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Abstract 

Background:  The gut microbiome has proven to be an important factor affecting obesity; however, it remains a 
challenge to identify consistent biomarkers across geographic locations and perform precisely targeted modulation 
for obese individuals.

Results:  This study proposed a systematic machine learning framework and applied it to 870 human stool metagen-
omes across five countries to obtain comprehensive regional shared biomarkers and conduct a personalized modula-
tion analysis. In our pipeline, a heterogeneous ensemble feature selection diagram is first developed to determine an 
optimal subset of biomarkers through the aggregation of multiple techniques. Subsequently, a deep reinforcement 
learning method was established to alter the targeted composition to the desired healthy target. In this manner, we 
can realize personalized modulation by counterfactual inference. Consequently, a total of 42 species were identified 
as regional shared biomarkers, and they showed good performance in distinguishing obese people from the healthy 
group (area under curve (AUC) =0.85) when demonstrated on validation datasets. In addition, by pooling all counter-
factual explanations, we found that Akkermansia muciniphila, Faecalibacterium prausnitzii, Prevotella copri, Bacteroides 
dorei, Bacteroides eggerthii, Alistipes finegoldii, Alistipes shahii, Eubacterium sp. _CAG_180, and Roseburia hominis may be 
potential broad-spectrum targets with consistent modulation in the multi-regional obese population.

Conclusions:  This article shows that based on our proposed machine-learning framework, we can obtain more 
comprehensive and accurate biomarkers and provide modulation analysis for the obese population. Moreover, our 
machine-learning framework will also be very useful for other researchers to further obtain biomarkers and perform 
counterfactual modulation analysis in different diseases.

Keywords:  Obesity, Gut microbiome, Machine learning, Geography, Ensemble learning, Counterfactual explanation, 
Reinforcement learning

Background
Over the past 40 years, the number of obese people has 
increased rapidly worldwide [1]. Several studies indicate 
that the global obesity prevalence will exceed 20% for men 
and 18% for women by 2025 [2]. Obesity is linked to mul-
tiple pathologies, such as cardiovascular disease, diabetes, 
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cancer, and depression [3, 4]. It has been reported that the 
combination of unhealthy dietary patterns, environmental 
factors, insufficient physical activity, and genetics may be 
the major cause of obesity [5, 6]. Other factors, including 
stress [7], sleep duration [8], poor calcium intake [9], and 
the gut microbiome [10, 11] have been proposed as key 
players in the development of obesity.

There is growing interest in the role of the gut micro-
biome in regulating obesity [11]. Recent studies have 
shown that the gut microbiome affects obesity by influ-
encing energy balance, gut barrier function, inflamma-
tion, and the production of significant bioactive factors, 
including short-chain fatty acids (SCFAs), lipopolysac-
charides, and bile acids [12, 13]. The core biomarkers of 
obesity have been inconsistently reported across individ-
ual studies [14], possibly owing to the complexity of host 
background factors and the inconsistency of analytical 
approaches. Among these host background factors, geo-
graphical differentiation is regarded as the most impor-
tant [15]. However, from the perspective of methodology, 
current studies lack a systematic way to identify biomark-
ers, which eventually leads to an incomplete and incon-
sistent understanding of the gut microbiome biomarkers 
of obese people. At the same time, when analyzing the 
modulation of the gut microbiome, most studies simply 
compare the difference in gut microbiome abundance 
between obese people and healthy people [16], which 
ignores many biomarkers that may play an important role 
in machine learning. Moreover, there is still a challenge 
in personalized regulation of the minimum subset of the 
targeted gut microbiome to restore the health status of 
obese individuals, not to mention finding broad-spec-
trum targets with consistent modulation across different 
geographic groups.

Thus, there is a need to build and validate a relation-
ship between the gut microbiome and obesity across 
a wide range of populations in different regions using a 
comprehensive and systematic approach. Generally, col-
lecting many microbiome samples from different regions 
requires considerable time and effort, and only large 
research centers can conduct them. However, with recent 
progress in the call for data-sharing policies [17], an 
increasing number of shotgun metagenomic sequencing 
datasets are accessible from published studies worldwide. 
By pooling these datasets, it is possible to study obesity-
associated shared biomarkers on a large scale.

