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Abstract 

Background  Salt-alkali stress represents one of the most stressful events with deleterious consequences for plant 
growth and crop productivity. Despite studies focusing on the effects of salt-alkali stress on morphology and physiol-
ogy, its molecular mechanisms remain unclear. Here, we employed RNA-sequencing (RNA-seq) to understand how 
Na2CO3 stress inhibits rice seedling growth.

Results  Na2CO3 stress significantly inhibited the growth of rice seedlings. Through RNA-seq, many differentially 
expressed genes (DEGs) were shown to be potentially involved in the rice seedling response to salt-alkali stress. After 
1-day and 5-day treatments, RNA-seq identified 1780 and 2315 DEGs in the Na2CO3-treated versus -untreated rice 
seedling shoots, respectively. According to the gene ontology enrichment and the Kyoto Encylopedia of Genes and 
Genomes annotation of DEGs, the growth-inhibition processes associated with salt-alkali stress involve a myriad of 
molecular events, including biosynthesis and metabolism, enzyme activity, and binding, etc.

Conclusion  Collectively, the transcriptome analyses in the present work revealed several potential key regulators of 
plant response to salt-alkali stress, and might pave a way to improve salt-alkali stress tolerance in rice.
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Background
Salt-alkali stress has been emerging as a severe threat 
to the plant growth and crop productivity. It is reported 
that there are more than 1  billion hm2 salinization-
alkalization lands worldwide [1]. Soil salinization and 
alkalization can produce a multitude of harmful effects 
on plants, including osmotic pressure, high pH stress 
and disrupt ionic balance [2, 3], thereby impeding plant 
growth, development and yield [4, 5].

Rice represents the second most crucial cereal after the 
wheat [6], and provides the primary source of calorie to 
a large fraction population globally [7–9]. However, rice 
displays poor salt-alkali resistance, especially at the early 
seedling stage [10, 11]. Previous researches have demon-
strated that the rice seedlings under salt-alkali stress grew 
slowly and suffered from a significant decrease in chloro-
phyll content, cell membrane stability, and relative water 
content (RWC) [12]. Moreover, our previous work estab-
lished that salt-alkali stress led to a series of functional 
abnormalities in rice seedlings, including photosynthetic 
capacity, ROS equilibrium, antioxidant system, organic 
acid and mineral element metabolism [13–15]. However, 
the definite molecular events of rice seedling response to 
salt-alkali stress are largely unknown.

At present, advances in molecular/omics/sequencing 
technology have been opening new paths for investigating 
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the impacts of environmental stress on plants, and RNA-
sequencing (RNA-seq) is one of the rapid development 
technologies [16]. RNA-seq has been used extensively due 
to its ability to provide efficient, rapid, and comprehensive 
transcript information [17]. A previous study reported that 
comparative transcriptomic analysis of two Vicia sativa L. 
cultivars could reveal the crucial role of metal transport-
ers in cadmium tolerance [18]. Baldoni et  al. [19] applied 
RNA-seq for investigating major differences in the root 
early responses to osmotic stress. A study by Xu and col-
leagues [20] discovered the molecular mechanisms behind 
cotton response to salt stress through a comprehensive 
transcriptome analysis. In the present work, we focused on 
the molecular players involved in rice seedling response to 
salt-alkali stress by utilizing RNA-seq. Our findings provide 
the theoretical basis for crop response to salt-alkali stress.

Results
Phenotype and growth parameters
In response to Na2CO3 treatment, fresh weight and RWC 
of rice seedling shoots presented a significant inhibition 

(Fig.  1A, B, F, J), while plant height and dry weight did 
not change significantly at day 1 (Fig. 1E, I). The growth-
inhibition in rice seedlings was more pronounced upon 
5 d of Na2CO3 treatment (Fig. 1C, D, G, H, K, L). These 
findings confirmed an adverse effect of salt-alkali stress 
on plants.

