 
present in the 5’UTR are key regulators of translation 
[8]. This combinatory repertoire tunes the composi-
tion of proteome (entire set of proteins) in accordance 
with developmental and/or metabolic needs of the cell. 
Several evidence suggests that the UTRs may harbor 
mutations that drives human traits and diseases [9], 
including cancer pathogenesis [10].

At a given core-promoter, the transcription may start 
from one of several TSS. Extensive studies performed on 
various human tissues established high-resolution tran-
scription start sites maps [11]. In animals, compilation 
of TSS localizations relative to gene expression identi-
fied two categories of core-promoters (reviewed in [12]). 
Core-promoters that show sharp initiation patterns, i.e. 
one main TSS, are found active in adult tissue-specific 
genes or terminally differentiated cell-specific genes, 
whereas core-promoters that show dispersed initiation 
patterns, i.e. multiple equally used TSS, are found active 
either for broadly expressed housekeeping genes or for 
developmental genes. In unicellular eukaryotes multiple 
or alternative TSS are often used to cope with changing 
environmental conditions. In the budding yeast, in  vivo 
translation activities of alternative 5’UTR isoforms can 
vary by more than 100-fold [13].

In eukaryotes, chromatin accessibility is also a way to 
regulate gene expression. Heterochromatin is less prone 
to transcription than euchromatin. To combine genome-
scale functional information coming from both cis-acting 
elements (i.e. enhancers, promoters, TSS and TES) and 
histone modification patterns, schematic representa-
tions of model genes emerged for animals [14], plants 
[15] and some yeast species [16]. Although a fairly large 
number of complete annotated fungal genome sequences 
is available [17], no such gene model has been built to 
date for filamentous fungi. Still, a recent assay for Trans-
posase-Accessible Chromatin sequencing (ATAC-seq) 
performed in Neurospora crassa highlights the diversity 
of promoter structures and evidenced that histone acet-
ylation and small RNA production are correlated with 
accessible chromatin, whereas some histone methyla-
tions are correlated with inaccessible chromatin [18].

Alternative splicing (AS) also regulates gene expres-
sion of eukaryotes. In animals, AS allows the genera-
tion of tissue- and time-specific isoforms, especially in 
brains. In Drosophila, the Dscam gene can generate over 
38,000 distinct mRNA isoforms [19], which is more tran-
scripts than the total number of genes in this organism 
(∼14,500). Notably, AS frequency is far less frequent in 
fungi than in animals, ranging from less than 1% in the 
budding yeast to 18% in the human pathogen Cryptococ-
cus neoformans [20]. Due to genomic features (few and 
short introns), intron retention (IR) is the most prevalent 

splicing type found in fungi (reviewed in [21]). However, 
studies performed in non-yeast fungi are limited.

P. anserina is a coprophilous ascomycete fungus that 
has been used as a model organism for almost a century 
[22]. Its genome has been sequenced multiple times and 
watchfully annotated [23–25]. However, no integrative 
genome-wide transcriptional landscape of P. anserina has 
been published yet. To do so, we took advantage of large 
and diversified sets of transcriptomic data and devel-
oped a customized annotation pipeline to map the 5′ and 
3’UTRs genome-wide. We also evidenced the existence 
of alternative 5’and 3′ UTRs and described distinct types 
of alternative splicing events. Finally, novel transcription-
ally active regions (nTARs) were searched and annotated, 
on which functional domain predictions were conducted 
to discover several putative new genes. We finally build a 
gene model that integrate the canonical P. anserina tran-
scriptional features and the epigenomic landscape [26] in 
relation with gene expression status.

Results
Collection of multiple RNA‑seq data from various 
experimental conditions
A search for P. anserina in the SRA and BioProject repos-
itories [27, 28] returned 44 RNA-seq data from different 
studies on P. anserina’s life cycle [25], adaptation to car-
bon sources [29], response to bacteria [30] and senes-
cence [31]. Because it was generated by the SuperSAGE 
technology, this last dataset was excluded from the anal-
yses. This left us with 37 RNA-seq from three studies, 
referred to as datasets A, B and C (Table 1). Altogether, 
these data cover a large variety of developmental states 
and growth conditions, which is important to increase 
the rate of transcriptionally active genes one might 
observe. Out of 1,054,787,963 reads in the 37 fastq files, 
82.19% were mapped to the reference genome for which 
10,800 CDS were annotated [23, 24]. Only 13 genes had 
no read mapped and 126 genes had only between 1 and 
10 aligned reads (Fig.  1). Reads from dataset A alone, 
covering the entire life cycle, covered more than 99.7% of 
annotated CDS (respectively 31, 101 and 96 genes were 
not mapped in dataset A, B and C). This pool of dataset 
is then an interesting starting point to infer the transcript 
characteristics in P. anserina.

Detection of TSS and TES for transcript related to already 
annotated CDS
Our first goal was to get a more accurate annotation of 
the P. anserina’s transcripts, related to the trustwor-
thy annotated CDS in the genome. In this context, our 
rationale was to consider that more accurate predic-
tion for TSS and TES positions can be obtained with a 
high coverage of reads along transcripts. Therefore, the 
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doubtfulness of the prediction decreases as the coverage 
increases (Fig.  2A). With that in mind, we developed a 
strategy in which we selected the most reliable transcript 
annotation, according to the read coverage (Fig.  2B, C). 
For a given gene, the multiple transcript annotations 
obtained from the 37 samples were sorted according to 
the average coverage value. Only those above a given 
threshold were next selected. The process was repeated 
for each gene to select the most accurate annotations. 
Hence, by using this Successive Coverage Values (SCV) 
method, only the most reliable annotations from all data-
sets were conserved.