This study introduced a machine learning framework 
to obtain regional shared biomarkers and perform modu-
lation analysis with 870 raw shotgun stool metagenomes 
representing five countries from published studies. This 
machine-learning framework can be divided into two 
parts. First, a heterogeneous ensemble feature selection 
method, including filter, embedded, and wrapper, was 

established to obtain a comprehensive biomarker subset 
from each country. Notably, to remove geographical fac-
tors, we consider the intersection of each country as a 
regional shared biomarker. Each of the selected biomark-
ers plays a crucial role in obesity, regardless of regional 
background. Biomarkers were evaluated using an addi-
tional validation cohort to confirm the generalization 
of predictive capability. Second, a deep reinforcement 
learning model was developed to create counterfactual 
instances for the gut microbiome of obese individu-
als. A counterfactual instance states the minimum nec-
essary changes to some biomarkers of a given obese 
individual that result in a targeted prediction of the 
machine learning model, whereas the targeted predic-
tion is healthy in this work. The counterfactual instance 
is intuitive because it tells each obese individual what to 
do to achieve the desired outcome by altering the mini-
mum necessary biomarkers. In doing so, we can provide 
a precise modulation strategy for each obese individual 
from the perspective of counterfactual machine learn-
ing. In summary, this study 1) comprehensively obtained 
regional shared biomarkers related to obesity, 2) per-
formed counterfactual modulation analysis for individual 
people, and 3) inferred a set of broad-spectrum consist-
ent targets for cross-regional obesity populations.

Results
Integration of human metagenomic data from different 
countries
To exclude the influence of geographical factors on the 
biomarkers of body mass index (BMI), we need to obtain 
many samples from different regions. Therefore, we 
retrieved metagenomic datasets from studies related to 
obesity and combined the datasets of the control group 
from various studies on other diseases (see Methods). 
We collected 1172 raw shotgun stool metagenomes from 
published studies (Fig.  1A). Among these samples, the 
discovery cohort consisted of 870 individuals, including 
414 obese individuals and 456 healthy individuals across 
five countries (Denmark, Germany, France, the United 
Kingdom, and Eastern China). The validation cohort con-
sisted of 149 obese individuals and 153 healthy individu-
als from other countries and regions (Fig. 1A).

After downloading raw metagenomes, we first repro-
cessed them uniformly to remove a major nonbiological 
source of variance between different studies [18]. The 
species abundance of each individual was determined 
using the MetaPhlAn2 pipeline (see Methods). To obtain 
sufficient and precise taxonomic annotations, our study 
mainly focused on species-level information. Therefore, 
an aggregate of 701 species was obtained from all sam-
ples. After removing the low-prevalence species (the 
prevalence rate in the obese or healthy population in any 
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country is not more than 10%), 264 species remained. 
Among them, 93 species were found in every country 
(Fig. 1 B), which formed the basis for the further discov-
ery of regional shared biomarkers in obesity.

Gut microbiome composition can be affected by BMI 
and geographic factors
In this study, we first evaluated the impact of BMI on the 
gut microbiome composition. Compared with healthy 

Fig. 1  Overview of the obese and healthy population included in this study. A Global map representing 1172 samples with shotgun metagenomic 
data, including 606 obese individuals and 566 control individuals. The discovery populations included Denmark (DNK), Germany (GER), France (FRA), 
the United Kingdom (UK), and China Eastern (CHN_E). The rest of the countries formed the validation dataset, including the United States (USA), 
Austria (AUT), Sweden (SWE), Spain (SPN), and China Southern (CHN_S). B The UpSet plot reveals the number of species (excluding low prevalence 
species) in each discovery cohort and shared by combinations of these datasets. The set size represents the number of species in each country/
region. The connected dots mean the common species across connected countries/regions and the number on each column represents the 
amounts of species
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individuals, obese individuals had lower alpha diversity 
in general, particularly for GER (Wilcoxon rank-sum 
test, P < 0.05) (Fig. 2A), which was consistent with most 
previous studies [19]. Moreover, by employing princi-
pal coordinate analysis (PCoA), we also found signifi-
cant differences between the obese and healthy groups 
(permutational multivariate analysis of variance (PER-
MANOVA), R2 = 0.012, P = 0.001) (Fig. 2B).

We examined the influence of geographical factors 
on the gut microbiome. First, we assessed whether 
geographical factors could differentiate samples from 
different countries using machine learning models. 
After 10 times 5-fold cross-validation for each coun-
try’s cohort and the corresponding remaining cohorts, 
we found that the geographical factors, with the 

Random Forest (RF) machine learning model, showed 
high performance in distinguishing individuals from 
different countries (mean AUC = 0.93) (Fig.  2C). In 
addition, the distinction between China and other 
countries was the highest (AUC = 0.99) (Fig.  2C), 
which may be attributed to the fact that China is the 
farthest away from other countries. In contrast, when 
using PCoA ordination, we also found significant dif-
ferences between groups in different countries/regions 
(permutational multivariate analysis of variance (PER-
MANOVA), R2 = 0.051, P = 0.001) (Fig.  2D), which 
further demonstrated the influence of geographical 
factors on the gut microbiome. In conclusion, the gut 
microbiome composition of people is influenced by 
BMI and geographical factors.