General transcriptomic profiling
After filtering low-quality reads and trimming adapt-
ers, approximately 88 gigabases of clean reads were used 
for assembly and analysis, and the Q30 base percent-
age was greater than 93.87% (Supplementary material 
1: Table S1). The ratio mapped to the japonica genome 
were 95.24-95.94% (Supplementary material 1: Table S2). 
After 1-day or 5-day treatment, differential expression 
analysis was performed in the Na2CO3-treated versus 
-untreated rice seedling shoots. Results showed com-
pared with 1-day treatment, the 5-day Na2CO3 treatment 
elicited a greater number of DEGs (Fig. 2A, B). Spearman 
correlation and principal component analysis demon-
strated good similarity of biological replicates under the 

Fig. 1  The growth of Na2CO3-treated (N+) versus -untreated (N-) rice seedlings. Gross inspection of N + versus N- rice seedling shoots at day 1 (A, 
B), day 5 (C, D). Statistical analysis for plant height (E), fresh weight (F), dry weight (I) and relative water content (J) from N + versus N- rice seedling 
shoots at day 1. Statistical analysis for plant height (G), fresh weight (H), dry weight (K) and relative water content (L) from N + versus N- rice 
seedling shoots at day 5
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same condition, and discriminated samples with different 
treatments (Fig. 2C, D, E, F). Additionally, 6 up-regulated 
and 4 down-regulated genes were randomly selected to 

validate RNA-seq accuracy through qRT-PCR. Results 
showed that the RNA-seq data matched well with the 
RNA-seq qRT-PCR findings (Supplementary material 1: 

Fig. 2  RNA-seq results for Na2CO3-treated (N+) versus -untreated (N-) rice seedling shoots. Ridgeline plots, principal component analysis (PCA) and 
heatmaps using DEGs obtained from N + versus N- shoots at day 1 (A, C, E) and day 5 (B, D, F)
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Fig. S1, Table S3). Taken together, we concluded that the 
RNA-seq could reliably identify genes that participated 
in rice seedling response to Na2CO3 treatment.

DEGs evaluation and bioinformatic analysis in Na2CO3 
treatment on day 1
A total of 1780 DEGs were identified upon one day of 
Na2CO3 treatment in the rice seedling shoots. Among these 
genes, 753 up-regulated and 1027 down-regulated genes 
were found (Fig. 3A, Supplementary material 2: Table S4). 
The top 15 up- and down-regulated genes were presented 
in Fig.  4A. According to the gene ontology (GO) enrich-
ment annotation of the 1780 DEGs, BP terms showed that 
the DEGs were enriched mainly in metabolic process, cellu-
lar process, biological regulation and response to stimulus, 
specifically, in oxidation-reduction process, carbohydrate 
metabolic process, photosynthesis, and response to light 
stimulus. Among CC terms, the process of cell, organelle 
and membrane was enriched by 1015, 830 and 602 DEGs, 
respectively. Out of MF terms, the process of catalytic 
activity and binding had the most abundant functions; 
in detail, the DEGs were involved in heme binding, iron 
ion binding and hydrolase activity (Fig. 5A). Based on the 
Kyoto Encylopedia of Genes and Genomes (KEGG) enrich-
ment annotation of the 1780 DEGs, 15 pathways were 
significantly enriched such as photosynthesis (ko00195), 
nitrogen metabolism (ko00910), glyoxylate and dicarboxy-
late metabolism (ko00630), carbon metabolism (ko01200) 
and carotenoid biosynthesis (ko00906), etc. (Fig. 6A, B).

DEGs evaluation and bioinformatic analysis in Na2CO3 
treatment on day 5
In the Na2CO3-treated versus -untreated rice seedling 
shoots, long-term stress (5 d treatment) resulted in 2315 

DEGs, including 982 up- and 1333 down-regulated genes 
(Fig. 3B, Supplementary material 2: Table S5). The top 15 
up- and down-regulated genes were displayed in Fig. 4B. 
On the basis of 2315 DEGs, GO enrichment annota-
tion was performed. The significantly enriched BP terms 
mainly included metabolic process, cellular process, bio-
logical regulation, response to stimulus, specifically, in 
chitin-catabolic process, oxidation-reduction process, 
carbohydrate metabolic process, regulation of jasmonic 
acid mediated signaling pathway, iron ion homeosta-
sis. Among CC terms, the number of DEGs enriched in 
the process of cell, organelle and membrane was great-
est, especially in plasma membrane and cytoplasm. Out 
of MF terms, catalytic activity and binding had the most 
abundant functions; in detail, the DEGs took effects in 
iron ion binding, heme binding and monooxygenase 
activity (Fig. 5B). KEGG enrichment annotation of 2315 
DEGs demonstrated that 454 DEGs were enriched in 110 
pathways. The significantly enriched KEGG pathways 
also included carbon fixation in photosynthetic organ-
isms (ko00710), plant-pathogen interaction (ko04626), 
carbon metabolism (ko01200), nitrogen metabolism 
(ko00910), vitamin B6 metabolism (ko00750), starch and 
sucrose metabolism (ko00500), etc. (Fig. 6C, D).

