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Abstract 

Background  Grain yield is a complex and polygenic trait influenced by the photosynthetic source-sink relationship 
in wheat. The top three leaves, especially the flag leaf, are considered the major sources of photo-assimilates accumu-
lated in the grain. Determination of significant genomic regions and candidate genes affecting flag leaf size can be 
used in breeding for grain yield improvement.

Results  With the final purpose of understanding key genomic regions for flag leaf size, a meta-analysis of 521 initial 
quantitative trait loci (QTLs) from 31 independent QTL mapping studies over the past decades was performed, where 
333 loci eventually were refined into 64 meta-QTLs (MQTLs). The average confidence interval (CI) of these MQTLs 
was 5.28 times less than that of the initial QTLs. Thirty-three MQTLs overlapped the marker trait associations (MTAs) 
previously reported in genome-wide association studies (GWAS) for flag leaf traits in wheat. A total of 2262 candidate 
genes for flag leaf size, which were involved in the peroxisome, basal transcription factor, and tyrosine metabolism 
pathways were identified in MQTL regions by the in silico transcriptome assessment. Of these, the expression analy-
sis of the available genes revealed that 134 genes with > 2 transcripts per million (TPM) were highly and specifically 
expressed in the leaf. These candidate genes could be critical to affect flag leaf size in wheat.

Conclusions  The findings will make further insight into the genetic determinants of flag leaf size and provide some 
reliable MQTLs and putative candidate genes for the genetic improvement of flag leaf size in wheat.

Keywords  Wheat, Flag leaf traits, QTL mapping, Meta-analysis, Transcriptome, Candidate genes

Background
Wheat (Triticum aestivum L.) is one of the most impor-
tant cereal crops worldwide and provides about one-fifth 
of the calories consumed in the global diet [1]. There 
is a major concern that the risk of a global food cri-
sis is increasing, due to the ever-increasing population, 
extreme climate changes, and reduction in arable land 
[2]. It is also estimated that an additional 1 billion tons 
of grain per year will need to be grown by 2050 to meet 
food demands [3]. To address this issue, wheat breeders 
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are emphasizing trait-based breeding using genotype 
complementation with elite agronomic traits to acceler-
ate grain yield improvement [4, 5]. Further improvement 
in wheat genetic gain can likely be achieved by the breed-
ing for key yield-related agronomic and physiological 
traits [6].

Grain yield is a complex and polygenic trait that is 
influenced by the photosynthetic source-sink relation-
ship that determines changes in carbohydrate synthe-
sis, accumulation, and distribution, especially in mature 
leaves [7–11]. Recent studies have shown that delay-
ing leaf senescence in plants can contribute to maintain 
source-sink relationships, resulting in higher grain yields 
[12–14]. In wheat, the top three leaves, especially the flag 
leaf, are considered the major sources of photo-assimi-
lates that accumulate in the grain [11, 15]. The flag leaf 
contributes about 45 to 58% of total photosynthetic activ-
ity [16] and over 40% of assimilates during grain filling 
[17]. The orientation and size of flag leaves are important 
in plant breeding, because they affect plant canopy mor-
phology and photosynthetic efficiency [18]. The size of 
the flag leaf, consisting of leaf length, width, and area, is 
an extremely important factor that determines leaf struc-
ture and yield potential [17, 19]. Therefore, it is of high 
priority to understand the genetic mechanisms underly-
ing flag leaf traits in wheat.

Flag leaf size is a typical quantitative trait, controlled by 
polygenes and highly influenced by environmental fac-
tors [20–22]. Several efforts have been made to explain 
the genetic mechanisms underlying flag leaf size by two 
strategies of quantitative trait loci (QTL) mapping [23–
25] and genome-wide association studies (GWAS) [10, 
26–28] in wheat. However, the significance of these QTL 
mapping results is strongly influenced by the experimen-
tal conditions, the type and size of mapping populations, 
density of genetic markers, and statistical methods used 
[29, 30]. In this context, these identified QTLs are often 
not robust enough to be used directedly in wheat breed-
ing for marker-assisted selection (MAS) [31]. Therefore, 
the discovery of major and robust QTLs and closely asso-
ciated markers with high potential for molecular breed-
ing remains a challenge [32].

As another method for integrating QTL information, 
the meta-QTL (MQTL) analysis provides an effective 
strategy for identifying major genomic regions governing 
traits, regardless of the genetic backgrounds and envi-
ronments [33]. This method has been used to identify 
consensus regions by examining QTL data from inde-
pendent studies for their effect and consistency across 
different genetic backgrounds and environments, and to 
refine and confirm QTL positions on a consensus map by 
using mathematical models [34]. In wheat, MQTL analy-
sis has also been successfully used to identify consensus 

QTL regions for yield-related traits [35–38], drought and 
heat tolerance [39–42], disease resistance [43–46], grain 
quality traits [31, 47–49], root-related traits [50–52], 
and so on. Likewise, MQTL has also been widely used 
for the different quantitative traits in different species 
such as rice (Oryza sativa L.) [53–55], maize (Zea mays 
L.) [56–58], barley (Hordeum vulgare L.) [59], and cot-
ton (Gossypium hirsutum L.) [60]. MQTL analysis exam-
ined relevant QTL studies and refined the confidence 
intervals (CIs) of QTLs or QTL clusters to identify more 
reliable QTLs [38]. With the release of the high-quality 
genome sequence of Chinese Spring [61], there is an 
unprecedented likelihood of using these public resources 
to uncover the molecular mechanisms that influence 
important wheat agronomic traits at the genetic level 
[62]. In the same way, numerous transcriptomic data of 
wheat are available on a user-friendly platform [63, 64]. 
For instance, MQTL analysis combined with transcrip-
tome assessment for important quality traits in wheat 
was performed [47], which led to the identification of 110 
MQTLs, and finally 44 candidate genes with high prob-
ability of association with quality traits. Saini et al.(2022) 
[65] identified 141 MQTLs out of 2852 major MQTLs for 
yield and related traits and further predicted 1202 candi-
date genes within major MQTL regions and 50 homologs 
of associated genes for yield from other cereals. Eighty-
six MQTLs for yield-related traits were also identified 
from 381 original QTLs under different environmental 
conditions, of which 18 genes or gene clusters associated 
with these MQTLs were validated in this study [36].