Fig. 2  The influence of geography and BMI factors on the composition of the gut microbiome. A The box plots (box limits, upper and lower 
quartiles; center line, median; whiskers, 1.5 × interquartile range) show the alpha diversity assessed by the Shannon index of healthy and obese 
groups in five countries. Only in GER, the Shannon index of healthy people is significantly higher than that of obese people. (Wilcoxon rank-sum 
test, P < 0.05). B Principal coordinates analysis (PCoA) plot dependent on Bray–Curtis distances shows that obese (green) and healthy (red) people 
have essentially different gut microbiome profiles as PERMANOVA (R2 = 0.012, P = 0.001). Each point in the plot corresponds to one person. The 
ellipses correspond to the 95% confidence region. C The receiver operating characteristic (ROC) plots shows the classification effect of geographical 
factors on different countries by the Random Forest (RF) model. D The identical PCoA plot shows that the gut microbiome composition of people 
in different regions is significantly different (R2 = 0.051, P = 0.001). Each color in the plot corresponds to one country. Similarly, each point in the plot 
corresponds to one person
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Identification of regional‑shared biomarkers 
through ensemble feature selection
Considering the high-dimensional, stochastic [20], 
sparse, and heterogeneous [21] nature of microbiome 
datasets, we developed an ensemble feature selection 
diagram by integrating filter, embedded, and wrapper 
methods to obtain more comprehensive obesity biomark-
ers from multiple perspectives, which, in turn, can avoid 
the bias caused by a single feature selection method. The 
overall flowchart can be divided into two parts: obtaining 
comprehensive regionally shared biomarkers and remov-
ing redundant biomarkers (Fig. 3).

For the first part, seven classic filter methods were inte-
grated to obtain biomarkers from each country, including 
Pearson’s correlation coefficient, Spearman’s correlation 
coefficient, Kendall’s correlation coefficient, MIC, Pear-
son’s partial correlation coefficient, Spearman’s partial 
correlation coefficient, and Kendall’s partial correlation 
coefficient (see Methods). Thereafter, we consider the 
intersection of each country to exclude geographical fac-
tors. As a result, 28 species were obtained as regionally 
shared biomarkers from the perspective of filter meth-
ods (Fig.  4A). Similarly, seven models were selected as 
representative embedded methods, including Deci-
sion Tree (DT), Random Forest (RF), Gradient boosted 
regression trees (GBDT), eXtreme Gradient Boosting 
(XGBoost, XGBRF), Adaptive Boosting (AdaBoost), 

and LGB (Light Gradient Boosting Machine (LGB) (see 
Methods). These models have been commonly used in 
datasets related to the gut microbiome [22–25]. How-
ever, owing to the limitations of these methods, the four 
models failed to identify regional shared biomarkers. 
Specifically, the DT model resulted in an empty feature 
subset for the intersection of the five discovery cohorts; 
conversely, the RF model was inclined to select almost all 
features as regional shared biomarkers and tended to be 
inconsistent at different times (Fig.  4B). For the GBDT, 
the number of regional shared features ranged from 47 
to 60 at different times, and the shared biomarkers over 
cumulative repeated selection also gradually decreased 
with the increase in repeat times (Fig.  4D), which sug-
gested that the GBDT model was also unstable when 
choosing regional biomarkers. Although the stability 
of AdaBoost can be ensured, it was still questionable to 
obtain regional shared biomarkers because only two spe-
cies were selected (Fig. 4B), which could not stay in line 
with common sense. Finally, only three embedded mod-
els (XGBoost, XGBRF, and LGB) were reserved for rea-
sonable feature selection, as they obtained 28, 52, and 
29 regional shared biomarkers, respectively. By combin-
ing the filter and embedded methods, 63 species were 
selected as regional shared biomarkers (Fig. 4C).

To confirm the validity of these 63 regionally shared 
biomarkers, we used these species as input features in 

Fig. 3  The flow chart for identification of regional shared biomarkers in the obese population
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RF models to distinguish between obese and healthy 
people across all countries. Interestingly, we found that 
in these countries, when the number of features reaches 

a certain level, the effect of classification deteriorates 
as the number of features increases (Fig.  4E), particu-
larly for the UK and GER. These 63 shared regional 

Fig. 4  Identical regional shared biomarkers of obesity. A UpSet plot revealing the amount of filter common species in each discovery cohort 
and shared by combinations of these datasets. The set size represents the number of biomarkers in each country. The connected dots mean the 
common biomarkers across connected countries and the number on each column represents the amounts of biomarkers. B The bar plot shows 
the number of regional shared biomarkers obtained by different methods. The pink color represents the unstable methods. C The Venn plot shows 
the union of different feature selection methods. D The line plot shows that the results of the Gradient boosted regression trees (GBDT) model have 
poor stability. The blue line corresponds to the intersection of the result, with the increase in repetition times. E The line plot shows that the AUC of 
5 countries with the increase of the regional shared feature numbers by the XGBoost model. F The heatmap shows the ability of different methods 
to distinguish between obese and healthy individuals in each country and validation cohort
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biomarkers that contained redundant features. To 
address this problem, we employ sequential forward 
selection (a wrapper method) to reduce the redundant 
features. For each country, we first used the above seven 
embedded methods to select features and ranked them 
according to feature importance. Second, we increased 
the number of input features in the classifier model to 
find the optimum feature subset for each correspond-
ing model. Third, the feature subset corresponding to 
the model with the best classification performance was 
selected as the biomarker for each country. By pooling 

all the countries, 52 biomarkers were obtained from the 
perspective of wrapper methods.