Applying this strategy on 10,803 predicted CDS of 
P. anserina, we could predict the transcript annota-
tions for 7554 genes (69.9% of the all set of CDS) (Table 
S1). The other CDS, for which no transcript predic-
tion could be assigned, had very low coverage of reads. 
Thanks to the already available CDS annotations, we 
could get insight into the 5′ and 3′ UTRs characteris-
tics. Of note, while 4219 transcripts were predicted to 
have both a single TSS and TES, 3335 genes got mul-
tiple transcript annotations (Fig.  3A-B). Most of the 
variations originated from both TSS and TES posi-
tions (Fig.  3C). Note that each dataset contributes 

Table 1  Composition of the RNA-seq databank. 37 RNA-seq in total parted in 3 datasets were collected from public databases (SRA 
and BioProject, accession number provided). The Cs strain genome from dataset C only differs from the strain S at the het-s VI locus. 
Overall, the 37 RNA-seq used in the analysis represent 19 unique experimental conditions. The heterogeneity of this pool of dataset 
provides better chance to observe genes in their active expression state

Name Number 
of 
dataset

SRA/BioProject 
identifiers

Strain Sequencing 
technology

Reads library Reads size Growth conditions Reference

A 6 ERR2224046 to 
ERR224051

S NextSeq 500 Paired-end 42 Sexual develope-
ment

Silar P, et al. 2019 [25]

B 19 PRJNA442509 to 
PRJNA442527

S Illumina Hiseq 2500 Single-end 101 Multiple carbon 
sources

Benocci T, et al. 2018 
[29]

C 12 SRR3197700 to 
SRR3197711

Cs Illumina Hiseq 1000 Paired-end 100 Response to bacteria Lamacchia M. et al. 
2016 [32]

Fig. 1  Number of CDS with mapped reads in the different datasets. Only CDS with at least 5 reads are shown here (n = 10,724, 79 CDS are 
excluded). The red bar plot represents the number of genes with mapped reads in each dataset, the blue bar plot shows the number of genes with 
mapped reads shared or specific to one dataset as depicted with green points and lines bellow
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significantly to the global annotation (Fig.  3D), high-
lighting the importance to work with a diversity of 
conditions, to get broadest transcriptional landscapes. 
We compare our annotation with the output of String-
Tie Merge and found our results more accurate as, in 
our case, StringTie Merge tends to fuse transcripts of 
closely located genes (Fig. S1).

The average sizes for the 5′ and 3′ UTRs were 275 bp 
and 303 bp respectively. When genes with single or mul-
tiple UTR are considered separately, the average size 
of UTRs does not extensively vary (Fig.  4A, Table  2). 
Indeed, we observed the most distant multiple TSS and 
TES are spaced with 156 bp and 114 bp in average respec-
tively (Fig. 4B, Table 2), suggesting that if there are mul-
tiple transcription initiation or end sites, the transcripts 
do not display very different sizes. We also search for 
enriched sequence patterns located upstream of the 
defined TSS. Consistent with other fungal species, no 
clear TATA box was found.

This allows us to describe the first average gene 
model in P. anserina shown Fig.  5. The 5′ and 3′ UTR 
are 275 bp and 303 bp long, CDS is 1483 bp long with an 
80 bp long intron and the genes are spaced with 1581 bp 
on average (Fig. 5).

Genome‑wide schematic representation of average 
patterns of histone modifications in relation 
with transcription initiation
In order to validate our 5’UTR predictions, we took 
advantage of the ChIP-seq data that have been gener-
ated on histone marks in P. anserina [26]. In mammals 
and plants, it has been established that H3K4me3 is 
enriched in the promoter region of active genes, whereas 
transcriptionally inactive gene promoters are rather 
marked with H3K27me3. We thus combined the enrich-
ment of these two marks with our annotation for both 
transcriptionally active and inactive genes (Fig.  6). As a 
result, we could clearly observe that our predicted TSS 
positions fit with the peaks of H3K4me3 for expressed 
genes. Furthermore, the signal drop observed before the 
TSS, corresponds to the well described nucleosome free 
region [33]. These observations support our predictions 
and show that data integration (RNA-seq and ChIP-seq) 
brings important information on gene organisation and 
epigenetic regulations of gene expression.

Detection of splicing sites and alternative splicing
In addition to the new annotations of UTRs, we used our 
RNA-seq dataset to validate the positions of introns in 

Fig. 2  Schematic description of the Successive Coverage Values (SCV) methodology. a) This strategy is based on the assumption that for a given 
gene, the highest the coverage value, the less doubtful is the transcript prediction. b) All RNA-seq alignments are processed by the StringTie tool 
providing transcriptome annotation files in output. c) All transcriptome annotation files are compared gene by gene. First, transcript predictions are 
validated if they fully cover their associated CDS. Then, the average coverage from each validated prediction are compared and those above the 
most restrictive value are finally selected
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the current annotation of P. anserina genome. We could 
detect introns in the annotated UTRs for an important 
number of genes: 923 genes have at least one intron in 
their 5’UTR and 344 genes in the 3’UTR. Among them, 
43 have introns in both UTRs. Furthermore, no infor-
mation regarding the possible ASEs were available. We 
thus used the collected data to predict these ASEs. All 
four kinds of ASEs were detected: intron retention (IR), 
alternative 5’splice site (A5SS), alternative 3’splice site 
(A3SS), and exon skipping (ES) (Fig.  7) (Table. S2). A 
total of 2350 genes were found subjected to at least one 
ASE. IR is the most frequent event; however, if the gene 
number is considered, A3SS represents the most fre-
quent ASE detected in P. anserina with 1016 associated 
genes, followed by A5SS, IR and ES with respectively 
758, 438 and 138 genes. A total of 278 genes could have 
isoforms with high combinatorial complexity (more than 
one ASE detected).