The aim of the present study was to conduct a meta-
analysis for flag leaf size from independent QTL mapping 
studies published in the last decades and to deepen the 
genetic architecture underlying flag leaf size by discov-
ering putative genes and incorporating transcriptomic 
studies. The results will provide further insight into the 
genetic determinants for flag leaf size, and some reliable 
QTLs and putative candidate genes will be suggested to 
be employed for the genetic improvement of these traits 
in wheat.

Results
Quantitative trait loci controlling flag leaf size in wheat
A total of 31 studies published between 2008 and 2020, 
involving 34 recombinant inbred line (RIL) populations, 
three double haploid (DH) populations, and two backcross 
(BC) populations, were thoroughly reviewed to compile 
information on available QTLs (Table 1). As a result, 521 
initial QTLs associated with flag leaf size were collected 
and distributed among all 21 wheat chromosomes. Of the 
earlier reported 521 initial QTLs, 38.39% (200) were dis-
tributed to subgenome A, 39.54% (206) to subgenome B, 
and only 22.07% (115) to subgenome D (Fig. 1a). Only 333 
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QTLs were successfully projected onto the consensus map 
(Fig. 1a and additional file 3), whereas the associated mark-
ers of the remaining 188 QTLs were absent from the con-
sensus map or had a low phenotypic variation explained 
(PVE) value or large CI. The projected 333 QTLs were 
identified on all 21 chromosomes except 2D, 3A, and 5D. 
The highest number of projected QTLs was on subgenome 

B with 164 QTLs, whereas the lowest number of projected 
QTLs was on subgenome D with 41 QTLs (Fig. 1a). Cor-
respondingly, the 95% CI varied from 0.04 cM to 55.14 cM, 
with approximately 63.53% (331) of the collected initial 
QTLs having a CI of less than 10 cM and 84.26% (439) hav-
ing a CI of less than 20 cM (Fig.  1b). The PVE values for 
individual QTLs ranged from 1.05 to 54.38% with a mean 

Table 1  Details of previous QTL studies used for Meta-QTL analysis

SSR single sequence repeat, EST-SSR experssed sequence tags-single sequence repeat, RAPD random amplified polymorphic DNA, SNP single nucleotide 
polymorphism, DArT diversity arrays technology, AFLP amplified fragment length polymorphism

No Parents of population Population size Population type Type and number of markers References

1 Hua Pei 3 / Yumai 57 168 DH SSR, EST-SSR (305) [66]

2 Halberd / Cutter 64 RIL SSR (170) [67]

3 (Halberd / Karl 92) / Cutter 121 RIL SSR markers and morphological marker (190) [68]

4 Longjian19 / Q9086 120 RIL SSR (405) [69]

5 Weimai 8 / Luohan 2 302 RIL SSR (348) [70]

6 Nanda 2419 / Wangshuibai 230 RIL EST-SSR (405) [24]

7 Zardak / 249 130 RIL SSR, EST-SSR, RAPD (71) [71]

8 Xiaoyan 81 / Xinnong 1376 236 RIL SSR (172) [72]

9 Kenong9204 / Jing411 188 RIL SSR (591) [73]

10 Hanxuan 10 / Lumai 14 150 DH SSR (395) [74]

11 Ningchun 4 / Ningchun 27 128 RIL SSR (291) [75]

12 Yanda1817 / Beinong6 269 RIL SSR, ET-SSR, SNP (2559) [76]

13 Forno / Oberkulmer 226 RIL SSR (182) [77]

14 Zhou 8425B / Xiaoyan 81 102 RIL SNP, SSR (6949) [78]

15 Ningchun 4 / Drasdal 148 RIL SSR (1000) [79]

16 Lankao / Xiaoyan81 133 RIL SSR (202) [80]

17 Doumai / Shi 4185 275 RIL SNP (11012) [25]

Gaocheng 8901 / Zhoumai 16 176 RIL SNP (11979) [25]

Linmai 2 / Zhong 892 273 RIL SNP (10443) [25]

18 ND3331 / Zang1817 213 RIL SSR (335) [18]

19 CO940610 / Platte 185 DH SSR, DArT, STS and protein based markers (462) [81]

20 Weimai 8 / Luohan 2 179 RIL DArT (576)

Weimai 8 / Yannong 19 175 RIL DArT (576) [82]

Weimai 8 / Jimai 20 172 RIL DArT (576)

21 SeriM82 / Babax 167 RIL SSR, AFLP and DArT (475) [23]

22 Kenong9204 / Jing411 188 RIL SNP (119566) [83]

23 20,828 / Chuannong 16 199 RIL SNP (119566) [84]

