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Abstract 

Background  Taro has a long history of being consumed and remains orphan and on the hand Nigeria farmers. The 
role of farmer-driven artificial selection is not negligible to fit landraces to a particular ecological condition. Limited 
study has been conducted on genome-wide association and no study has been conducted on genome-environment 
association for clinal adaptation for taro. Therefore, the objective of this study was to detect loci that are associated 
with environmental variables and phenotype traits and forward input to breeders. The study used 92 geographical 
referred taro landraces collected from Southeast (SE) Nigeria.

Results  The result indicates that SE Nigerian taro has untapped phenotype and genetic variability with low admix-
ture. Redundancy analysis indicated that collinear explained SNP variation more than single climatic variable. Overall, 
the results indicated that no single method exclusively was able to capture population confounding effects better 
than the others for all six traits. Nevertheless, based on overall model performance, Blink seemed to provide slight 
advantage over other models and was selected for all subsequent assessment of genome-environment association 
(GEA) and genome-wide association study (GWAS) models. Genome scan and GEA identified local adapted loci and 
co-located genes. A total of nine SNP markers associated with environmental variables. Some of the SNP markers 
(such as S_101024366) co-located with genes which previously reported for climatic adaptation such as astringency, 
diaminopimelate decarboxylase and MYB transcription factor. Genome-wide association also identified 45, 40 and 34 
significant SNP markers associated with studied traits in combined, year 1 and year 2 data sets, respectively. Out of 
these, five SNP markers (S1_18891752 S3_100795476, S1_100584471 S1_100896936 and S2_10058799) were consist-
ent in two different data sets.

Conclusions  The findings from this study improve our understanding of the genetic control of adaptive and phe-
notypic traits in Nigerian taro. However, the study suggests further study on identification of local adaptive loci and 
GWAS through collection of more landraces throughout the country, and across different agro-ecologies.
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Background
Because of worldwide environmental change, species 
need to adjust to the evolving climate, and this is just 
conceivable assuming there is adequate versatile heredi-
tary variety at the hereditary level [1, 2]. Genome scan 
and genotype-environment association (GEA) tech-
niques are utilized in the review of genetic relationship 
with environment. GEA is based on an alternate principle 
on genetic discrepancy; it accepts that adaptive loci are 
significantly associated with environmental variables [3]. 
Genome-wide scan generally depends on the assumption 
that the loci are considered outliers when stronger differ-
entiation among populations and involved in adaptation 
[4]. Currently, there is an increasing number of literatures 
indicating the possibility of genome scan and GEA in 
detecting loci related to adaptation in cereals. Westengen 
et al. [5] detected adaptive loci associated with the annual 
precipitation and maximum temperature in African 
maize landrace populations. Similarly, Abebe et  al. [6] 
identified putative adaptive loci among Ethiopian barley 
landraces gene pool of the farming communities. Olatoye 
et  al. [7] also reported clinal adaptation along the West 
African precipitation gradient in sorghum. Similarly, 
GEA was also found in annual temperature and precipi-
tation in Ethiopian sorghum landraces [8].

Taro [Colocasia esculenta (L.) Schott] is one of the 
world’s most ancient food crops, with a history of more 
than 2000 years of cultivation in Nigeria [9]. It is believed 
that taro originated in the Indo-Asian Peninsula over 
50,000 years ago [10]. It arrived West Africa through the 
voyagers of East coast of Africa over 2000 years ago [11].

Taro is morphologically diverse with over 10,000 lan-
draces worldwide [12] and about 10 ecotypes have been 
reported growing in Nigeria [13]. According to Food and 
Agriculture Organization of the United Nation report in 
2020, Nigeria produced about 2.3 million tonnes in 0.8 
million hectares with average yield of 3.98 t/ha taro. It is 
a highly heterozygous and clonally propagated crop with 
various polyploidy chromosomes: diploid (2n = 2x = 14 
and 28) and triploid (2n = 3x = 42) [11, 14, 15]. Taro has 
a long history of being consumed for ~ 9000 years in 
Nigeria [16]. It is a staple food, mainly for resource-poor 
rural dwellers in Southeast Nigeria [13], and regularly 
consumed as a main component or as soup thickener 
[17]. However, the taro crop in Nigeria remains orphan 
and on farmers’ hands. This is true in most Sub-Saharan 
countries [18]. It is also neglected in recent advances in 
molecular biology appearing only in a limited number 
of studies utilizing next-generation transcriptome and 
genome sequencing [12, 19, 20].