Identification of new transcripts, outside already 
annotated CDS
About 50% of reads mapped on the P. anserina genome 
were located in intergenic regions. They most likely cor-
respond to novel transcriptionally active regions (named 
“nTARs” as in [35]). Therefore, we were able to detect 
3203 nTARs i.e. transcripts that do not fully cover already 
annotated gene. A significant part of them were very 
short (32% of nTARs shorter than 500 bp with a mean 
size of 1 kbp, while CDS length is app. 1.5 kbp long in 
average). Among all nTARs, 1732 did not overlap any 
already annotated feature (Fig. 8) (with an average size of 
1043 bp and 32% of them smaller than 500 bp). The 1471 
others were partially overlapping genes. Interestingly, 
we could detect introns in 55.8% of these 1732 nTARs 
(N = 968) (Fig. 9) demonstrating production of processed 
transcripts by these potentially novel genes. Analysis 
of 332 nTARs longer than 1.5 kbp with the FGENESH 

Fig. 3  Transcript predictions of P. anserina’s genes. a) Distribution of genes with multiple transcript predictions. Genes are divided in categories 
according to the number of predictions given by the SCV methodology. b) Distribution of the number of transcripts for each category of the 
genes. The number of genes in each category is written on top of the bar. c) Distribution of transcripts with different TSS and/or TES annotated for 
genes with multiple detected transcripts. The number of genes in each category is written on top of the bar. d) Venn diagram of genes according 
to the dataset from which their transcripts are predicted. More than 75% of the genes with predicted transcripts have only one associated dataset 
(n = 5869 genes)
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gene prediction program yield 20 putative new protein-
coding genes (Table 3). Domain prediction found 1 pre-
dicted gene with a putative rhodopsin C-terminal tail, 
transmembrane domains in 3 predicted genes and sig-
nal peptides in 2 predicted genes. One transcript was 

overlapping two sequences recently annotated as pseudo-
genes [25]. No other protein domain was detected.

One of the RNA-seq datasets was “stranded” (dataset 
B). This means that one knows from which strand the 
RNA molecule, which has been sequenced, originated. 
We thus used this dataset to seek nTARs overlapping 
previously annotated CDS but transcribed in the other 
direction, which we termed NATs (Noncoding Antisense 
Transcripts). NATs are long ncRNAs transcribed from 
the strand opposite to a protein-coding transcript, thus 
exhibiting sequence complementarity to mRNAs. We 
found 1472 NATs overlapping 452 genes (including 2 
rRNA genes), 4 pseudogenes and 18 repeated sequences. 
Among these NATs on repeats, 7 were overlapping trans-
posable elements which rules out a potential role of these 
NATs in silencing TEs, the other were found on segmen-
tal duplications.

Discussion
With this work, we completed the annotation of P. anse-
rina’s genome by estimating transcripts size and vari-
ations using multiple RNA-seq data. Among the genes 
with mapped reads, we could make a trustworthy predic-
tion of transcripts for more than two third of them, using 
a robust method, hence ensuring the reliability of the 
results. Although we detected multiple transcripts in 44% 

Fig. 4  Size variation of UTRs. a) Summary of UTR sizes and violin plots representing the UTR size distribution. 5′ and 3’UTR size predictions are 
divided between genes with only one prediction. The yellow dots show the mean. For visualization purposes, the UTRs bigger than 2500 bp have 
been removed (n = 4 for unique 5’UTR, n = 19 for multiple 5’UTR; n = 2 for unique 3’UTR and n = 19 for multiple 3′ UTR). b) Distance between the 
most distant TSS and TES. The mean distance values is marked with a yellow dot

Table 2  Summary of UTRs characteristics. A) Summary of UTRs 
sizes for both unique and multiple TSS/TES prediction When 
multiple UTRs, data are calculated from all UTRs from all genes. 
B) Summary of distance between most distant TSS and TES for 
each gene with multiple 5’UTR and/or 3’UTR. Mean, median and 
maximum sizes are expressed in base pairs

A UTRs size variations

Size (bp)

UTR​ Median Mean Max

Single transcript genes
n = 4219

5’UTR​ 178 265 10,995

3’UTR​ 212 288 5620

Multiple transcripts
n = 88,728

5’UTR​ 191 279 4340

3’UTR​ 239 314 4104

B Multiple transcripts variations

Distance (bp)