24 WL711 / C306 206 RIL SSR and STS (173) [85]

25 Yanzhan 1 / Cayazheda 29 82 RIL SNP (2059) [86]

Yanzhan 1 / Yunnanxiaomai 98 RIL

Yanzhan 1 / Yutiandaomai 93 RIL

Yanzhan 1 / Hussar 97 RIL

26 (Shanghai 3 / Catbird) / Naxos 137 RIL SSR (373) [87]

27 20,828 / SY95-71 128 RIL SNP, PCR-based markers (2529) [88]

28 Lumai 14 / Jing 411 160 BC3F6 SSR (156) [89]

Lumai 14 / Shaanhan 8675 160 BC3F6 SSR (185) [89]

29 Proteo / Chajia 97 RIL SSR, SNP (2810) [28]

30 Xiaoyan 8 / Xinong 1376 120 RIL SNP (5531) [90]

31 JingDong 8 / Aikang 58 207 RIL SSR (149) [91]
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of 10.23%. Only 39.92% (208) of the initial QTLs had PVE 
values greater than 10% (Fig. 1c).

Projection of initial QTLs and identification of meta‑QTL 
for flag leaf size
A total of 64 MQTLs were generated from the 333 pro-
jected QTLs based on the criteria of the lowest model value 
and at least two overlapping initial QTLs (Fig.  2, Table 
S1). The 95% CI of the identified MQTLs, ranging from 
0.02 to 18.05 cM with an average of 1.74 cM, was 5.28-fold 
reduction than that of the initial QTLs (Fig. 3). This indi-
cated that these MQTLs were mapped more accurately. 
In addition, there were significant differences in the aver-
age CIs of the MQTLs between different chromosomes. 
For example, the average CI of MQTLs on chromosomes 
1A, 3B, 6A and 1D decreased 102.28-, 30.16-, 23.38- and 
22.14-fold, respectively (Fig. 3). Based on the comparison 
of the flanking marker sequences, the physical locations 
of all 64 MQTLs ranged from 1.64 Mb (MQTL 2B.6) to 
206.35 Mb (MQTL 5A.2) (Table S1). These MQTLs, were 
then selected for further identifying putative candidate 
genes. Of the MQTLs identified, 13 were core MQTLs, 
such as MQTL2A.1, MQTL 2A.2, MQTL 2A.3, MQTL 
2A.5, MQTL 2B.4, MQTL 2B.6, MQTL 2B.8, MQTL 3B.4, 
MQTL 3B.5, MQTL 5A.4, MQTL 5B.3, MQTL 6B.6, and 
MQTL 7A.5, met the previously established criteria for 
the search for candidate genes in the databases avail-
able. Moreover, the physical distances of the core MQTLs 
ranged from 1.64 to 18.77 Mb, while the genetic distance 
ranged from 0.02 to 0.9 cM (Table 2).

MQTLs matching MTAs from previous genome‑wide 
association studies
The physical positions of the MQTLs identified in this 
study and the marker trait associations (MTAs) from 11 

previous studies were used for comparison to further 
determine the accuracy of MQTL for flag leaf size (Fig. 4, 
Table S2). Accordingly, 51.56% (33/64) of the identified 
MQTLs were co-located with 77 SNP peak positions 
early reported in GWAS for leaf size in wheat. This indi-
cated that only half of the MQTL regions could be vali-
dated by the MTAs. The number of MTAs colocalized for 
each MQTL also varied from one to seven in 11 GWAS 
studies. Each of these 33 MQTLs was colocalized with 
at least one MTA. Of these, MQTL-2A.1, MQTL-4B.5 
and MQTL 4A.1 were colocalized with 7, 6 and 5 MTAs, 
respectively.

Putative genes and in silico gene expression analysis
In this study, three approaches were developed to iden-
tify putative candidate genes associated with leaf size 
in wheat. An exhaustive search for known rice genes 
associated with flag leaf traits resulted in a collection 
of 97 candidate genes (Table S3) that were used to iden-
tify their corresponding homologs in wheat. Only 41 
genes of these were identified within 22 MQTL regions 
(Table S4). These genes were reported to affect leaf-
related traits of rice through a variety of proteins/prod-
ucts, such as auxin response factor, zinc finger protein, 
probable transcription factor, cyclin-dependent kinase 
inhibitor, growth regulating factor, and so on. The num-
ber of putative genes within each MQTL varied from 
one to five, with an average of 1.86 genes per MQTL. 
We identified 2262 genes within MQTL regions, includ-
ing 41 genes with corresponding homologs for the leaf 
traits in rice (Table S4), and 2221 putative genes after 
eliminating duplicate genes in overlapping MQTLs 
(Table S5). Most putative genes (278 genes) were iden-
tified within the confidence region of MQTL-5B.3, 
whereas only one gene was found on chromosome 6A. 

Fig. 1  a Number of initial and projected QTLs. b Confidence intervals of the initial QTLs. c The individual PVEs of QTLs
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These genes with similar function included 183 putative 
genes for F-box-like domain proteins, 78 for protein 
kinases, 48 for BTB/POZ domain-containing proteins, 
33 for leucine-rich repeat domain proteins, 25 for gly-
cosyltransferase family proteins, and 21 for cytochrome 
P450 proteins, etc. (Fig. S1).