Finally, to capture comprehensive regional shared bio-
markers and remove redundant biomarkers, we took the 
intersection of the above two methods, with 42 species 
selected as final regional shared biomarkers (Fig. 5A).

Classification performance validation of discovered 
regional shared biomarkers in multiple countries
To assess the validity of the selected regional shared bio-
markers, we evaluated the performance of the machine 

Fig. 5  The plot shows the biomarkers identified by counterfactual inference. A The heatmap graph at the bottom shows the median abundance of 
regional shared biomarkers in the Chinese healthy individuals (CHN_H), a random Chinese original obese sample (Orig_OB), and the corresponding 
counterfactual instance (CF), respectively. The red-marked biomarkers mean that the abundance is increased in the counterfactual instance; the 
blue-marked biomarkers mean that the abundance is reduced in the counterfactual instance. The heatmap graph at the top shows the general 
direction of biomarkers across different countries by pooling all the counterfactual instances. The red color means that the median abundance 
of the biomarkers is raised in the counterfactual instances; in contrast, the blue color means that the median abundance of the biomarkers is 
decreased in the counterfactual instances. The gray color means that the difference in median abundance of the biomarkers between the original 
obese individual and the counterfactual instance is less than 0.1. B-C The box plots (box limits, upper and lower quartiles; center line, median; 
whiskers, 1.5 × interquartile range) show the abundance of biomarkers in obese and healthy people across different countries
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learning models (seven models mentioned above) based 
on the selected biomarkers. Among these discovery 
cohorts, the results of CHN and FRA performed bet-
ter than those of other countries, with the best AUC of 
0.85. In contrast, the AUC of the UK only achieved 0.77 
(Fig. 4F), which was the worst result among all regions. 
Compared with the results of the single methods for fea-
ture selection and classification, our ensemble method 
achieved the best classification results, indicating that 
our ensemble method was more effective than the oth-
ers (Fig. 4F). In addition, we observed that the XGBoost 
model performed better than the other single models in 
distinguishing obese people from healthy people (mean 
AUC = 0.79).

Furthermore, to confirm that the selected biomarkers 
were not a result of overfitting in the discovery cohort, 
we considered additional cohorts from other countries, 
including 149 obese individuals and 157 healthy indi-
viduals. Using these 42 regional shared biomarkers as 
input features in the above ensemble models, we could 
also obtain a good classification effect on these additional 
cohorts, with a mean AUC of 0.85 (Fig.  4E). Therefore, 
these results verified that our regional shared biomark-
ers from ensemble feature selection had a significant per-
formance for the biological datasets of the five countries 
considered and had good representation generalization 
for obesity discrimination in other countries/regions.

Deep reinforcement learning further indicates regional 
common and specific modulation targets
From the above analysis, regional shared biomarkers 
associated with obesity have been identified; however, 
how to modify these biomarkers to guide obese peo-
ple to become healthy remains unclear. To this end, we 
developed a counterfactual inference framework based 
on deep reinforcement learning to portray the minimal 
necessary changes in the biomarkers in the input space 
to modify the machine learning model’s predictions 
towards the desired target (see Methods). This is very 
intuitive and useful for interpreting the results of model 
prediction because it tells people what to do to achieve 
the desired outcome. Therefore, it can provide precise 
personalized modulation of the gut microbiome for each 
obese individual to help them become healthy based on 
the inference of machine learning models.

For example, we randomly selected one obese indi-
vidual and a corresponding counterfactual instance from 
China. By way of counterfactual inference, we found 
that for this obese individual, the minimum modulation 
scheme was to increase the relative abundance of six bac-
teria (Bacteroides dorei, Faecalibacterium prausnitzii, 
Bacteroides thetaiotaomicron, Bacteroides uniformis, 
Eubacterium eligens, and Eubacterium sp. _CAG_180) 

and reduce the relative abundance of four bacteria (Dorea 
longicatena, Blautia obeum, Ruminococcus gnavus, and 
Anaerostipes hadrus) (Fig.  5A). In this case, an obese 
individual can trend towards health from the perspective 
of machine learning. Moreover, the relative abundances 
of most regulated biomarkers were closer to the median 
of the healthy Chinese population, which further proved 
the effectiveness of our method (Fig. 5A).