#genes Median Mean Max

TSS 3277 70 156 3987

TES 3216 55 114 3763
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of the genes, we didn’t observe much variation in tran-
script size even with multiple TSS/TES. This is actually in 
line with previous observations. For example the Masc1 
gene in Ascobolus immersus has two TSS separated with 
43 bp [36], whereas the NiaD gene in Aspergillus nidulans 
has two TSS separated with 72 bp [37]. Usage of alterna-
tive TSSs in filamentous fungi has been described as 
transcriptional regulator in response of carbon source in 
Aspergillus oryzae [38] or translational regulator in regu-
lating pathogenesis in Metarhizium robertsii [39]. How-
ever, knowledge about how alternative TSSs affect gene 
expression is still nascent in filamentous fungi in contrast 
of what has been uncovered in mammals [40]. In budding 
yeast (YeasTSS, [41]), a median of 26 transcript isoforms 
per gene were detected during regular growth conditions 
[42] and variable UTR sizes in different strains is linked 
with phenotypic variation [43]. Usage of alternative TSSs 
and TESs is also involved in budding yeast cell fate tran-
sition. High resolution transcriptomic analysis evidenced 
elevated expression of alternative TSS and TES clusters 

in a stage-specific manner during yeast gametogenesis 
program and the mitotic cell cycle [44]. Because, unlike 
yeasts, filamentous fungi present a syncytial organisa-
tion that cannot be synchronized, in-depth description of 
alternative TSSs and TESs remains challenging. However, 
our results show that over one third of P. anserina genes 
displays alternative TSS and/or TES usage. Moreover, 
when present, these alternative transcripts are specific of 
only one of the environmental conditions tested in this 
study. This suggests that the use of alternative TSS and/
or TES also participates in P. anserina stage-specific gene 
expression and more generally to the resourceful ability 
of fungi for adaptation.

The genome average length of 5’UTR is quite similar 
across the diverse eukaryotic taxa, ranging from 100 to 
200 bp with the size increasing during eukaryotes evolu-
tion [6], while genome average  length of 3’UTR seems 
much more variable, ranging from 200 bp in plants and 
fungi to 800 bp in humans and 1000 bp in some verte-
brates [45, 46]. Thereafter, analyses performed on larger 

Fig. 5  The average gene model of P. anserina. An average gene model was designed that includes all the new information generated here. TSS is 
expected at 275 bp upstream from the start codon and TES at 303 bp downstream from the stop codon. There are on average 1.49 introns per gene 
with a size of 80 bp. The mean CDS size is 1483 bp. Yet, little is still known on promoter and terminator

Fig. 6  Integration of ChIP-seq data with the TSS annotations. a) H3K4me3 and b) H3K27me3 are mapped around the TSS of transcriptionally active 
and inactive genes. The x-axis represents a window span of 1 kbp upstream and downstream of the average TSS position. The y-axis represents the 
average value of the normalized number of reads mapped per bins (BPM normalization, bin size = 10)
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sets of eukaryotic transcripts showed that although more 
variable than originally described, 5’UTRs average length 
is not as diverse as that of 3’UTRs in eukaryotic genomes 

[47]. The P. anserina average size of both 5′ and 3’UTRs 
that we measured in this study were similar to those 
established for other fungal and non-fungal eukaryotes. 

Fig. 7  ASE detected in P. anserina coding transcripts. a) Representative example of four categories of ASE detected in P. anserina transcriptome. 
IR = intron retention, A5SS = alternative 5′ splicing site, A3SS = alternative 3′ splicing site, and ES = exon skipping (inspired from Kempken, [34]). b) 
Statistics of genes associated with ASE: The red bar plot represents the number of genes undergoing each type of ASE, the blue bar plot shows the 
number of genes undergoing the combination of ASEs depicted with green points and lines bellow
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In eukaryotes, the low size variability of UTRs contrasts 
with the very large size increase of intergenic regions 
during evolution. This intergenic space extension might 
be correlated with the necessity of a conserved “core 
promoter” structure, including the TATA box element. 
In P. anserina’s 5’UTRs we did not detect clear TATA 
box signature. This finding is consistent with previous 
observations showing that most of fungal promoters 
do not contain a canonical TATA box [48]. As a result, 
P. anserina likely uses the “scanning initiation” mode to 
start transcription rather than the “classic model” where 
most TSSs locate ~ 30 bp downstream from the TATA 
box. Again, these different ways of initiating transcrip-
tion might be correlated to the intergenic regions size, 
where a large sequence does not allow scanning and 
requires well defined sequences to recruit the polymer-
ase. This new UTR annotation led us to search for UTR 
introns. As expected several UTRs were found to pos-
sess at least one intron although in a lesser extent than in 
human and plants [49, 50]. As important as the UTRs in 
gene expression are the introns present in these regions. 
Their splicing may affect both positively or negatively 
gene expression through various mechanisms such as 
mRNA export or nonsense-mediated decay (NMD). In 
eukaryotes, NMD degrades mRNAs containing prema-
ture stop codons as well as those containing an intron 
downstream of a stop codon, i.e., aberrantly spliced tran-
scripts or 3’UTR intron-containing transcripts. Regula-
tion of expression by mRNAs degradation is functional 
in N. crassa [51] and is expected to be functional as well 
in P. anserina since the NMD core components and the 
exon junction complex (EJC) are present (Table S3). The 
set of P. anserina genes for which we detected introns in 
their 3’UTR (~ 3%) could therefore be prone to regulation 
by NMD.

We also looked at ASEs genome wide. In our predic-
tion, the proportion of the different patterns of ASEs is 
in accordance with what has been observed in other 

filamentous fungi [52]. Regarding the prevalence, we 
found almost 30% of the genes subjected to AS, which 
is far more than the 6% found in average for ascomy-
cete fungi [20]. However, this later estimation is based 
on ESTs and might underestimate the real number of 
ASEs [21]. Indeed, recent RNA-seq showed ASEs in 
24% of expressed genes in an oomycete [53] and 38% in 
a plant pathogenic ascomycete [54]. One IR event was 
recently evidenced for the PaKmt1 gene [26]. This event 
can be  used as a positive control and has been indeed 
detected in our analysis supporting the robustness of our 
results. The physiological relevance of alternative splicing 
is still to be assessed in syncytial organisms but discovery 
of stage specific splicing events such as that of PaKmt1 
suggests a finely regulated process in relation with devel-
opmental programs. In search for reliable ASEs we 
selected those present in at least two independent RNA-
seq. Lifting this rules would allow us to detect stage spe-
cific ASEs but also expose to false positive.