Overlapped DEGs, GO terms and pathways between the 1 
d and 5 d treatment
A total of 405 overlapped DEGs associated with rice 
seedling response to Na2CO3 treatment were identi-
fied between the 1 d and 5 d treatment (Supplementary 
material 1: Fig. S2A). Among these genes, 341 genes (175 
up-regulated and 166 down-regulated) displayed the 
same changing pattern (Supplementary material 1: Table 
S6, S7). A further increased expression in response to 5 

Fig. 3  Volcano plots of DEGs in Na2CO3-treated (N+) versus -untreated (N-) shoots at day 1 (A) and day 5 (B). Significantly up- and down-regulated 
genes were represented by red and green dots, respectively
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d versus 1 d treatment was found in 69 of the 175 up-
regulated genes (Supplementary material 1: Table S6 ). 
Among these 166 down-regulated genes, the expression 
levels of 72 genes were further decreased upon 5 d ver-
sus 1 d treatment (Supplementary material 1: Table S7). 
These findings suggested long-term Na2CO3 treatment 
enhanced the effects on the genes. In addition, 64 DEGs 
had an opposite expression pattern between the 1 d and 

5 d treatment (Supplementary material 1: Fig. S2B); that 
is, 48 genes were up-regulated at day 1 and down-regu-
lated at day 5; 16 genes were down-regulated at day 1 and 
up-regulated at day 5. These genes might play pleiotropic 
roles in rice response to salt-alkali stress.

In addition, the short-term and long-term salt-
alkali stress shared 39 common GO terms (Supple-
mentary material 1: Table S8) and 8 KEGG pathways 

Fig. 4  Top 15 up- (yellow) and 15 down-regulated (blue) genes in Na2CO3-treated (N+) versus -untreated (N-) shoots at day 1 (A) and day 5 (B). 
The first lap indicates the names of 15 top up- and down-regulated genes. The second lap indicates the fold change in N + versus N- rice seedling 
shoots. The third lap indicates larger circle presented larger fold change. The fourth and fifth lap show the mean FPKM of N- and N+, respectively

Fig. 5  GO enrichment analysis for DEGs in Na2CO3-treated (N+) versus -untreated (N-) rice seedling shoots at day 1 (A) and day 5 (B)
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(Supplementary material 1: Table S9), including oxa-
late oxidase activity (GO:0050162), oxidation-reduction 
process (GO:0055114), thiamine biosynthetic process 
(GO:0009228), brassinosteroid biosynthetic process 
(GO:0016132), etc.

Discussion
Crops are often subjected to severe abiotic stress such 
as water deficit [21–23], salinity [24–26], heavy metal 
exposure [27–29], etc. Thus, understanding how plants 
respond to these stresses is helpful to improve crop pro-
ductivity. Our findings here and previous studies [13] 
confirmed the inhibition of growth of rice seedlings 
under salt-alkali stress. In this work, we used RNA-seq 
to investigate the molecular players behind rice seedling 
response to salt-alkali stress.

Salt-alkali stress-induced plant responses are orches-
trated by a complex network of cross-talk between sign-
aling pathways and sensors. This work demonstrated 
that salt-alkali stress caused many DEGs associated with 
oxalate oxidase (OxO) that catalyzes the oxidative break-
down of oxalate to H2O2 and CO2 [30]. Previous studies 
reported that abiotic stresses of salinity [31], heat, and 

heavy metal ions [32] could increase OxO gene expres-
sion and/or OxO activation. In line with these results, 
this work found that OsOxO1, OsOxO3, and OsOxO4 
were up-regulated upon 1 d and 5 d treatment. Previ-
ous work demonstrated an increase in H2O2 content in 
response to salt-alkali stress [15]. In agreement, we found 
that salt-alkali stress elicited an increase in the expression 
of OsOxO1, OsOxO3 and OsOxO4 that participated in 
H2O2 metabolism.