Gene ontology (GO) enrichment and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analyses 
were performed to determine the functional classifica-
tion of the identified genes. KEGG enrichment analysis 
revealed that these putative genes were highly involved in 
the peroxisome, basal transcription factor, and tyrosine 

Fig. 2  The chromosome distribution of 64 MQTLs for leaf size by MQTL analysis. The circles from outside to inside represent the physical 
chromosome distance (Mb), the position of 64 MQTLs, and the number of initial QTLs, respectively

Fig. 3  Comparison of mean CI for initial QTLs and MQTLs
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metabolism pathways, with the greatest number of puta-
tive genes in the peroxisome pathway (Fig. 5). GO analy-
sis revealed a range of GO terms, of which some of the 
most important and abundant GO terms included those 
involved in all three categories. The most enriched GO 
terms related to biological processes involved metabolic 
processes (621 genes) and cellular processes (506 genes). 
The most enriched GO terms related to molecular func-
tions involved binding (955 genes) and catalytic activities 
(634 genes). Regarding cellular components, genes were 
mainly enriched in the cell (314 genes) and in cell parts 
(309 genes) (Fig. 6).

Some critical genes controlling leaf size that emerged 
from enrichment analysis of GO and KEGG pathways 
were considered as selected genes for further in silico 
expression analysis.

The expression analysis of the available genes revealed 
that 134 genes with > 2 transcripts per million (TPM) 
were highly and specifically expressed in the leaf (Fig. 7, 
Table S6). Based on their expression, these genes could 
be divided into three classes (Fig. 7). In class I, the genes 
showed high expression in leaf during seedling and till-
ering stage, while in class II, the genes showed high 
expression in leaf at 14-day development stage and 
finally in class III, the genes showed high expression in 
leaf at three-leaf stage. Despite in the same tissues, the 
expression of the genes (e.g., TraesCS2A02G072400, 
TraesCS4B02G36700, TraesCS6B02G063400 and so on) 
varied in different growth stages (Fig.  7). Consequently, 
the expression analysis of 134 putative candidate genes 
at different developmental stages allowed us to real-
ize their potential roles in seedling leaf size, which were 

hypothesized to influence leaf size at the adult plant 
stage.

Discussion
Identification of key MQTL regions through meta‑analysis
Extensive studies on QTL mapping of yield and other 
important agronomical traits in wheat have been con-
ducted in recent decades. Nevertheless, most QTLs iden-
tified in these studies are each associated with a long CI 
and low PVE. This made these QTLs less useful for the 
marker-assisted breeding. In contrast, MQTLs with a 
narrow CI and a relatively high PVE are more compel-
ling in proving useful for molecular breeding [65]. It was 
also found that the results of the MQTL analysis were 
significantly and positively correlated with the qual-
ity of the QTL mapping results [92]. In addition, new 
QTLs are regularly added to the databases as molecular 
genetics and QTL mapping methods continue to evolve. 
Therefore, it is very important to keep up with this 
pace to integrate new QTLs into more stable and reli-
able MQTLs [47]. In the present study, 521 initial QTLs 
were collected from 31 studies between 2008 and 2020 
to identify genomic regions associated with flag leaf size 
in wheat (Table 1). Compared with subgenomes A and B, 
the subgenome D had a lower number of QTLs, which 
was consistent with previous MQTL analyses for grain 
yield and other yield-related traits [32, 36, 65, 92]. Only 
about 24.4% of the QTLs were mapped on subgenome D, 
while about 75.6% were found on subgenomes A and B 
(Fig. 1a). One possible reason for this phenomenon could 
be that the subgenome D has a low level of DNA poly-
morphism. Compared to the diploid progenitor species 

Table 2  Depiction of 13 core MQTLs identified for flag leaf size in wheat

MQTL Meta-QTL, FLL flag leaf length, FLW flag leaf width, FLA flag leaf area, CI the confidence interval

MQTL Initial QTLs Traits CI (cM) Genetic interval (cM) Physical interval (bp) Physical 
distance 
(Mb)

MQTL-2A.1 2 FLW(1),FLA(1) 0.06 34.37-34.43 31,025,604-40,589,528 9.56

MQTL-2A.2 2 FLL(1),FLA (1) 0.21 36.54-36.75 67,712,263-78,329,436 10.62

MQTL-2A.3 2 FLL(1),FLA(1) 0.35 37.58-37.93 59,553,716-78,326,762 18.77

MQTL-2A.5 2 FLL(1),FLW(1) 0.41 42.81-43.22 112,742,680-122,146,435 9.4

MQTL-2B.4 3 FLL(1),FLW(1),FLA(1) 0.12 80.90-81.02 632,921,191-636,481,655 3.56

MQTL-2B.6 2 FLL(1),FLA(1) 0.25 95.58-95.83 676,172,474-677,808,160 1.64

MQTL-2B.8 2 FLL(1),FLW(1) 0.3 103.29-103.59 693,069,555-694,997,337 1.93

MQTL-3B.4 2 FLL(1),FLW(1) 0.1 89.04-89.14 750,141,842-760,139,108 10

MQTL-3B.5 7 FLL(4),FLW(2),FLA(1) 0.42 82.82-83.24 732,824,415-738,985,172 6.16

MQTL-5A.4 9 FLL(3),FLW(2),FLA(4) 0.9 78.13-79.03 644,132,169-663,836,794 19.7

MQTL-5B.3 7 FLL(3),FLW(2),FLA(2) 0.02 145.21-145.23 670,524,595-690,225,662 19.7

MQTL-6B.6 2 FLL(2) 0.11 153.92-154.03 717,862,165-719,732,713 1.87

MQTL-7A.5 5 FLL(2),FLW(1),FLA(2) 0.42 64.33-64.75 694,930,915-701,309,255 6.38
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Aeegilops tauschii, very low genetic diversity has been 
observed for the subgenome D of wheat [93]. Meanwhile, 
there has also been a limited gene flow from Aegilops 
tauschii to cultivated wheat [94].