In this study, we also identified thousands of novel 
transcripts. Some of them potentially encode functional 
proteins but the vast majority does not. Other compa-
rable transcriptomic analyses expanded the annotated 
protein sets of A. nidulans and U. maydis by 2.9 and 
2.5%, respectively [55, 56]. By comparison, the potential 
29 new encoding proteins uncovered in this study rep-
resent only 0.3% of the previously annotated P. anserina 
CDS. This may be indicative of the good quality of its 
genome annotation. Among the non-coding nTARs, we 
detected potential antisense RNA that could also con-
tribute to regulate gene expression. In fungi, non-coding 
RNAs, including natural antisense transcripts (NATs) 
are involved in development, metabolism, pathogenesis 
[57–59], etc. and can be expressed in a cell-specific man-
ner [60]. Some ncRNA/NAT are evolutionary conserved 
among related smut fungi, which suggests conservation 
of the corresponding ncRNA/NAT functions [55]. In N. 
crassa and A. nidulans, antisense transcripts represent 
~ 5% and ~ 14% of the annotated protein-coding loci, 
respectively [56, 61]. Since only one of the 37 RNA-seq is 
strand-specific and therefore suitable for antisense tran-
scripts, it is too preliminary to quantify the importance 
of ncRNA/NAT contribution to gene expression. How-
ever, this study revealed the first evidence of expression 
anticorrelation between asRNAs and downstream CDSs.

By collecting information on UTRs and alternative 
splice sites, as well as identifying novel protein-cod-
ing genes and new isoforms, this study, among others, 
contributes to a better understanding of the molecular 
basis that governs gene expression in fungi. We pro-
pose here the first filamentous fungus average gene 
model, as to what already exists in animals and plants 
and show that it fits to already available epigenomic 

Fig. 8  Quantification of nTARs overlapping or not previously 
annotated features
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data. This model will be useful for the future dataset to 
be generated.

Methods
Collection, alignment of RNA‑seq data and transcriptome 
annotation
RNA-Seq data were downloaded from the Sequence 
Read Archive (SRA) [28] at the accession number 
ERR2224046 to ERR2224051 [25], SRR3197700 to 
SRR3197711 [32], SRR6960207 to SRR6960225 [29]. 

Each fastq file was mapped onto the genome of Podos-
pora anserina S mat+ [23–25] using HISAT2 version 
2.1.0 [62] with default parameters. In order to make 
sure that all the data are of equivalent quality (e.g. no 
RNA extremity degradation in one dataset) raw read 
coverage was checked on constitutively expressed 
genes (Fig. S2) and verified to be consistent across 
studies at least for the beginning and end of the tran-
scripts. Output alignments files were respectively pro-
cessed by the StringTie program version 1.3.5 [63] 

Fig. 9  Transcripts predicted in non-coding regions. Size distribution of the 1732 predicted transcripts in non-coding regions. The color shows the 
detection of splicing events in these transcripts
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Table 3  Gene prediction from the putative new transcripts. The table shows the chromosome, position, number of exons, length and 
sequence of the putative new transcripts. In addition, InterPro prediction and observation from BLAST against NCBI nr database are 
indicated

Predicted_
CDS

Chromosome Position exon length (aa) sequence InterPro Observation

1 1 4,418,621 2 63 MARKGSNKREIYTRSSLSA-
SLYSWLAGGGGSSGGV-
VAVDHDADAADDSDDAGD-
DAGDAGD
GRG​

nothing

2 1 5,197,730 2 170 MSSTERLLTLAM-
PLKHEMELMELDVSPKPIS-
VTSSEDNDATAKPHHNEQN-
RRYSTTNRLD
PQEAEPAALEETSYAQQTTD-
PETTWSPDGADDEGFH-
VEDDNECASTLPPSPELEA-
VEDEE
MAGWVKEQQTSQPSLR-
LYRGSPGDILVMARTAAPSFP-
TYYPRELNMDDEC

nothing

3 1 5,382,147 3 165 MKTAILLAVLFVGASSLPVAP-
SLEAKVYLSLSFPTVDATST-
RAQWVSSYGNKPPKKAQEN
EPTVDGTSTRGQWVSSHGN-
NPPKKFQEGPTVDATST-
RAQCVSSYGNKPPKKGASF-
SDHWL
PVGPGYLDLDALESGY-
HAHLMIMHDSTSWLQS-
GMTAIKRFMRRFA

Signal peptide, transmem-
brane domain

4 1 5,504,377 1 395 MADLIDLSQQSPSSLSP-
WEPSVLLQLWNPD-
VQAWSCLGWTRAERRCR-
RVLSQAKREATMR
ILPDLGLSGSHDVDFETELL-
GELSHECLCRYHSDDETAK-
TLVEQWKTALKKARSQYQKTE
RTTSKESLSTDSVAH-
HARTQSPPLSSTESEETTEVM-
LKDHPEDSTVLKQEAIVEQ-
TIEQS
TSASSPRLNSTESASPPAGK-
TPPKLGFSTPVPGATPSKSPE-
VSKSTPLFDFTQLFQTPGS
HKPTVNPHKGTPAPAAFKY-
DQSRTPGTSSTADMSHSSVA-
SLSPNENTPAFVFTSSSTPSR
PPATTEGSLPKSEDP-
FRYSGSPIREAGQRIIK-
SLREIGDMEVPNELDGDIS-
GLGQSIERL
RLRLEKGRSLCLSGPDAG-
SEGDDETSDQDGKRRME

nothing nothing significant found 
with BLASTp against NCBI 
database
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Table 3  (continued)