Glutaredoxins (GRXs) are a class of oxidoreductase 
which are reduced by glutathione [33, 34], and exert 
various functions in plants, such as regulation of [Fe-S] 
assembly, Krebs cycle, Calvin cycle and signaling path-
way, plant response to phytohormones, etc. [35]. Previ-
ous studies demonstrated silencing the expression of 
GRXs genes in plants reduced tolerance to abiotic stress, 
whereas overexpression of GRXs genes exhibited an 
opposite function [36–38]. In line with this, we identi-
fied 4 down-regulated GRX genes (OsGRX23, OsGRX24, 
OsGRX28, OsGRX29) might be involved in rice seedling 
response to Na2CO3 treatment. These findings were fur-
ther confirmed by a study by Garg and co-workers [33]. 
Given the functions of GRXs genes in plants, we con-
cluded that down-regulation of OsGRX23, OsGRX24, 

Fig. 6  KEGG enrichment analysis for DEGs in Na2CO3-treated (N+) versus -untreated (N-) rice seedling shoots at day 1 (A, B) and day 5 (C, D). A, C 
DEGs enrichment in KEGG related to cellular processes, environmental information processing, genetic information processing, metabolism and 
organismal systems. B, D The significantly enriched KEGG pathways
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OsGRX28, OsGRX29 might contribute to the rice sensi-
tivity to salt-alkali stress.

Thiamine is an important factor in the activity of sev-
eral enzymes associated with major metabolic pathways, 
including the Krebs cycle, the pentose phosphate path-
way, the branched-chain amino acid pathway, anaerobic 
respiration, and pigment biosynthesis [39]. Moreover, 
thiamine was found to correlate with disease resistance 
in plants [39]. The present work indicated that 3 genes 
(Os03g0679700, Os07g0190000, OsXNP) associated with 
plant response to salt-alkali stress were enriched in the 
thiamine biosynthetic process. These genes are associ-
ated with thiamine metabolism, which might contribute 
to rice seedling response to salt-alkali stress.

Brassinosteroid (BRs) are steroid hormones that are 
essential for plant growth and development. These hor-
mones are able to regulate cell division, cell elongation, 
xylem differentiation, reproduction, photomorphogen-
esis and stress response [40, 41]. Accordingly, abnor-
malities in genes encoding the main components of 
the BR synthesis and signaling pathways could result 
in severe dwarfism, impaired organ growth and devel-
opment, and limited plant fertility and yield [41]. This 
study demonstrated that 4 genes correlating with rice 
seedling response to salt-alkali stress were enriched in 
the brassinosteroid biosynthetic process. Among these 
4 genes, 3 genes (Os12g0139300, Os11g0143200, OsA-
BA8ox1) and 1 gene (Os07g0519600) were down-regu-
lated and up-regulated in both 1 d and 5 d treatment, 
respectively. These 4 DEGs maybe play key roles in the 
growth limitation of rice seedlings in response to salt-
alkali stress.

Photosynthesis is a crucial biological process which 
could often be influenced by abiotic stress [42]. Our 
previous work reported that Na2CO3 stress could result 
in significant decrease in chlorophylls and carotenoid 
contents in rice under [13]. Furthermore, the present 
work showed 28 DEGs at day 1 were enriched in pho-
tosynthesis, and all genes were down-regulated except 
Os07g0147900 encoding putative encoding ferredoxin-
NADP reductase. Out of these 28 genes, the deletion of 
YGL8 [43], LYL1 [44], chl9 [45], OsFdC2 [46] or OsFd1 
[47], was clearly found to decrease the chlorophylls 
content, thereby resulting in leaves yellow. Further-
more, it is worth mentioning that Os07g0147900 and 
Os01g0934400 were up- and down-regulated at day 5, 
and 10 DEGs were enriched in photosynthesis on day 5. 
Out of the 10 genes, OsPS1-F deletion was found to pro-
mote yellow-green leaves [48]. Therefore, we concluded 
that these dysregulated genes might be involved in the 
regulation of chlorophyll content and photosynthesis.