The bulk of Nigerian taro is produced in the humid for-
est and derived savannah agro-ecological zones which 

encompass the southwest and southeast part of the coun-
try [21]. Even though the area is low in altitude, high 
temperature, and rainfall differences, it is much known 
for high taro production. Mostly farmers prefer growing 
taro landraces in Nigeria [22, 23]. Farmer-driven artificial 
selection is not negligible to fit landraces into a particular 
ecological condition. Limited study has been conducted 
on the GEA and GWAS for clinal adaptation for taro. 
Therefore, the objective of this study was to detect alleles 
that are associated with environmental variables and phe-
notype traits with the idea that these alleles may confer a 
selective advantage in Southeast Nigerian environment.

Materials and methods
Field experiment
The field experiment was carried out at Ebonyi State Uni-
versity (EBSU), Abakaliki, Nigeria in two cropping sea-
sons (2018 and 2019). The experiment was laid out using 
alpha lattice design with three replications.

Genetic materials
A total of 92 diverse taro germplasm landraces were used 
in this study (Table S1). The genetic material was col-
lected from Southeast states of Nigeria in 2015 (Fig.  1 
B and C). The information on taro production regions 
(Fig.  1) and the availability genetic resource during col-
lection season were used as criteria to systematically 
select representative samples from Southeast states of 
the country. Southeast states produce 13,760 to 25,270 ha 
of cocoyam i.e., including Taro (Fig. 1A). The states con-
tain high to low potential production areas (Fig. 1D). The 
collection covered all taro producing areas in Southeast 
states i.e., low to high producer areas.

Total genomic DNA extraction and genotyping
The 92 taro landraces were grown at EBSU during 
2018 and 2019 cropping seasons. Young taro leaf sam-
ples were collected for each landrace at 2 months old 
stage and dried using silica gel. The dried leaf samples 
were shipped to Biosciences Eastern and Central Africa 
(BecA-ILRI) Hub, Nairobi for genomic DNA extraction 
and Genotyping.

DNA extraction was done using Nucleomag Plant DNA 
extraction kit. Libraries were constructed using a combi-
nation of PstI and MseI restriction enzymes [24] and use 
site-specific adapters for barcode adapter ligation fol-
lowed by PCR amplification. Libraries were sequenced by 
means of single read sequencing runs for 77 bases. Next 
generation sequencing was carried out using Hiseq2500. 
DArTseq markers scoring was attained using DArTsoft14 
which is an in-house marker scoring software based on 
algorithms. DArTseq markers genotyping was scored as 
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binary form presence /absence (1and 0, respectively). 
DArT markers were aligned to the reference genomes 
of Taro (Taro_V1) to identify chromosome positions. 
The integrated genotyping support and service (IGSS) 
platform uses a genotyping by Sequencing DArTseqTM 
technology.

Climatic and phenotype variables
Climate variables (average from 1960 to 1990) were 
extracted from WorldClim 1.4 using the Raster package 
in R [25] based on the coordinate (latitude and longi-
tude) for each of the 92 georeferenced Nigerian landraces 
(Table  1) five environmental layers (30 arc sec resolu-
tion, i.e., ~ 1 km) [26]. Phenotypic variables such as corm 
diameter, corm length, cormel diameter, cormel length, 
cormel weight, dry matter, number of cormels per plant, 
plant height, number of leaves per plant, number of 

suckers per plant, petiole length, yield per hectare, and 
yield per plants for landraces were obtained from two 
cropping seasons (2018 and 2019) data from EBSU field 
experiments. Taro descriptor [27] was used for data col-
lection (Table  1). The data was collected from five ran-
domly selected plants except for yield that was taken 
from the whole plot and converted to per hectare.

Morphological data analysis
The best linear unbiased estimate (BLUEs) was used to 
estimate trait values of the 2 years (2018 and 2019) com-
bined and individual year for each landrace. The BLUE 
model using lmer function in LME4 package of R [28] 
was as follows:

y i  =  μ  +  Landrace i  +  Block j  +  Sea son k  +  (Lan-
drace  x  Block)ij + (Landrace  x  Season)ik + εijk. Where μ 
is the mean, Landracei is the genotype effect of the ith 

Fig. 1  Map of Nigerian taro production status (A), landraces collection states (Southeast states (B & C) and total potential production (D)
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landrace, Blockj is the effect of the jth Block, Seasonk is 
the effect of the kth year, (Landrace x Block)ij is the Lan-
drace-Block interaction effect, (Landrace x Season)ik is 
the landrace-season interaction effect, εijk is the error of 
the jth block in the kth year. Landrace was considered as 
fixed effect whereas all remaining items are considered as 
random effects for estimation of heritability and BLUEs. 
The coefficient of variation (environment, genotype and 
phenotype), heritability and genetic advance were esti-
mated using variability R package [29].