Predicted_
CDS

Chromosome Position exon length (aa) sequence InterPro Observation

5 1 7,676,610 1 212 MPASDITIDLDRSSTPF-
PRSRRSERAHEQVEDFN-
RRSSSPRRFTSTPTRSRRLSP-
SPTRY​
RSAATIARSPPRYRSPTRIT-
SAPRPRRISPSPLRHR-
SPIRLPSSTSRRAPFPSPY-
FKETR
ITEARR​TTT​YHPTSPVS-
RYTETRT​TYR​TPISRPRTPPRG-
SIGSPSRRITSPRLVDIRSSS
EIYSSSRRYDSYPST-
TRSPGRSTDRSLFTRRY​

nothing

6 1 7,835,241 3 94 MSGYPPQQGGYYPQAP-
PQGYPPQGYPPPDG-
GYPPQGYPPQGYPP-
PQQQMQYQQAPPPKEE
KSHGCLYTCVAAMCCCWL-
CGETCECCLECLDCCF

rhodopsin C-terminal tail nothing significant found 
with BLASTp against NCBI 
database

7 2 1,526,413 2 214 MANIKTETADEGVTAADP-
GAIKKAPFSMTESELREILV-
LAIDRHPAIHPIVQRHLDRLRD
NNLGGFQDDFEKIRCEVY-
ACASEPCFSDPKAIGACIKRY-
FEKLLNVATRESPYETRYSAV
EWFLRVLNLLVFTSDPH-
DVRKEIWSHTDGSCLKLVM-
LVCRFRTAERGRLLRDHN-
SLIMLK
MDLITANAKDLPELLREFEP-
TIHVIKSWRAESRG

nothing

8 3 822,817 1 357 MGYEWNGDPTILIVVIACS-
VCFGWVPIITVVSIVRHCRAR-
LRAKRGSNGTNSDAESQGGR​
PSTAPDVPKPLQTYHPSST-
KGLERSASSRTRSSADGY-
DLKRVDTNSSWNPIRHSF-
HYDNE
SLWGGDGLSRSNSRHRP-
PYFPTHVHNTTPSLSRPA-
SIRSVASSHRQQSRSRRSS-
MASNSD
NAPAAFQINDTYYDTTPLP-
NVTRTVNPVVASSSTPTSSK-
GPGQAPQQRQQKQPKQD-
NPHP
PQRNRRTRHSL-
DARGDSDSLTRD-
ISRPNTSMTRREVEEYEDLDN-
QKQKATHRSHRPPRPG
SASRRGSHSAPGGSEETD-
DDLSMAGALPPAKLPPRRA-
SLHAQTFERPAWLHEEPHAM

transmembrane domain nothing significant found 
with BLASTp against NCBI 
database



Page 13 of 19Lelandais et al. BMC Genomics          (2022) 23:859 	

Table 3  (continued)

Predicted_
CDS

Chromosome Position exon length (aa) sequence InterPro Observation

9 3 1,121,553 2 317 MHDCEFEENPAGFCCAVET-
VELHAAGRSYFYSSFEGAS-
CYRQDFAFFRNLQHIS-
LRNFFD
DPNRSRQQTVQLLRHSPNL-
HRLELGLSAKAVVRQLEREGS-
FGVFVHFFDRLCDEYAESGG
QPLRLTHLGLFDAM-
WVWKPESLRKKPAD-
LAFLQEVRLNTETIEDCITDN-
LVDLFDSEALS
GYAVLVETDRGSKYG-
PAYLVGARELEMRRPRTP-
MQLAEMSLVLGGTWGN-
QKLLAATTRHS
LQGLVVNMNRPDPRRSLD-
FLLAPLQNMHRLARLWIVS-
ANMYKDLPLLTKAAQKG-
GCRVSC
LALHRDRVALLGGNWQN

nothing nothing significant found 
with BLASTp against NCBI 
database

10 3 3,727,340 4 215 MEPRETYREFGSRAA-
GRHRRKTLGSTRQTVRDSCK-
VNGGNDDTSWLRTPPPHCP-
CQKLPV
TTGLREEEYAGKQTQAREES-
DGMWVVVERKEGFDRQPG-
GDGCFQSGERKRGFSGGWR-
RLS
STTT​TTT​TTT​TAT​TAT​
TTT​TTTTDEEGEHREE-
QQETEETGG​CGG​
GSKARPHSLGTVEEKK
PNKKMAGDYPEVLRKF-
SLPLSVQGIGSMGLGFPMP