Because significant responses to salt-alkali stress were 
detected in the above-ground tissues, this study used the 

shoots to understand the response of rice seedlings to 
salt-alkali stress. Our findings suggested that the growth-
inhibition of rice seedling following Na2CO3 treatment 
might be a cumulative outcome of differential expression 
of genes. Further clarification of the dynamic process of 
Na2CO3 treatment in rice seedlings is the footing stone 
to determine whether the affected expression of genes 
in the above-ground tissues is a direct result of Na2CO3 
treatment, or a subsequent consequence of the effects of 
Na2CO3 treatment on the below-ground tissues. Given 
the global changes in the transcriptome in response to 
abiotic stress [49, 50], there is likely to have genes with 
similar or opposite expression pattern in the shoots ver-
sus roots. It is of great interest to investigate that the 
genes have similar or different roles in the shoots and 
roots.

According to our current results, gene expression 
change in response to salt-alkali stress could be seen in 
the above-ground tissues of rice seedlings. In line with 
our previous descriptions [10, 15], the rice seedlings 
are sensitive to salt-alkali stress, as demonstrated by 
the findings that 10mM Na2CO3 treatment could lead 
to a significant change in their phenotypes and growth 
parameters. Yet it remains unclear whether 10mM 
Na2CO3 treatment could have effects on the salt-alkali 
tolerant rice variety. Since different rice varieties might 
have different responses, whether the gene changes in 
response to salt-alkali stress is unique for salt-alkali 
sensitive rice variety remains an important knowledge 
gap in our understanding of this area. Furthermore, 
although the one and five days of Na2CO3 treatments 
were used in this study, further efforts are needed to 
show whether the two time points could truly reflect 
the short-term and long-term responses to salt-alkali 
stress.

At the two sampled time points, the rice seedling 
shoots were found to have 341 DEGs with the same 
expression pattern. Of additional interest, our experi-
mental data demonstrated that Na2CO3 at the two post-
treatment sampling time points resulted in 64 DEGs with 
an opposite expression change. This pattern suggested 
that the growth-inhibition processes of Na2CO3 treat-
ment were dynamic and discriminating. Different genes 
might play similar roles in one specific system, and one 
gene might take effect in different systems. The functions 
of these genes are important points in future studies that 
focus on the molecular level responses of rice to salt-
alkali stress.

This work used transcriptomic analysis to identify 
molecular players related to the responses of rice seed-
lings to salt-alkaline stress. This is an area where essen-
tially descriptive work might still be needed to serve as 
a basis for more theoretical/ explanatory work by others. 
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We assume that the “forest” is how growth-inhibition of 
rice seedlings occurs under salt-alkaline stress, and thus 
this work tried to uncover the “forest” by RNA-seq. The 
data contributes to advance the understanding of the abi-
otic stress-plant interactions by identifying many genes 
and their functions that are potentially involved in the 
growth-inhibitory responses of rice seedlings to salt-
alkaline stress. This is a study about “trees” with some 
insights into the “forest”. The biochemical or physiologi-
cal features from RNA-seq data need to be confirmed by 
future studies.

Conclusion
Understanding the molecular mechanism whereby 
crops respond to salt-alkali stress is an important step to 
increase the salt-alkali tolerance of plants. This study pre-
sents an overview of rice seedling response to salt-alkali 
stress. Our data provide a solid foundation for future 
studies to understand the molecular mechanisms under-
lying the response to salt-alkali stress in plants.