Population structure and linkage disequilibrium analyses
Pairwise linkage disequilibrium (LD) (r2) was analysised 
using TASSEL 5 software [30]. The LD decay plot was 
constructed using Remington et  al. [31] procedure in R 
software [32]. The population structure investigation was 
done using LEA (Landscape and Ecological Association 
Studies) version 1.8.1 in R [33, 34].

Redundancy analysis
Redundancy analysis (RDA) was carried-out using R 
vegan package and varpart function [35]. A multivari-
ate model was fitted using 9442 filtered SNP markers as 
response variable. Annual mean temperature and pre-
cipitation as climatic variables; latitude and longitude as 
geographical variables (“space”) and altitude were fitted 
as predictor terms. The “space” term is used to account 
for isolation-by-distance [36]. The altitude variable was 
used based on the altitude of the collection area, as 
identified during sample collection using GPSMAP  64x 
handheld navigator. The default function of the pack-
age was used to test the significance of the proportion of 
variation explained by climate collinear with space in the 

germplasm. Finally, 1000 permuted data set was used to 
compare the distribution in variation explained. In each 
stage of the permutation, genotype were randomized and 
RDA regression fitted and repeated 1000 times.

Detect local adaptation loci
Genome scan was performed using pcadapt R package 
for detecting local adapted loci [37]. This was first done 
by using a PCA with a number of groups (K) equal to 
the number of subpopulations investigated to define the 
optimal value for K. Benjamini & Hochberg Procedure 
[38] was used to determine false discovery rate (FDR) of 
p values distribution at 0.05. Finally, a list of outlier loci 
obtained that were candidates for selected loci.

Genome–environment association studies
Genome–environment association studies (GEA) were 
analysed using ten environmental variables. These are 
annual mean temperature, mean temperature of dri-
est quarter, mean temperature of wettest quarter, mean 
temperature of warmest quarter, mean temperature of 
coldest quarter, annual mean precipitation, precipitation 
of wettest quarter, precipitation of driest quarter, pre-
cipitation of warmest quarter and precipitation of cold-
est quarter. The variable data were averaged from 30 years 
(1960 to 1990). GEA was performed using GAPIT3 R 
package [39].

Genome‑wide association studies
Genome-wide association studies (GWAS) were performed 
using BLUEs in traits values of 2 years both combined and 
individual. Population structure and genetic relationships 
among accessions were used to minimize false-positive 

Table 1  Description for phenotype data collection from 92 taro accessions

Phenotype traits Description*

Corm diameter (cm) It was measured from maximum circumference of corm plants using calliper.

Corm length (cm) It was measured from the distal end of the corm to the proximal end where the 
outer leaf petiole is attached to the corm using calliper

Cormel diameter (cm) It was measured at the maximum circumference of the cormel using calliper

Cormel length (cm) It was measured from the distal end of the cormel to the proximal using calliper

Cormel weight (g) It was measured the weight using sensitive balance

Days to maturity It was counted days from planting to harvesting of the yield.

Number of cormels per plant It was counted the number of cormels per plant at harvesting

Plant height (cm) It was measured from collar region to the attachment point between the leaf peti-
ole and the lamina of the tallest leaf by meter

Number of leaves per plant It was counted all leaves starting emergence to physiological maturity

Number of suckers per plant It was counted all suckers per plant at maturity stage

Petiole length (cm) It was measured from based of the petiole to the attachment point of the tallest leaf

Yield per hectare (t/ha) Total (Corm and cormel) yield was measured from plot based and converted to t/ha

Yield per plants (kg) It was measured all corm and cornels using sensitive balance
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associations. Population structure represented by the PC 
was estimated with the GAPIT3 package [39].

Setting significant threshold P values and model validation 
for GWAS and GEA
We set the suggestive significant threshold using a 
multiple testing correction developed by Li and Ji 
( α∗ = 1− (1− αF )

1/Meff  ) to identify significant loci 
underlying variables [40]. Whereas, α* = suggestive 
significant threshold, αF = alpha value (P = 0.05) and 
Meff = effective number of markers. Meff and α* were 
estimated using poolr R package [41].