Despite all the shared biomarkers appearing to be 
associated with obesity, they may have different effects 
on different people in different countries. Thus, we also 
compared the median abundances of biomarkers for 
original obese individuals and counterfactual instances 
among various countries to determine which species 
are beneficial to obese people without being affected by 
geographical factors (regional shared). Finally, the results 
showed that the discovery cohorts shared several broad-
spectrum taxonomic biomarkers that were altered in 
the same direction by counterfactual inference (Fig. 5A). 
Among these broad-spectrum biomarkers, Akkerman-
sia muciniphila, Faecalibacterium prausnitzii, Prevotella 
copri, Bacteroides dorei, Bacteroides eggerthii, Alistipes 
finegoldii, Alistipes shahii, Eubacterium sp. _CAG_180, 
and Roseburia hominis were proven beneficial for obese 
individuals in these five countries (Fig. 5A). In contrast, 
Coprococcus comes and Dorea formicigenerans (Fig.  5A) 
appeared to have adverse effects on healthy individuals. 
To further verify the reliability of the selected broad-
spectrum biomarkers, we compared the relative abun-
dance of the biomarkers between obese and healthy 
individuals in each country. As a result, the direction of 
regulation was consistent with the abundance gap of the 
gut microbiome between obese and healthy individu-
als (Fig.  5B, C). For example, Faecalibacterium praus-
nitzii was a healthy broad-spectrum biomarker in our 
study (Fig. 5A), whereas the abundance of this species in 
healthy people was also higher than that in obese people.

Correlation network pattern analysis on counterfactual 
samples
To further verify the reliability of the counterfactual sam-
ples, we compared the co-abundance correlation network 
of healthy samples, original obese samples, and coun-
terfactual samples based on the abundance of selected 
regional shared biomarkers. Notably, since the data from 
eastern China have a higher degree of differentiation 
between healthy and obese individuals, we only selected 
it to build and compare the co-abundance correlation 
network of healthy, original obese, and counterfactual 
samples (Fig.  6). As a result, the network of counterfac-
tual samples is closer to that of healthy people than the 
original obese people. The number of common associa-
tions between the network of counterfactual samples and 
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healthy samples (40 common associations) was greater 
than that between the original obese samples and healthy 
people (20 common associations). These recovery asso-
ciations may play an important role in helping obese indi-
viduals restore their health. For example, compared to 
the network of original samples, the network of counter-
factual samples showed four common associations with 
the healthy module from Bacteroides uniformis and four 
other biomarkers, suggesting that Bacteroides uniformis 
may play a key role in losing weight. In addition, we found 

that broad-spectrum biomarkers only have a few associ-
ations in the network, which indicates that they are not 
important nodes in the network. Previous studies have 
reached similar conclusions [26].

Discussion
Previous studies have demonstrated that geography 
is a dominant factor affecting the composition of the 
gut microbiome. This study aimed to obtain a regional 
shared biomarker of obesity to decouple geographical 

Fig. 6  Co-abundance networks of healthy, original, and counterfactual samples. The different colors of nodes and edges indicate the species from 
different modules. Only the correlations of biomarkers above 0.3 are shown in this plot
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and obesity factors and provide precise and personalized 
modulation analysis, thereby paving the way to make the 
most of the gut microbiome for obesity in the future.

First, we assumed that the most natural method for 
excluding the influence of geographical factors is to 
identify biomarkers from different countries and then 
take their intersection. Therefore, we present an ensem-
ble method to obtain comprehensive biomarkers for 
each country based on shotgun metagenomic data from 
published datasets. To obtain more core biomarkers, 
we first eliminated biomarkers with low frequency, and 
42 species were eventually selected as regionally shared 
biomarkers. Among these biomarkers, some have been 
reported to be associated with obesity in previous stud-
ies, such as Prevotella copri [27, 28], Akkermansia mucin-
iphila [29, 30], Faecalibacterium prausnitzii [31, 32], and 
Ruminococcus gnavus [33, 34], indicating the reliability 
of our method. Compared with other feature selection 
methods, our method revealed more stable and effective 
features. For example, the GBDT feature selectors were 
not stable enough to obtain shared biomarkers, and the 
LGB, XGBoost, and XGBRF methods were not effective 
enough to distinguish obese people from healthy people 
(Fig. 4E). Among these countries, CHN had the highest 
AUC. To determine the reasons for this, we compared 
these datasets with those of other countries. We believe 
that the balance of these datasets plays a key role in the 
prediction. In contrast, there are fewer confounding fac-
tors in these datasets because the data come from studies 
specializing in obesity [35]. In contrast, the result of the 
UK was worse than that of other countries, as we missed 
one key biomarker. This may be attributed to the scar-
city of datasets in the UK. When using the potential of 
these biomarkers in additional validation datasets, high-
accuracy predictions were also obtained. This indicates 
that the selected regional shared biomarkers were not a 
result of overfitting in the discovery cohort. Among these 
machine learning models, the XGBoost classifier has 
been proven to be the most effective (Fig.  4E), which is 
in line with many previous gut microbiome studies. This 
suggests that we should not adhere to one classifier alone, 
such as an RF classifier when conducting future research 
on gut microbiota [36].