Materials and methods
Rice materials and treatment
After hybridizing Liaojing 454 with Shennong 9017, the 
cultivar Liaoxing NO.1 belonging to japonica subspe-
cies was obtained by Liaoning Provincial Crop Vari-
ety Certification Committee. Based on the identified 
effects of salt-alkali stress on Liaoxing NO.1 [13–15], 
this cultivar was selected for measuring growth indexes 
and transcriptome profiling. After surface-sterilization, 
rice seeds were imbibed in deionized water (28  °C/ 
24  h), and were transferred to filter paper which had 
been moistened by deionized water for germinating 
(30 °C/ 24 h). Subsequently, the germinated seeds were 
cultivated in 500 ml beaker which contained Hoagland 
solution in a growth chamber (80% relative humid-
ity, 16 h light 10,000 lx at 28 °C and 8 h dark at 26 °C). 
Based on our previous findings [51], Na2CO3-treated 
rice seedlings were chosen for the transcriptomic 
analysis on day 1 and day 5 after the treatments in the 
present study. After 4 d of growth, rice seedlings were 
subjected to 0 and 10 mM Na2CO3 treatment. Fresh 
shoot samples were collected after 1 d and 5 d treat-
ments, respectively. Each treatment was repeated for 
three times.

Analysis of growth indexes
After exposure to 1 d and 5 d Na2CO3 treatment, rice 
seedlings were collected to measure shoot length, fresh 
weight (FW) and dry weight (DW). Dry weight was 
determined after drying them at 80 °C for 12 h. RWC = 
(FW-DW) ×100/FW [52, 53].

RNA extraction and sequencing
At similar time points after 1 d and 5 d of Na2CO3 treat-
ment, rice seedling shoots were collected, immediately 
frozen and stored at -80  °C for subsequent RNA extrac-
tion. Total RNA was extracted using the RNA isolation 
Kit RN40 (Aidlab Bio Co Ltd, Beijing). The purity and 
concentration of extracted RNA were checked on a Nan-
oDrop 2000 (Thermo Fisher Scientific, Wilmington, DE), 
and the RNA integrity was verified by the Agilent Bioana-
lyzer 2100 system (Agilent Technologies, CA, USA). The 
preparation of cDNA library was done using quality-con-
trolled RNA samples and then was subjected to sequenc-
ing on HiSeq 2500 (Illumina, CA, USA).

Data processing and bioinformatic analysis
Low-quality bases and adapter sequences were removed 
from the raw data, and high-quality data of RNA-seq 
were mapped to the japonica reference genome (https://​
rapdb.​dna.​affrc.​go.​jp/) using HISAT2 (version 2.0.4). 
Transcript expression levels were estimated using frag-
ments per kilobase per million reads (FPKM) values that 
were calculated according to the previously described 
formula [54, 55]. Based on the FPKM values, differen-
tial expression analysis was performed using the DESeq2 
(version 1.6.3), and genes showing fold changes (FC) ≥ 1.5 
with a false discovery rate (FDR) ≤ 0.01 were considered 
to be differentially expressed.

Gene Ontology analysis was performed using the 
GOseq R packages for the enrichment analysis. The func-
tional annotation of DEGs was reflected in three major 
GO classification: Cellular component (CC), Biological 
process (BP), and Molecular function (MF). Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways were 
conducted to identify the biological pathways associated 
with rice seedling response to Na2CO3 stress. The statis-
tical test for GO and KEGG analysis was Fisher’s Exact, 
and P values < 0.05 were considered to be statistically 
significant.

Quantitative real time PCR analysis
Quantitative real time PCR (qRT-PCR) was performed 
using a LightCycler 96 Sequence Detection system 
(Roche Co., Ltd., Basel, Switzerland). cDNA was synthe-
sized from rice RNA using PrimeScript RT reagent Kit 
with gDNA Eraser (TaKaRa Bio Inc., Otsu, Shiga, Japan). 
Primers were designed on NCBI database (https://​www.​
ncbi.​nlm.​nih.​gov/) and synthesized from Sangon Bio-
tech (Co., Ltd., Shanghai, China). The primers used in 
this work were listed in Table S10. 18s rRNA was quan-
tified as an internal control and the relative expression 
of target gene mRNA was calculated using the 2−ΔΔCT 
method.

https://rapdb.dna.affrc.go.jp/
https://rapdb.dna.affrc.go.jp/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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Statistical analysis
All of parameters were repeated thrice. The data were 
expressed as mean ± standard deviation (SD). Two-
tailed Student’s t-test was performed to test the effects 
of Na2CO3 treatment. SPSS 16.0. and GraphPad Prism 
(Version 8) performed all statistical analysis. P < 0.05 was 
defined as statistically significant.
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