Fitness of different GWAS and GEA models for all 
variables was evaluated using Quantile-Quantile (Q-Q) 
plots of the observed versus expected –log10(p) values 
which should follow a uniform distribution under the 
null hypothesis and genomic inflation factor (λ). In order 
to compare how well the models adjusted for systematic 
effects, the genomic inflation factor (λ) for all methods 
was calculated in R software as follows:

Where λ is the genomic inflation factor and M is 
median of the resulting chi-squared test statistics and E 
is the expected median of chi-squared distribution [42].

Results
Phenotype traits and environmental variability
Analysis of variance indicated the presence of highly 
significant difference (P < 0.001) in all morphological 
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traits studied among the landraces. Number of leaves 
per plant varied from 7.40 to 12.40; number of suckers 
per plant varied from 2.50 to 14.40; petiole length varied 
from 16.67 to 6.00 cm; corm diameter varied from 2.62 to 
11.06 cm (Table 2). The corm yields also varied from 0.05 
to 1.16 kg per plant and 1.40 to 18.03 t/ha. The genetic 
coefficient of variation was high in all traits compared 
to environment coefficient of variation except cormel 
weight, days to maturity, number of cormels per plant, 
number of leaves per plant and petiole length. The herit-
ability estimate varied between 0.24 (number of cormels 
per plant) to 0.75 (corm diameter). The genetic advance 
as a percentage of mean also varied from 6.10 (days to 
maturity) to 63.91 (yield per hectare). The climatic vari-
ables showed variation among the collected areas. The 
extracted climatic variables and mean BLUEs phenotype 
traits are described detail in Table S2 and S3, respectively.

SNP markers and linkage disequilibrium (LD) decay 
analyses
Ninety-two Nigerian germplasm landraces and 32,327 
SNP markers were identified in the study. Following 
exclusion of markers with > 25% missing values, non-
chromosome positions, redundant markers and MAF 
< 0.05, a subset of 9442 SNP markers were identified 
and missing values inferred using the Beagle 5.0 soft-
ware [43]. The density of markers is unevenly distrib-
uted across the chromosomes (Fig.  2). Large number 
of SNP markers were located on chromosome Chr1. 
The detail of the marker description was presented in 
Fufa et al. [44].

Table 2  Mean, range, genetic variability among 92 Nigerian taro landraces

COD Corm diameter (cm), COL Corm length (cm), CRD cormel diameter (cm), CRL Cornel length (cm), CRW​ Cormel weight (g), DM Days to maturity, NCR Number of 
cormels per plant, PH Plant height (cm), NLPP Number of leaves per plant, NSPP Number of suckers per plant, PL Petiole length (cm), YPH (t/ha) Yield per hectare, and 
YPP Yield per plants (kg/plant), SD Standard deviation, Min Minimum, Max Maximum, ECV (%) Environmental Coefficient of Variance, GCV (%) Genotypic Coefficient of 
Variance, PCV (%) Phenotypic Coefficient of Variance, CV (%) Coefficient of variation, H2 broad-sense heritability, GA(%) Genetic advance as percentage of mean, sign. 
significance p-values

Trait Mean Min Max ECV GCV PCV CV H2 GA Sing.

COD 6.74 2.62 11.06 11.43 19.71 22.79 10.00 0.75 35.13 < 0.001

COL 6.70 2.26 9.36 11.55 16.00 19.73 11.59 0.66 26.72 < 0.001

CRD 3.71 2.45 5.95 8.64 12.60 15.28 8.53 0.68 21.40 < 0.001

CRL 5.78 3.40 8.38 11.62 12.69 17.21 11.46 0.54 19.28 < 0.001

CRW​ 39.71 16.21 84.30 21.82 19.98 29.59 21.25 0.46 27.80 < 0.001

DM 197.19 178.00 213.00 4.31 4.23 6.05 4.14 0.49 6.10 < 0.001

NCR 11.36 0.00 45.00 45.30 25.76 52.11 40.63 0.24 26.23 < 0.001

NLPP 9.63 7.40 12.40 7.89 7.86 11.13 7.40 0.50 9.28 < 0.001

NSPP 7.75 1.00 14.40 23.40 26.19 35.12 23.20 0.55 40.22 < 0.001

PH 75.28 35.00 110.00 13.13 15.38 20.22 12.63 0.58 24.09 < 0.001

PL 31.82 15.65 69.00 16.82 15.86 23.12 16.30 0.47 22.41 < 0.001

YPH 10.08 1.40 18.03 24.04 37.00 44.12 23.60 0.70 63.91 < 0.001

YPP 0.68 0.05 1.16 23.70 28.14 36.78 22.50 0.58 44.35 < 0.001
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Pairwise LD, estimated using the squared allele fre-
quency correlations (r2), decayed rapidly at r2  = 0.1 
with kilobase pair (Fig.  3). Approximately 2.67% of 
these comparisons had a significant LD value, and the 

mean r2 was 0.388. The average LD decay distance was 
about 16.53 kb for locus pairs with r2 = 0.1 at the whole 
genome level.