However, although we obtained comprehensive and 
precise regional shared biomarkers for obese individu-
als, personalized regulation of the minimum subset 
of the targeted gut microbiome to restore the health 
status of obese individuals remains a challenge. To this 
end, we presented counterfactual instances based on 
deep reinforcement learning, a strong tool to provide 
ideal personalized treatment regimens for obese peo-
ple, which describes the necessary minimal changes 
in biomarkers to alter the machine learning models’ 

prediction of obese people to healthy. Although we 
are still unable to treat obese people according to the 
obtained precise treatment regimens because of the 
limitations of technology, it can still provide an option 
for future treatment. Furthermore, by pooling all the 
counterfactual explanations of obese people, we can 
obtain a set of beneficial broad-spectrum consist-
ent targets for cross-regional obesity populations, 
such as Akkermansia muciniphila, Faecalibacterium 
prausnitzii, Prevotella copri, Bacteroides dorei, Bac-
teroides eggerthii, Alistipes finegoldii, Alistipes shahii, 
Eubacterium sp. _CAG_180, and Roseburia hominis. 
Among these biomarkers, several lines of evidence 
suggest the beneficial effects of Akkermansia mucin-
iphila, Faecalibacterium prausnitzii, Prevotella copri, 
and Bacteroides dorei in the amelioration of obesity 
and associated complications [32, 34, 37]. For exam-
ple, previous studies have shown that Prevotella copri 
is a potential candidate for treating metabolic diseases 
[38], as it can improve glucose tolerance [39], increase 
GLP-1 levels, and lower hunger sensations [40]. In 
addition, Bacteroides eggerthii [41], Roseburia homi-
nis [42, 43], Alistipes finegoldii, Alistipes shahii [44], 
and Eubacterium sp. [45] have been shown to produce 
SCFAs, proving that they have the potential to help 
obese individuals lose weight. Conversely, Coprococ-
cus comes and Dorea formicigenerans were positively 
correlated with obesity in our study, which is also con-
sistent with previous studies [35, 46]. Certainly, these 
species need to be validated in further experiments. 
However, we also found that some shared biomark-
ers have poor agreement on the influence of obesity 
among different countries. For example, Ruminococcus 
torques plays different roles in DNK and FRA, which 
may be due to insufficient datasets, the same species 
producing different metabolites under different condi-
tions, or the strain diversity of species [47]. It would 
be more precise if strain-level taxonomic datasets were 
used. In addition, it is worth noting that biomarkers 
with small changes here do not mean that they do not 
affect obesity but that it is easier to help obese individ-
uals recover their health by regulating biomarkers with 
large changes. Furthermore, to verify the validity of the 
counterfactual instances, we randomly selected one 
counterfactual instance and the corresponding original 
instance for further analysis. Compared to the origi-
nal obese instance, we found that most of the altered 
gut microbiome abundances were closer to those of 
healthy people. In addition, correlation network pat-
terns were analyzed for counterfactual instances and 
original obese instances. It is not surprising that the 
counterfactual instance network has more common 
associations with the healthy people network than the 
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original obese instance network. In conclusion, the 
counterfactual instances are closer to healthy people 
than the original instances in many aspects, indicating 
that counterfactual instances are reliable. Notably, our 
framework can also be applied to other diseases if we 
have enough relevant datasets, for instance, providing 
individual treatment regimens of the gut microbiome 
for patients with inflammatory bowel disease (IBD). 
However, the accuracy of the model prediction must 
be sufficiently high; otherwise, the results of counter-
factual instances will be inaccurate.

In summary, this study focused on obtaining regional 
shared biomarkers by pooling shotgun metagenomic 
data from published datasets and providing ideal per-
sonalized treatment regimens for obese individuals. By 
developing ensemble methods and applying deep rein-
forcement learning to generate counterfactual instances, 
we eventually obtained and verified the regional shared 
biomarkers and personalized treatment regimens. How-
ever, as the geographical span of our samples was not 
wide enough, the obtained regional shared biomark-
ers are still questionable. In addition, the application of 
counterfactual instances in the gut microbiome is not 
mature, and we further need to improve the precision 
of the machine learning model prediction to make the 
results more reliable.

Conclusions
In this study, we proposed a systematic machine-
learning framework and applied it to 870 human stool 
metagenomes across five countries. This machine-
learning framework can be divided into two parts. 
First, a heterogeneous ensemble feature selection 
diagram was established to obtain comprehensive 
regional shared biomarkers for obese individuals and 
they showed good performance in distinguishing obese 
people from the healthy group when demonstrated 
on validation datasets. Second, a deep reinforcement 
learning model was developed to create counterfactual 
instances for the gut microbiome of obese individuals. 
Which performed personalized counterfactual modu-
lation analysis for individual people. The counter-
factual instances were proved to be closer to healthy 
people than the original obese instances in many 
aspects, indicating that counterfactual instances are 
reliable. By pooling all counterfactual instances, we 
also inferred a set of broad-spectrum consistent tar-
gets for cross-regional obesity populations. In sum-
mary, this work helps to make the most of the gut 
microbiome for obesity and our machine-learning 
framework could also contribute to other diseases in 
the field of gut microbes.