For the 64 MQTLs identified in the present study, 
the CI of the identified MQTLs with an average of 
1.74 cM reduced 5.28-fold compared with the mean 
value of the corresponding initial QTLs (Fig.  3). In a 
similar study, the discovery of 13 MQTLs with an aver-
age CI of 13.6 Mb for the initial QTLs and 6.01 Mb for 

the MQTLs was found to be 2.26-fold reduction than 
that of the initial QTLs for drought tolerance in bread 
wheat [32]. Moreover, the definitive physical position of 
the 64 MQTLs in the present study was obtained by the 
publication of the wheat genome reference sequence of 
Chinese Spring, where the physical position of the iden-
tified 64 MQTLs varied from 1.64 Mb (MQTL 2B.6) to 
206.35 Mb (MQTL 5A.2). Interestingly, 48 of the iden-
tified MQTLs contained a 95% genetic CI below 2 cM 
(Table S1).

Fig. 4  Validation of MQTL by MTAs in wheat traits associated with flag leaves from GWAS with 11 different natural populations
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It is widely accepted that optimizing flag leaf morphol-
ogy, including the leaf length, width and area are impor-
tant determinants to increase yield in wheat [82, 84, 95, 
96]. Generally, leaf size is controlled by two main dimen-
sions: leaf length and width which are sensitive to envi-
ronmental factors [97, 98]. Previous studies have detected 
significant and positive correlation between FLW and 
FLA, also found that FLW was more crucial than FLL in 
determining FLA [73, 84]. Of the 64 MQTLs identified 
in the current study, 45 MQTLs were detected associ-
ated with FLA, of which 32 MQTLs correlated with FLW 
and 35 MQTLs related to FLL. It seemed that there was 
much the same of their contribution on FLA. Moreover, 
there were 22 MQTLs all associated with FLL, FLW and 
FLA. The comparison of initial QTLs PVE of 22 MQTLs 
found that 14 MQTLs possessed higher PVE with FLW 
than FLL. Similar to early studies, this result further 
demonstrated that FLW as the major contributor had 
more influences on FLA. Also, Li et  al. (2018) reported 

that FLW can be used to select lines with large KN which 
is one of the main components of grain yield [25]. There-
fore, individuals with wider flag leaves should be selected 
to increase FLA and also increase yield potential in wheat 
breeding programs.

It has been demonstrated that several QTL intervals 
for flag leaf traits were mapped to the same or similar 
chromosomal regions for yield-related traits in the pre-
vious studies. For example, Ma et  al. (2020) found that 
the interval of QFll.sicau-2D.3, QFlw.sicau-2D and QFla.
sicau-2D were closely related to QTL for spikelet num-
ber per spike, plant height (PH), anthesis date, thou-
sand-grain weight (TGW), spike length (SL) and kernel 
number per spike (KN) [84]. Liu et al. (2018) confirmed 
that QFLA-4B.1 and QFLA-4B.2, were detected close 
to marker Xbarc20, which was also found to co-local-
ize with QTL for PH, SL, spike number per plant, KN, 
GW, and TGW [18]. In addition, 34 MQTLs identified 
in the current study had their physical positions almost 

Fig. 5  Top 20 KEGG enrichment pathways for 134 putative candidate genes from MQTL regions
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coincidence with those physical positions of MQTLs 
reported in three recent studies for yield-related traits 
[38] (Table S1). Given that MQTL for flag leaf traits that 
showed consistent relationships with yield-related traits, 
these MQTLs with a higher level of confidence may be 
described as pleiotropic regions which can effectively 
improve breeding efficiency for multiple traits.

There were 13 core MQTLs were selected basing on the 
preferred criteria of at least two overlapping initial QTLs 
with a physical distance < 20.0 Mb and a genetic distance 
< 1.0 cM [44] (Table  2), a higher level of confidence for 
further analysis and for identification of candidate genes. 
These 13 core MQTLs showed a smaller genetic CI 
(0.28 cM) compared with the initial QTLs (9.18 cM) with 
32.79-fold reduction. Of these, MQTL-2A.1, MQTL-
2A.3, MQTL-2B.4, MQTL-5A.4 and MQTL-5B.3 were 
validated by the MTAs. As for the 134 genes obtained 
via transcriptome and functional annotation, 39 genes 
were identified within the regions of 13 core MQTLs. It 
was worth mentioning that nearly half of (18/39) genes 
available from five core MQTL regions verified by the 
MTAs. Some of the significant features of these 13 core 
MQTLs detected in this study were described as follows: 
(i) They showed stability under different environments: 
MQTL-1A.1 consisted of nine initial QTLs for flag leaf 
length, width, and area with an average PVE of 6.54% 
from six different populations [22, 28], suggesting that 
MQTL-1A.1 exhibits strong stability for the flag leaf size 
trait. Apart from the above core MQTLs, the other core 

MQTLs also showed high stability under different envi-
ronments. (ii) There were multiple core MQTLs account-
ing for the same traits. Except for MQTL-2A.1, 12 of the 
13 core MQTLs were all based on the initial QTLs for flag 
leaf length. Likewise, MQTL-2A.1, MQTL-2A.2, MQTL-
2A.3, MQTL-2B.4, MQTL-2B.6, MQTL-3B.5, MQTL-
5A.4, MQTL-5B.3, and MQTL-7A.5 were composed 
of the initial QTLs for the flag leaf area trait (Table  2). 
These core MQTLs, not based on only one trait, were 
apparently more robust than initial QTLs. (iii) The core 
MQTLs showed pleiotropic effect. All 13 core MQTLs 
were responsible for controlling more than two traits. 
Of these, MQTL-5A.4 derived from nine initial QTLs, 
followed by MQTL-5B.3 and MQTL-3B.5 derived from 
seven initial QTLs for control of multiple traits (Table 2), 
suggesting that these MQTLs may represent a complex 
genomic region for control of more than one trait.