Population structure
Population structure analysis among 92 taro landraces 
with a set of 9442 SNP markers suggested optimum K 
value of four, representing the landraces into four major 
subpopulations (Fig. S1). First subpopulation comprised 
seven landraces and the second subpopulation comprised 
eight. The third and fourth subpopulations comprised 
65 and 12 landraces, respectively. The structure results 
mainly supported the population structure analysis with 
93.5% of the genotypes being assigned to one of the four 
subpopulations with a higher than 0.60 ancestry member-
ship coefficient (Fig. 4). Hence, only 6.5% were identified as 
admixture landraces.

Redundancy analysis
Redundancy analysis was performed to estimate the pro-
portion of SNP variation explained by agro-climate and 
geographical locations (Fig.  5). This analysis indicated 
none of variable alone contributed for SNP variation 
rather than in collinear. Hence, the larger (4%) variation 
was explained by the collinearity of annual temperature, 
altitude and space (geographical location). Annual tem-
perature, annual rainfall and space together explained the 
SNP variation only 1%.

Fig. 2  Distribution and density of filtered SNP markers across 14 chromosomes. The horizontal axis displays the chromosome length. The number 
of SNPs in a given region is indicated at the bottom right side

Fig. 3  Linkage disequilibrium (LD, r2) decay plot of 9442 marker pairs 
as a function of kilo base pair (kb) for the 92 taro landraces used in 
this study
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Suggestive p‑value and model validation using GWAS 
results
According to Li and Ji (2005), a total of 137 effective SNP 
markers (Meff) was identified out of 9442 SNP mark-
ers. Using Meff, the suggestive threshold P-value was 
estimated 3.74e-4 (−log10(p) = ~ 3). We demonstrated 
here the effectiveness of different models for performing 
Genome-environment association (GEA) and genome-
wide association (GWAS) in taro. Performance of GEA 
models was evaluated using Q-Q plots of the expected 
versus observed –log10(p) values and genomic con-
trol inflation factors (λGC) achieved for each ‘variable 
x model’ combination. None of the models was suitable 
for all environmental variables and agro-morphological 

traits based on genomic control inflation factors (Table 
S4, Fig. S2 and S3). However, GLM and FarmCPU models 
were the least compared to others. These two models are 
only best for days to maturity than other models. In gen-
eral, Blink was better in seven environmental variables 
and three phenotypic traits. MLM was better for four 
environmental variables and six phenotypic traits.

Genome scan and environment association loci
A genome scan was performed using pcadapt R pack-
age to detect the outliers SNP markers. For further 
identification of the outliers, GEA was performed (Fig. 
S4). Only true marker-environment associations i.e. (a) 
from models where p-value inflation was close to the 
expected normal value (λGC ~ 1) and (b) which passed 
the set threshold are included for reporting GWAS 
results. Pcadapt analysis detected 2355 outlier SNPs 
with the threshold values alpha < 0.1 using Benjamini 
& Hochberg Procedure [38]. Out of 2355 outliers, GEA 
identified only nine SNP markers associated with envi-
ronmental variables (Table 3 and Fig. S2). All Associated 
SNP markers were identified as outliers in genome scan 
except S_100830796 and S_100913593 markers. Specifi-
cally, S_101024366 marker was significantly associated 
with all environmental variables except precipitation of 
warmest quarter. S_100991964 SNP marker significantly 
associated with all precipitation variables except precipi-
tation of warmest quarter. Indeed, no genome associa-
tion was detected with precipitation of warmest quarter. 
S_100830796 SNP marker associated with all tempera-
ture variables such as annual mean temperature, mean 
temperature of wettest quarter, mean temperature of dri-
est quarter, mean temperature of warmest quarter, and 
mean temperature of coldest quarter. S_100583021 SNP 
marker significantly associated with mean temperature of 
annual mean temperature and warmest quarter.