Methods
Data collection of human stool metagenomes
We performed keyword searches (e.g., “metagenome,” 
“whole genome shotgun (WGS),” “gut microbiome”) in 
PubMed for published studies with available metagen-
ome data of human stool. To obtain as many samples as 
possible from different regions, we limited ourselves to 
studies related to obesity and retrieved metagenomic data 
from studies related to other diseases, such as colorectal 
cancer, which had BMI (Body Mass Index) information 
on the samples. In these studies, wherein multiple sam-
ples were suffering from other diseases, we incorporated 
only samples from the control group that had not been 
diagnosed with other diseases and were aged > 18 years. 
Raw metagenome sequence files were downloaded from 
the National Center for Biotechnology Information and 
European Nucleotide Archive databases. Furthermore, all 
samples were categorized by country and BMI (obesity 
group: BMI ≥ 30; healthy group: BMI < 25) to facilitate 
further study.

Bioinformatics processing
In this study, Trimmomatic (SLIDINGWINDOW:4:25 
MINLEN:60 LEADING:3 TRAILING:3) was used to 
remove low-quality read bases. Thereafter, the remain-
ing reads were compared with the human genome using 
the BWA tool to remove reads from the host. Finally, the 
composition of the microbiome was determined using 
MetaPhlAn2 [48] software by inputting quality-con-
trolled short-read sequences, and the species abundance 
information tables of the individual samples were com-
bined using merge_metaphlan_tables.py scripts.

Calculation of microbiome diversity
We used the R package “vegan” v2.5.6 to calculate the 
Shannon diversity index based on the species abundance 
of our samples. To explore the differences in the Shannon 
index between different groups, the Wilcoxon rank-sum 
test was used in the basic R package. At the same time, 
the R packages “vegan” v2.5.6 and “ade4” v1.7–15 were 
used to perform PCoA ordination with Bray-Curtis dis-
tance computed on the microbiome taxonomic profiles.

Statistical analysis
There are various approaches to calculating the associa-
tion between the gut microbiome and BMI with varying 
efficiency and accuracy. To obtain more comprehensive 
and accurate biomarkers for obesity, we selected seven 
filter correlation algorithms. As a simple popular indi-
cator, Pearson’s correlation coefficient was considered. 
In addition, Spearman’s correlation coefficient, Kend-
all’s correlation, and maximal information coefficient 
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(MIC) were used to find nonlinear associations. Finally, 
Pearson’s, Spearman’s, and Kendall’s partial correlation 
coefficients were included to detect direct interactions 
between them.

Pearson’s, Spearman’s, and Kendall’s correlation coeffi-
cients were calculated using Python v3.8.5. As mentioned 
above, we also obtained MICs using the Python package 
“minepy”. In contrast, Pearson’s, Spearman’s, and Kend-
all’s partial correlation coefficients were determined from 
the Python package “Pingouin” with method = “Pearson,” 
“Spearman,” and “Kendall,” respectively.

Machine learning
In this study, machine learning models were employed 
to select features and evaluate their quality. Specifically, 
we used Decision Tree (DT), Random Forest (RF), Gra-
dient boosted regression trees (GBDT), eXtreme Gra-
dient Boosting (XGBoost, XGBRF), Adaptive Boosting 
(AdaBoost), and LGB (Light Gradient Boosting Machine 
(LGB) to select the features through embedding in the 
modeling phase based on the scikit-learn and XGBoost 
Python packages, which have been widely applied in the 
field of the gut microbiome [49]. To verify the accuracy of 
the selected features, we used them as the features of the 
training models and evaluated the AUC of these models 
with 5-fold cross-validation.

Counterfactual inference for modulation analysis
In this study, counterfactual reasoning was constructed 
to alter the targeted microbiome biomarkers so that the 
regulated features were close to the expected instance 
(using distance measure) and could not be distinguished 
from real instances. In summary, we built a classifica-
tion model that can accurately distinguish obesity from 
healthy samples based on the abundance of shared bio-
markers. Second, we attempted to alter the composi-
tion of obese samples to their healthy counterparts by 
modulating the abundance of biomarkers (construct 
counterfactual explanations). Thus, these counterfactual 
explanations can provide personalized modulation analy-
sis for each individual with obesity. The method to obtain 
counterfactual explanations of the original obese individ-
uals can be defined as:

(1)yM = M(x)

(2)xCF = x + δCF

(3)yT = M(xCF )