Potential candidate genes associated with leaf size 
in meta‑QTL regions
To support the location of the MQTLs identified in this 
study, an extensive literature search was conducted to 
identify known genes within MQTL regions. For exam-
ple, Siddiqui et al. (2021) identified two candidate genes 
TraesCS4B02G293600 and TraesCS4B02G293700 
on wheat chromosome 4 B[99]. They were strongly 
expressed in leaves and stems as well as under drought 
stress conditions, suggesting that the two genes are 
involved in photosynthetic pathways and drought 

Fig. 6  Level 2 GO terms for 134 putative candidate genes from MQTL regions
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tolerance mechanisms. The two genes were also located 
in the MQTL-4B.4 region identified in the present study. 
Liu et  al. (2018) found that the gene Ppd-D1 regulated 
leaf growth by controlling photoperiod, and its physi-
cal location was also found in the MQTL-5B.2 region in 
the current study [100]. When comparing the MQTLs 
identified in this study with the wheat gene TaCHLI-
7A, encoding the protein CHLI involved in the biosyn-
thesis of chlorophyll in common wheat [101], the gene 
was also located in the MQTL-7A.4 region. In addition, 

Muhammad et al. (2021) predicted 18 candidate genes for 
flag leaf length in wheat [27], where six of the predicted 
genes TraesCS5A01G487600, TraesCS5A01G487700, 
TraesCS5A01G487800, TraesCS5A01G487900, Traes 
CS5A01G488000, TraesCS5A01G488100, TraesCS5A01G 
488200 were located with the MQTL-5A.5 region in 
this study.

Another important finding in the present study was that 
2262 putative genes related to flag leaf size were identified 
within the MQTL regions and showed the spatiotemporal 

Fig. 7  Expression characteristics of 134 putative candidate genes in five different tissues. Transcriptome data were downloaded from expVIP
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and specific expression pattern (Table S4, Table S5). These 
candidate genes mainly encode the F-box-like domain pro-
teins, protein kinases and BTB/POZ domain-containing 
proteins. The F-box protein FBX92 played a role in regu-
lating leaf growth in Arabidopsis, where FBX92 regulates 
the rate of cell division [102]. PINOID kinase may actually 
function by influencing auxin accumulation and distribu-
tion leading to influence auxin metabolism and signaling 
indirectly, and finally suggest a role in leaf development as 
well in Arabidopsis [103]. The candidate genes associated 
with wheat leaf size within the MQTL regions were iden-
tified through the analysis of transcriptome data. Given 
the close evolutionary relationship between Gramineae 
species genomes [104], candidate genes with unknown 
functions in the wheat genome were evaluated in the 
MQTL regions of our study based on their orthol-
ogous genes in the rice genome [48]. For example, eight 
wheat homologs for rice genes, TraesCS1D02G393900, 
TraesCS1D02G394000, TraesCS1D02G394100, Traes 
CS4B02G064000, TraesCS5B02G508800, TraesCS7A02 
G059000, TraesCS7B02G484200, and TraesCS7D02G 
409700 were predicted in the early study [92], which were 
overlapped with six MQTLs identified in the present study. 
Of these, the first three genes were all present on MQTL-
1D. 1, which was formed from five initial QTLs from three 
different populations. The last five genes were located on 
the MQTL-4B.5, MQTL-5B.3, MQTL-7A.1, MQTL-7B.1, 
and MQTL-7D.2, respectively. The involvement of these 
eight homologous genes in the different biological pro-
cesses was associated with leaf size and chlorophyll con-
tent in rice, suggesting that these genes may be involved in 
the regulation of leaf size in wheat.

In addition, we annotated 2262 genes using GO or 
KEGG analysis (Figs.  5 and 6). KEGG and GO pathway 
enrichment analysis revealed that these putative genes 
were highly involved in the peroxisome, basal transcrip-
tion factor, tyrosine metabolism, photosynthesis and 
plant hormone signal transduction pathways. Peroxisome 
get involved in the photorespiration and the synthesis of 
phytohormones, which are important for signaling path-
ways, including jasmonic acid, auxin, and salicylic acid 
[105, 106]. The CFL2 regulated by transcription factor 
Roc5, encoding a cytochrome P450 protein, is involved 
in the regulation of flag leaf shape by influencing epider-
mis and cell wall development [107]. Tocochromanols 
and plastoquinone produced in the tyrosine biosynthetic 
pathways are essential metabolites produced in all plants 
and other photosynthetic organisms [108]. Plastoqui-
none is required for photosynthesis as an electron carrier, 
an enzyme involved in carotenoid biosynthesis and is a 
cofactor of phytoene desaturase. Tocopherols have unex-
pected roles in photo-assimilate transport [109, 110]. 