Fig. 4  Population structure for k = 4 in Nigerian taro landraces using SNP markers. Each vertical line represents one accession, and the color 
composition displays the probability of belonging to each of the 4 subpopulations

Fig. 5  Redundancy analysis of SNP variation explained by climatic 
and spatial variables. A) Annual temperature (BIO1), Altitude (Alt), 
annual precipitation (BIO12) and space (latitude and longitude); 
and B) climate variables (precipitation and temperature) and space 
(latitude and longitude)
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Genome‑wide association
Based on the suggestive p-value (P < 9.05E-04) threshold, 
significant SNP markers were identified to be associated 
with studied traits on chromosomes 1, 2, 3, 4, 5, 9 and 10 
based on three data set (two separate data and combined 

one) (Table 4 and Fig. S5A-C). Even though none of the 
markers were identified across the data sets, some mark-
ers were identified at least in two data sets. For example, 
S1_18891752 SNP marker which is associated with cor-
nel weight was identified in both combined and Year 1 

Table 3  List of SNP markers identified by genome-environment association with their effects

BIO1 Annual mean temperature, BIO8 Mean temperature of wettest quarter, BIO9 Mean temperature of driest quarter, BIO10 Mean temperature of warmest 
quarter, BIO11 Mean temperature of coldest quarter, BIO12 Annual precipitation, BIO16 Precipitation of wettest quarter, BIO17 Precipitation of driest quarter, BIO18 
Precipitation of warmest quarter and BIO19 Precipitation of coldest quarter, SNP Single nucleotide polymorphism, Chr Chromosome, Pos Position (bp = base pair), R2 
Variance explained by the marker

Environment variables SNP Chr Pos (bp) P value Effect R2

BIO1 S1_101024366 1 12,021 2.5E-05 −0.86 0.16

S1_100830796 1 392,983 2.2E-04 0.71 0.13

S1_100583021 1 899 5.4E-04 0.74 0.11

S2_18902671 2 8305 3.9E-04 0.21 0.12

S1_100583021 1 899 5.4E-04 0.74 0.11

BIO8 S1_101024366 1 12,021 1.0E-04 −0.87 0.17

S1_100830796 1 392,983 6.5E-04 0.69 0.12

S2_18902671 2 8305 7.2E-04 0.20 0.12

BIO9 S1_101024366 1 12,021 1.1E-04 −0.95 0.16

S1_100830796 1 392,983 7.0E-04 0.76 0.12

S2_18902671 2 8305 7.5E-04 0.23 0.12

BIO10 S1_100583021 1 899 3.7E-04 0.76 0.14

S1_101024366 1 12,021 4.0E-04 −0.73 0.14

S1_100830796 1 392,983 4.3E-04 0.68 0.14

S2_100587991 2 50,903 5.3E-04 0.86 0.13

BIO11 S1_101024366 1 12,021 1.0E-04 −0.87 0.17

S1_100830796 1 392,983 6.5E-04 0.69 0.12

S2_18902671 2 8305 7.2E-04 0.20 0.12

BIO12 S1_100991964 1 6698 3.0E-05 − 231.89 0.15

S1_101024366 1 12,021 8.3E-05 −200.50 0.14

S1_100379892 1 388,151 2.4E-04 − 155.49 0.12

S5_18911928 5 816 2.9E-04 −75.08 0.12

S2_100913593 2 167,750 5.0E-04 128.23 0.11

S2_18902671 2 8305 5.0E-04 22.30 0.11

BIO16 S1_100991964 1 6698 2.2E-05 −95.56 0.16

S1_101024366 1 12,021 3.1E-05 − 85.78 0.15

S1_100379892 1 388,151 2.3E-04 64.01 0.12

S5_18911928 5 816 5.4E-04 −29.20 0.11

S2_18902671 2 8305 5.8E-04 10.33 0.11

BIO17 S1_100991964 1 6698 7.3E-05 −15.20 0.14

S5_18911928 5 816 2.3E-04 −5.23 0.12

S1_100379892 1 388,151 3.1E-04 10.60 0.11

S2_100913593 2 167,750 3.4E-04 9.06 0.11

S1_101024366 1 12,021 4.2E-04 −12.43 0.11

BIO18 S1_100991964 1 6698 7.9E-04 −46.45 0.13

BIO19 S1_100991964 1 6698 2.2E-05 −95.56 0.16

S1_101024366 1 12,021 3.1E-05 −85.78 0.15

S1_100379892 1 388,151 2.3E-04 64.01 0.12

S5_18911928 5 816 5.4E-04 −29.20 0.11

S2_18902671 2 8305 5.8E-04 10.33 0.11
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Table 4  List of SNP markers identified by genome-wide association using combined and separate data (2018 & 2019). SNPs in bold 
are those significantly associated at least in two data sets