nothing

11 4 2,328,575 2 69 MVISMTQRNIPGI-
WRSGGGRGQDNSAPLPQLQ
QQQQQQQQQQQQQQQQ
QQQQQQQQQQQQ
PQPQPRLQQ

nothing

12 4 3,371,922 2 373 MCQGTIYDFWCPCIFHAPST-
SFYLQFDIHPPDFNYT-
FTRRPTTNPLKAHLSKSSH-
SIVYS
QHCAAYKFCDDYLHSEGFN-
PGDVFDMGGLCPAGHQV-
TYEREAFISSRLCDACISGK-
CEEN
MEFAGVKTVRRSRYG-
WRSREEEREGKRRSRSR-
PGRGVSPAGSVRSFDSTGR-
GRSSSVGST
RTVKGRDMGVEKGG-
VAGEGEGKTLGAMNLKN-
LVDKMVQTVSALRVGG-
GAERQDQPRVMPA
SDLEAMAEESMPTPLP-
SRHKPSGKNLEDMFDNS-
GRPEYDSDQDTVVGASKT-
TEKKSKVNG
KTIAADEISGVMQEIPTGR-
SKSRKRRMWTDPRTDEEAS-
RVLRFLRRGKGAAPVET-
GNSRE
RSRGQGYERITIE

nothing nothing significant found 
with BLASTp against NCBI 
database
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Table 3  (continued)

Predicted_
CDS

Chromosome Position exon length (aa) sequence InterPro Observation

13 5 484,874 2 126 MQLTRSLSTALVALLLS-
SIATGHRIPAQSEELQL-
RDAAPAEVNETGTPPV-
VLPVDDTLSA
DVIVDETEHGSLVGRAVH-
PRQLGKGKGGGKGKGGGK-
GKGGAKGKGGGKGKGGKG-
KGGKGK
GGKGKG

signal peptide

14 5 1,699,000 5 503 MTPDVDKPNRTIPN-
LQKQLSVEREEKELKEAQYQ-
FRIQELQDEINSLRDNEHE-
SISTGCP
QPEPGTTSVNREDIVVRAM-
LRGTSPAMLHQEGTIAL-
PLSESPRLSVSHSEDHYEWK-
DNIT
ALALTSQGEDTPKVAYKVEEG-
SQNDESDFDEVDYRIPMKG-
KEKWKAAVTSERYKYREQKD
REYREALNKQHVDGSDRIL-
RMDELVAEGNQPWSTFN-
MRHTLKATTAHDIPLQSSK-
SHPVE
SHDVPLSDHDWISGKH-
PDDPRAEDRLAPEDVD-
VKLAPLKDDTAMGSVP-
DLGYGLPRELSI
RPQNESKTDDGNIQEDQSD-
NQTVYSDDGSIDGDILNVCK-
TELADSLANHIRQLEVGPEGY
ANITRKLPPLLKAFAL-
RVGIQAHRGCRGMLCSLCT-
SIATKPASEYNGTSTEALG-
SRIINW
IQHDEDSDSTGLEQQPSKET-
PDELPVEVEADGINFLPD-
DHQGLAHQRNHHSSNFG-
EHSGV
SWLLALWCETPKLWSFG-
MVIVAI

nothing nothing significant found 
with BLASTp against NCBI 
database

15 6 2,341,619 2 81 MTEDLHRDITERLRCLELQIR-
ITSHMFIGVAQNAGDDPTN-
LVKVKDEMLGKLQEMRYEEE
RLARERLAALKQRVPSA-
GNSD

nothing
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Table 3  (continued)

Predicted_
CDS

Chromosome Position exon length (aa) sequence InterPro Observation

16 6 2,662,998 1 382 MSAPLLMHPAEPAT-
ADNTKPRLACPFFRYDP-
CRHYACASYELKGFEAVK-
KHLERKHILKN
HCARCFRSFESEDARNNHIV-
SECCSIALGRDEITYDEWTR​
ARR​CPRTKSCEVKWKWLWTT​
FFKLPALPRELVYFQ-
DAVVEAKNVLIDPVTIQSV-
LKARLHLDQQEISSVADEV-
REALLRK
NSGARPYRVCDSEGGG-
DNGIPANLKASGYGSMGG-
GAAEMEAEAVAFALPPARH-
ALLPEEP
CLPIIGESSPHPAAAVSPVT-
PLPTSFSLGPILVPQQPAST-
SGGGPETNTFDAWRTVCLVP
WATADGILARLMEDPISWFK-
PDGPKWSDVYDHIDRDAL-
RKFWALGNTPAVQVSIPIRSTH
VQSLAAIESKLFDFEVAGIRPS

nothing

17 6 2,780,217 1 214 MDTKDEDSAQQQSSPLL-
PISNHPPSSRPRTPILLKLETN-
LPLVTPAQPPETTPQETWDYP
TSLRQLTALLLFTLQLLILI-
TYHPSFLSLLPIPGPLSNHH-
CLLLADTIITCLAIIISSYV
HFCIASLDCELLEQGWKPVY-
FYIMAADETVILLAAASS-
GLENVCSWGLFVVTVGSWY-
VGW
RLGAVEVLSRRLFRAEGWEF-
GQGEGEEGRGLRVV

transmembrane domain

18 6 4,158,427 4 64 MACDSHGRQPSE-
FALVHEALPRDIHLPTCI-
HASPKRKTVSSSDTKPRRFLL-
HTQGVTSGP
RACG​

nothing
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with parameters:–g 5 –c 10 (−-rf only for RNA-seq 
from dataset B) and default values for the remaining 
parameters.

Reads quantifications
Reads counts were performed for each alignment files 
using htseqcount version 0.6.0 with the following param-
eters: --stranded no (RNA-seq A and C) --stranded 
reverse (RNA-seq B) --mode intersection-non-empty.