Herein, a total of 134 putative genes with TPM > 2 in the 
robust and stable MQTL regions were listed based on sig-
nificant gene expression in the leaf that may potentially 
affect leaf size in wheat (Table S6). For example, TraesC-
S4A02G149900, TraesCS4B02G165100, and TraesC-
S4D02G157200, encoding an ATP-dependent proteolytic 
subunit of Clp protease, were specifically expressed at the 
leaf seedling stage, while their homologous NAL9 genes 
caused reduced cell number in the lateral direction due 
to a significant reduction in the total number of vascular 
bundles in rice [111]. TraesCS4B02G341600, encoding 
a cytochrome P450 family protein, was also specifically 
expressed at the leaf seedling stage. Its homologous 
gene sd37 in rice was confirmed to encode the putative 
cytochrome P450 protein CYP96B4, and the sd37 trans-
genic leaves were smaller than those of the wild type, 
reflecting a decrease in cell number in the mutant [112]. 
TraesCS7D02G350500, encoding β-ketoacyl-CoA syn-
thase, was strongly expressed at the third leaf stage. In 
rice, its homologous gene WSL1 showed a pleiotropic 
phenotype, including reduced growth and shortened 
leaves [113]. Although the relationship between these 
genes and leaf size in wheat has not been reported, their 
homologous genes have been shown to be involved in 
the regulation of leaf size in rice. In addition, 17 genes 
with TPM > 2 enriched in the peroxisome, photosynthe-
sis, basal transcription factors and plant hormone signal 
transduction pathway. This suggests that these 134 puta-
tive candidate genes may have potential effects on leaf 
size regulation in wheat.

Conclusions
In this study, we deciphered key genomic regions 
controlling flag leaf size in wheat by integrating 
MQTL analysis and in silico transcriptome assess-
ment. The 333 initial QTLs were successfully pro-
jected on the reference genetic map and refined into 
64 MQTLs. Of these, 13 core MQTLs showed the 
mean CI was 32.79-fold reduction than initial QTLs 
and five core MQTLs were validated by the MTAs, 
suggesting as potential loci in MAS for flag leaf size 
in wheat. The 2262 putative candidate genes were 
mined within the MQTL regions by the genomic 
sequence comparison, where 134 candidate genes 
with more than 2 TPM were highly and specifically 
expressed in the leaf by in silico gene expression 
analysis. This suggested that, if these key MQTL 
regions and candidate genes will be further vali-
dated through biological experiment strategies, they 
have great application potential in molecular genetic 
improvement of flag leaf size in wheat.
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Methods
Bibliographic collection of QTLs for flag leaf size 
and construction of reference map for QTL projection
For QTLs controlling for flag leaf size, a comprehensive 
bibliographic collection was performed using PubMed 
(http://​www.​ncbi.​nlm.​nih.​gov/​pubmed), Google Scholar 
(https://​schol​ar.​google.​com/) and China National Knowl-
edge Infrastructure (https://​www.​cnki.​net/). QTL pro-
jection were conducted if all required information were 
available. For each study, QTL information collected 
included: (i) QTL name; (ii) three flag leaf related traits, 
including flag leaf length (FLL), flag leaf width (FLW) and 
flag leaf area (FLA); (iii) closely related flanking mark-
ers; (iv) position of the peak and associated 95% CI; (v) 
type and size of lines in the mapping population; (vi) 
LOD score; and (vii) the phenotypic explained variation 
(PVE) or R2 values of the QTLs. In cases where the log 
of odds ratio (LOD) and R2 values were missing for some 
QTLs detected in previous studies, they were assumed to 
be 3 and 10, respectively [44, 53]. When the peak posi-
tion was missing, the midpoint between the two flanking 
markers was treated as the position [92]. In addition, for 
the initial QTLs that were missing flanking markers and 
CIs, the CIs were recalculated according to population 
type and size using the following standard formula: (i) F2 
and backcross population, CI = 530/ (N× R2); (ii) recom-
binant inbred line (RIL) population, CI = 163/ (N× R2); 
and (iii) doubled haploid population, CI = 287/ (N× R2). 
Here, 530, 163, and 287 are the population-specific con-
stants obtained from different simulations [114, 115], N 
is the size of the mapping population used for QTL anal-
ysis, and R2 is the phenotypic variation explained by QTL 
[32].The main markers used to generate genetic linkage 
maps in QTL mapping studies include Simple Sequence 
Repeat (SSR), Diversity Arrays Technology (DArT), and 
Single Nucleotide Polymorphism (SNP) markers [36]. 
The genetic reference map obtained from two dense 
genetic maps [51, 116] was integrated as a high-density 
reference map [35]. This map contained 14,548 markers, 
including SSR, DArT, SNP and other types of markers, 
with a total length of 4813.72 cM, ranging from 155.6 cM 
to 350.11 cM in the 21 linkage groups. The map was used 
as reference map for projection of individual QTLs iden-
tified in independent populations [48].

QTL projection and meta‑QTL analysis
The initial QTLs data, the associated individual genetic 
maps from previous independent studies, and the ref-
erence genetic map were used as input files to create a 
consensus map and further perform the MQTL analysis 
[92]. BioMercator v4.2 software was used for projection 
[117, 118], the initial QTLs and the information of each 

QTL, for instance, CI, peak position, LOD score and and 
R2 were projected onto a reference map [117]. QTLs were 
discarded when they could not be projected onto the 
consensus map and those mapped to positions outside 
the consensus map [32].