Combined data Year 1 (2018) data Year 2 (2019) data

Traits SNP Chr Pos (bp) P value SNP Chr Pos (bp) P value SNP Chr Pos (bp) P value

COD S3_101063428 3 50,039 4.46E-04 S1_100689072 1 202,417 6.46E-05 S1_100693199 1 28,956 8.28E-04

S1_100997735 1 54,446 8.13E-05

S2_18893366 2 2096 8.54E-05

S2_100944099 2 275,709 3.72E-05

S4_18895871 4 22,187 4.58E-05

S2_100756057 2 284,159 5.64E-05

S1_100842346 1 109,989 5.71E-05

S1_100802428 1 228,448 8.09E-05

S10_18892924 10 1320 8.42E-05

COL S1_100927695 1 171,377 0.0005 S1_100374249 1 14,226 1.32E-04 S1_100693199 1 28,956 7.28E-04

S1_100374249 1 14,226 0.000769 S2_100809767 2 97,399 2.78E-04

S1_100934305 1 53 0.000839 S1_100927695 1 171,377 3.39E-04

S7_18912893 7 134 3.47E04

S6_101039431 6 17,094 4.23E-4

S12_100811923 12 15,826 6.91E-04

CRD S2_100843507 2 1849 8.89E-05 S3_100998987 3 7027 0.000473 S1_100693199 1 28,956 6.28E-04

S3_100998987 3 7027 0.000337 S1_100574592 1 6750 0.000836

S1_100574591 1 6750 0.000367 S1_100582688 1 39,446 0.000864

S3_101010746 3 381 0.000399

S1_100582688 1 39,446 0.000417

CRL S1_18896887 1 116,872 0.000591 S1_100892740 1 27,909 0.000442

S1_100681096 1 10,631 0.000667 NA NA NA NA S6_100839526 6 171,520 0.000626

S1_100892740 1 27,909 0.000792 S7_100839525 7 703 0.000626

CRW​ S1_18891752 1 199,716 0.000589 S1_18891752 1 199,716 3.31E-08 S4_100974332 4 10,835 0.000464

S2_18891794 2 93,043 1.65E-05 S1_100678415 1 246,142 0.00089

DM S1_100579053 1 13,403 0.000121 S1_100677594 1 117,831 0.000249 S2_100587991 2 50,903 0.000175

S1_18896636 1 361,107 0.000184 S1_18905350 1 150,792 0.000896 S3_100795476 3 325,970 0.000899

S3_100795476 3 325,970 0.000188

S1_100378035 1 58,608 0.000396

S1_100678255 1 918,125 0.000805

NCR S3_101024887 3 232 0.000812 S1_18896897 1 123,749 0.000836 S1_100680602 1 4856 3.07E-05

S1_18878040 1 658,024 3.12E-05

S1_100755696 1 49,669 0.000119

S1_18908588 1 64,068 0.000152

S5_100689668 5 333,890 0.000262

S1_100375214 1 97,399 0.000286

S10_100964255 10 606 0.000318

S1_100990433 1 481,249 0.000458

S1_100918481 1 53,052 0.000478

S1_18892187 1 18,934 0.000502

S1_100897692 1 781,657 0.000667

NLPP S1_100584471 1 57,350 4.53E-05 S1_100584471 1 57,350 7.48E-05 S1_100693199 1 28,956 0.001452

S9_100959651 9 9359 0.000294 S2_100685734 2 32,330 0.000512
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(2018) data sets. Other markers such as S3_100795476 
associated with dry matter were identified in combined 
and Year 2 data sets; S1_100584471 associated with num-
ber leaves per plant in combined and year 1 data sets; 
S1_100896936 associated with yield per hectare in com-
bined and year 1 data sets; and S2_100587991 associated 
with yield per hectare in combined and year 2 data sets.

Discussion
Significance of the study for taro improvement
Farmers and breeders have focused on selecting crops 
with desirable phenotypes for several years [45] which 
leads to loss of genetic and phenotypic variation. This is 
the major cause for genetic bottlenecks especially when 
stress occurs [46]. For example, Markwei et  al. [47] 
reported the loss of cocoyam cultivar amankani kyirepe 
and that others such as Amankani fita and amankani 
Serwaa face the risk of being lost. Hence, evaluation of 
genetic diversity and genome association study is an 
important step for further genetic conservation and 
breeding program of the crop.