Let M be a classifier model, x an original obese 
instance, yM the model prediction of x, xCF a counter-
factual instance, δCF the changes in features, and yT the 
target prediction. For each original obese instance, we 
needed to produce a counterfactual instance xCF (Eq. 2) 
that altered the model prediction to health (Eq.  3) by 
changing the abundance of biomarkers δCF in this work. 
To obtain a suitable xCF, we applied deep reinforcement 
learning to get δCF of each original obesity instance. Com-
pared to other methods, it is more effective and suitable 
for high-dimensional datasets. To better understand the 
advantages of our method, we provide a simple review 
of reinforcement learning here. In addition, the nature of 
reinforcement learning is that an agent tries to obtain the 
maximum cumulative reward by repeatedly interacting 
with the environment. One of the classic approaches to 
obtaining the best policy in reinforcement learning is to 
approximate the Q-function, which is an effective func-
tion for estimating the reward value after the agent takes 
a particular action in a given state. Therefore, if we know 
all the results of any action in a state s by the action-value 
function Q∗(s, a), we will find the best strategy to acquire 
the maximum cumulative reward by

We can easily obtain Q∗(s, a) by evaluating the state-
action pair for all available actions in a discrete action 
space. However, it is usually impossible to determine the 
optimal Q function for a continuous action space. To this 
end, Deep Deterministic Policy Gradient (DDPG) [50] was 
proposed by interleaving a state-action function approxi-
mator Q (the critic) of Q∗(s, a) with learning an approxima-
tor 𝜇 (the actor) for the best action a∗(s), which optimized 
the parameters through gradient-based methods.

Returning to this theme, because the abundance of 
biomarker δCF is a continuous vector, we applied DDPG 
to find the best δCF in this study [51]. Specifically, the 
DDPG includes two separate networks, an actor 𝜇 (take 
action by generating δCF) and a critic Q (evaluate the 
effectiveness of δCF). The training steps aim to optimize 
the actor-network and the critic network. For the actor-
network, it is designed to maximize the critic Q output 
Lmax (Eq. 5) by generating the xCF. Rather than straight-
forwardly put the x in the high-dimensional infor-
mation space to generate the xCF, we first trained an 
autoencoder model. The encoding of x can be defined 
as z = enc  (x), and the actor generates the counterfac-
tual instance zCF = μ(z, yM, yT, c; θμ), 𝑐 represents the 
conditioning vector, θμ is an important parameter for μ. 
For the subsequent analysis of the xCF, the zCF will be 
decoded back to the original instance as xCF = dec (zCF). 
In addition, the actor should also minimize x and xCF to 

(4)a∗(s) = argmax
a

Q∗(s, a)
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generate a sparse counterfactual explanation. Therefore, 
the sparsity loss Lsparsity (Eq. 6) was generated to operate 
on the xCF and combine the L1 loss over the features. At 
last, the consistency loss Lconsist (Eq.  7) was employed 
to encode the xCF back to the zCF. The Lmax, Lsparsity, and 
Lconsist can be separately defined as follows:

And we can update the actor by one-step gradient 
descent using:

Here, B is a batch of experiences, zCF = μ(z, yM, yT, c; θμ), 
θμ is an important parameter for the μ, and λs and λc 
are the loss hyperparameters that determine the effects 
of  Lsparsity and Lconsist, respectively. We updated the θμ 
parameter through gradient descent to find the best 
zCF by the actor 𝜇 so that maximize the critic Q (output)

The critic network regresses on the reword value 
R = f(M(xCF), yT), which is determined by the prediction 
of the machine learning model. To make critic Q more 
accurate, the DDPG update critic by one-step gradient 
descent can be defined as:

Similarly, θQ is an important parameter for critic Q. We 
updated the θQ parameter by gradient descent so that the 
critic Q could be closer to the R. Therefore, the critic Q 
can be more reliable to instruct the actor 𝜇 to obtain the 
optimal xCF.

Co‑abundance networks of original obese, healthy, 
and counterfactual samples
To further verify the reliability of the counterfactual sam-
ples, we compared the co-abundance correlation network 
of healthy samples, original obese samples, and coun-
terfactual samples based on the abundance of selected 
regional shared biomarkers. Correlations between bio-
markers were computed using Pearson’s correlation coef-
ficient in the Python environment v3.8.5. Gephi v0.9.2 was 
employed to visualize the co-abundance network.

(5)Lmax = −
1

|B|
B

Q z, yM , yT , c, zCF

(6)Lsparsity =
1

|B|

∑

B

L1(x, xCF )

(7)Lconsist =
1

|B|

∑

B

(enc(xCF , c)− zCF )
2

(8)∇θµ

(

Lmax + �sLsparsity + �cLconsist
)

(9)∇θQ

1

|B|

∑

B

(

Q
(

z, yM , yT , zCF , c; θQ)− R
)2
)
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