After projection, MQTL analysis was performed on 
each chromosome using BioMercator v4.2 software [117, 
118] via the Veyrieras two-step algorithm [118, 119]. 
Two different approaches were used based on the num-
ber of initial QTLs on each chromosome. In the first 
approach, the meta-analysis proposed by Goffinet and 
Gerber (2000) [119] was applied when the number of 
initial QTLs on a chromosome was less than 10. Based 
on this approach, the best MQTL model with the low-
est AIC values for QTL integration and identification of 
consensus MQTL positions in BioMercator v4.2 software 
was selected. On the other hand, if the number of QTLs 
in a chromosome was at least 10, the second method 
proposed by Veyrieras [120] was used. According to this 
approach, meta-analyses were performed for individual 
chromosomes using a two-stage approach available in 
the software. In the first step, the collected QTLs on indi-
vidual chromosomes are clustered using default param-
eters. The number of potential MQTLs per chromosome 
is then estimated based on the following five selection 
criteria, including Akaike information criterion (AIC), 
corrected Akaike information criterion (AICc), Akaike 
information criterion 3 (AIC3), Bayesian information cri-
terion (BIC), and approximate weight of evidence (AWE). 
A QTL model that had the lowest values of the selection 
criteria was considered the best optimal model for the 
next step of meta-analysis. In the second step, the 95% 
CI and the positions of each MQTL were determined 
according to the optimal model selected in the previous 
step. The QTLs were integrated so that the peak position 
of the initial QTLs was in the MQTL CI [34], whereas 
the MQTLs without the minimum AIC values were to be 
discarded.

Identification of putative genes in MQTL regions
The putative genes are located within the regions iden-
tified basing on the positions of the flanking markers 
of the MQTL (or the marker closest to the flanking 
markers) [32]. After identifying the MQTLs, the next 
step was to find the flanking markers within the tar-
get MQTLs based on the 95% CI and the positions of 
each MQTL. The physical positions of each MQTL 
were obtained based on the positions of flanking mark-
ers which were searched in the Triticeae Multi-omics 
Center (http://​wheat​omics.​sdau.​edu.​cn) annotated by 
IWGSC_v1.1_HC_gene. When the physical positions of 
the flanking markers were not found, the GrainGenes 
database (https://​wheat.​pw.​usda.​gov/​GG3) or the 

http://www.ncbi.nlm.nih.gov/pubmed
https://scholar.google.com/
https://www.cnki.net/
http://wheatomics.sdau.edu.cn
https://wheat.pw.usda.gov/GG3
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DArT database (https://​www.​diver​sitya​rrays.​com) were 
used to obtain their sequences. The sequences informa-
tion was then aligned to the wheat reference genome in 
the Triticeae Multi-omics Center (http://​wheat​omics.​
sdau.​edu.​cn), using the BLASTN program to find the 
physical position of flanking markers [92].

MQTLs are considered potential genomic regions 
that are likely harbor putative genes for the traits [121]. 
Based on other meta-analyses published in recent 
years, three methods have been used to identify puta-
tive genes within MQTL regions [44, 92]. (i) In the 
first method, the strategy of orthologous compari-
son between wheat and rice was used to identify the 
major putative genes in the MQTL regions. For this 
purpose, the China Rice Data Center (https://​www.​
riced​ata.​cn/​gene/) was manually used to identify the 
genes for flag leaf associated traits in rice. In addition, 
the homologous genes of wheat were retrieved from 
the Triticease-Gene Tribe (http://​wheat.​cau.​edu.​cn/​
TGT/) based on the IWGSC RefSeq v1.1. (ii) To further 
refine the MQTL, those with at least two overlapping 
initial QTLs with a physical distance < 20.0 Mb and a 
genetic distance < 1.0 cM, referred to as core MQTLs, 
were selected from the second approach. (iii) The peak 
physical positions of the remaining MQTLs were calcu-
lated using 1-Mb region on each side of the MQTLs for 
mining relevant genes within the MQTL regions. The 
peak physical position of the MQTLs was calculated 
according to the method proposed by Saini [65]. Both 
the original and estimated range of physical positions 
were then entered into the search toolbox of the “Gene” 
in the WheatGmap database [122] to obtain details 
of gene models (locus ID information and functional 
descriptions) corresponding to MQTL regions.

Verification of MQTLs by GWAS and known wheat genes 
within MQTLs
To further validate the accuracy of the discovered MQTL 
regions, available genome-wide association studies for 
flag leaf size were reviewed to search for MTAs that 
could be compared with the MQTLs identified in this 
study. Considering the relatively large linkage disequi-
librium decay in wheat (approximately 5 Mb), the MTAs 
obtained from GWAS near MQTLs in the 5 Mb physi-
cal region were considered to be related to MQTLs [92]. 
The physical positions of known genes associated with 
flag leaf size within MQTLs were obtained from the Trit-
iceae Multi-omics Center (http://​wheat​omics.​sdau.​edu.​
cn). Subsequently, the physical positions of these genes 
were compared with the genomic regions of the MQTLs 
to identify genes that might correspond to individual 
MQTLs [65].

Expression of candidate genes within MQTL regions
Gene expression analysis examines how genes are tran-
scribed to produce functional products such as RNA 
or proteins [47]. The GENEDENOVO cloud platform 
(https://​www.​omics​hare.​com) was used to perform the 
GO and KEGG analysis. For transcriptional expres-
sion analysis, the Expression Visualization and Integra-
tion Platform (expVIP, http://​www.​wheat-​expre​ssion.​
com) with expression data from 18 tissues throughout 
the wheat growth period [64, 123] was used in this study. 
Only candidate genes showing at least 2 TPM expression 
were considered [124]. The expression characteristics of 
candidate genes were displayed by the heat map of TPM 
using the TBtools software [125]. In this study, the tissues 
and their corresponding stages were leaves at seedling, 
14-day, three-leaf, and tillering stages; roots at seedling, 
14-day, and three-leaf stages; stems at 1-cm spike, two-
node, and anthesis stages.
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