Transcript annotation
The annotation files were processed by the Successive 
Coverage Values (SCV) method using custom-made 
scripts. The SCV algorithm selects transcript predic-
tions that fully overlap only one annotated CDS by 
their genomic coordinates. Then, respectively for each 
gene, transcript predictions from different RNA-seq 

are compared by their average coverage value to a dis-
crete scale of threshold (from 10 to 20,000 reads). Tran-
script predictions above the most restrictive threshold 
are selected to annotate a new single gene model. In 
order to keep valuable information without redundancy 
for genes with several transcripts predictions, the long-
est UTRs are selected and all alternative start and end 
signal of transcription are annotated considering their 
RNA-seq dataset.

Integration of ChIP‑seq data
ChIP-seq data normalized coverage value were from [26]. 
Active genes and inactive genes were selected respec-
tively as the 800 most expressed and 800 less expressed 
in the M4 condition from dataset A as calculated in [25]. 
This sample was chosen because it is the closet from the 
conditions used for the ChIP experiments.

Table 3  (continued)

Predicted_
CDS

Chromosome Position exon length (aa) sequence InterPro Observation

19 7 440,886 8 626 MVEGVRAFDKLDWKDDVAF-
CSLTEDMEEAVGPGDEVFVC-
SNQDGMTGSWEMIHNS-
SSFGA
PPITSELFENANEEPMIDPAV-
LGDTWSQMKAWATLCGIKD-
DPIAPGIAELLEIEEQESGD
GGFCCYGTISHAEVKLVGN-
LAESRDRLLNNEHVQSFA-
VIKHDDYLMVIFSDNHI-
FAQVNE
AVSQALTSLFNKFKFFEVKA-
FAQIGKIQSLFYQSHTPGQAK-
LRVDINIYGSAADADAVGL
YLGSTAKLYLQDPE-
YGTENIEYLNRQLIHFPG-
FEEPKVFAGPGADFANKT-
SKALQGVRSQ
REHFDQTLSQILLTSRSH-
HVLVVGRNQKRPQTTLFKAA-
CEIRANFGWCLTATPIQNRLEE
LGSPLAFLPIDQLQNRAMFK-
KKIMDASSPDAHTMLELP-
PIEERYHYITLSQEERNRYDKT
AADMSNWINHKTGLHVLT-
PNSGDDNNDKVDHFDLSG-
VSSKIEVLIRHLQQTPRDT-
KRYVG
SARLAEVLENQAYINSPSIVF-
SCWTKTLDLVALHLTRMKIL-
HQRIDGRQKLAERQHNMSR
FVSDEGTSVPVLLTTTGVGAF-
GLNLTAANHVYILEPQWNPS-
VESQALSRVARRGQKKTVL
VTRYLVHGTVEILRKMRLAE-
AGWATP

transcription facteur SNF2 
related, DNA binding 
domain, ATP binding site

Transcript overlap two 
features now annotated as 
pseudogenes

20 7 3,133,570 2 52 MPPKILSEKHEALRQD-
VNAKMNKFELRINRKVDDH-
MQLRDMFHDRREATSFS

nothing
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Detection of new transcripts
All StringTie transcript predictions with an average cov-
erage equal or higher to 10 that did not intersect any 
coding or non-coding element of the current annotation 
were annotated as novel non-coding transcripts. Then, 
nested transcripts were merged using bedtools version 
2.29.2 [64] with default parameters. Spliced non-coding 
transcripts were retrieved by intersection of TopHat 
junctions (TopHat2 version 2.1.1, Trapnell et  al., 2009) 
with genomic coordinates of non-coding transcripts.

Gene prediction was made with FGENESH [65] and 
domain prediction with InterProScan version 5.52–86.0 
[66].

Detection of motif in promoters region
The 200 bp sequences upstream of each TSSs have been 
extracted using bedtools’ flank and getfasta tools [64]. 
Motif search has been performed using MEME with 
default parameters [67].

Alternative splicing events detection
To obtain information of alternative splicing events that 
occur in P. anserina, we used TopHat2 version 2.1.1 [68] 
with all default parameters but --min-intron-length 30, 
−-max-multihits 5 and specifically –segment-length 21 
for dataset A and --library-type fr-firstrand for dataset B. 
Exon-exon junctions annotations were then processed to 
filter out low-confidence exon-exon junctions (independ-
ent RNA-seq ≥ 2 and coverage ≥5 in at least one RNA-
seq for A5SS, A3SS and ES).

For IR, we quantified aligned reads on CDS and intron 
annotations following the method above (see Reads 
quantifications). Intron annotations were segmented by 
8 bp bins to assess coverage variability. Then, retained 
introns were selected applying four thresholds (T1, T2, 
T3 and T4): 1) average coverage per bin higher than T1, 
2) standard deviation of coverage per bin lower than T2, 
3) overall expression of the associated CDS higher than 
T3 and finally 4) ratio between average coverage per bin 
of the intron and the overall expression of the associ-
ated CDS higher than T4. Different association between 
threshold values were tested, to finally retain: T1 = 30, 
T2 = 20, T3 = 200 and T4 = 0.1. These values allowed 
to properly select a positive control, i.e. the intron 
Pa_6_990.G_intron_1 which was expected to be retained 
in the experiments ERR2224048 and ERR2224049 [26].

Detection of the NATs
Potential NAT (Noncoding Antisense Transcripts) were 
extracted from the StringTie outputs, obtained with data-
set B (see section “Collection, alignment of RNA-seq data 
and transcriptome annotation”). They are transcripts 

which 1) have coordinates that overlap (entirely or par-
tially) only one annotated CDS in Podospora anserina 
genome and 2) are found on the opposite strand.
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