Taro has a large genome estimated to be 4.08 Gbp [48]. 
However, currently, taro genome of only 2.2 Gbp (chro-
mosome based) and 0.27 Gbp of unknown region is avail-
able in NCBI database submitted by Jiangsu Academy 
of Agricultural Sciences [49]. This is promising progress 
to improve our understanding of taro genetics but still 
needs further sequencing to a high-quality reference 
genome. That might have led to uneven distribution of 
the SNPs across the chromosomes in this study. The size 
of the sequenced reference genome also varied 212.14 
Mbp (Chromosome 1) to 102.22 Mbp (Chromosome 12). 
This may also be another cause for the uneven distribu-
tion of the SNP markers across the chromosomes.

Southeast Nigerian taro has untapped phenotypic 
variability
Significant variability was observed among the landraces 
in all studied morphological traits. The phenotypic 
variation among landraces was also high which more 
desirable for selection. Specifically, higher the genetic 
variation than environment variation among landraces 

Table 4  (continued)

Combined data Year 1 (2018) data Year 2 (2019) data

Traits SNP Chr Pos (bp) P value SNP Chr Pos (bp) P value SNP Chr Pos (bp) P value

PH S1_100839334 1 189,378 0.000108 S1_101059919 1 34,704 0.000363 S1_100836468 1 297,222 0.000134

S1_18895647 1 66,399 0.00025 S1_100379454 1 379,757 0.000728 S2_100946429 2 325,580 0.00018

S1_100579053 1 13,403 0.000386 S3_101024887 3 232 0.000465

S1_100798136 1 34,573 0.000729 S2_100839596 2 17,956 0.000706

S2_100801959 2 1457 0.000751

PL S1_100765786 1 34,841 0.00024 S2_100688934 2 113,866 1.15E-07 S1_100747947 1 230,442 5.17E-05

S2_100874072 2 215,874 0.000242 S1_100381240 1 479,002 0.000264 S2_100892757 2 29,173 6.05E-05

S1_100898140 1 43,180 0.000375 S1_100681342 1 3737 0.000284 S1_100836468 1 297,222 0.000104

S10_101005079 10 377,504 0.000508 S1_100917554 1 419,632 0.000552 S2_100946429 2 325,580 0.000108

S3_100944639 3 1101 0.000767 S1_100683489 1 91,412 0.000195

S3_100982330 3 267,759 0.000862 S2_101010732 2 776 0.00061

YPH S1_100379475 1 36,727 0.000636 S2_100944099 2 275,709 0.000411 S1_100592663 1 348,550 0.000211

S1_100896936 1 81,628 0.000139 S1_100381260 1 156,721 0.000461 S3_100379409 3 984 0.000343

S1_100934187 1 17,817 0.000552 S1_18896636 1 361,107 0.000669 S2_100587991 2 50,903 0.000553

S2_100587991 2 50,903 1.56E-05 S1_100896936 1 81,628 0.000833 S1_18895526 1 147,250 0.000603

S2_100688888 2 209,908 0.000495 S1_100584829 1 7043 0.000837 S5_100869929 5 102,007 0.000604

S2_18913028 2 1,313,949 0.000723

S5_101068528 5 274 0.000853

YPP S1_100753561 1 59,137 0.000331 S1_100974034 1 2747 0.000356 S2_100587991 2 50,903 8.67E-08

S1_100586420 1 102,751 0.000484 S2_100754258 2 757 0.000236

S1_100802848 1 184,891 0.000883 S2_100690401 2 8539 0.000643

S4_18904835 4 294,901 0.000941

COD Corm diameter (cm), COL Corm length (cm), CRD Cornel diameter 9 cm), CRL Cornel length (cm), CRW​ Cornel weight (g), DM Dry matter, NCR Number of cormels 
per plant, PH Plant height (cm), NLPP Number of leaves per plant, NSPP Number of suckers per plant, PL Petiole length (cm), YPH (t/ha) Yield per hectare, and YPP Yield 
per plants (kg/plant)
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is an indication of the potential for selection of the 
given trait. Corm diameter, corm length, cormel diam-
eter, cormel length, number of suckers per plant, plant 
height, yield per hectare, and yield per plant traits had 
more genetic coefficient of variation than environmen-
tal variation. These traits might be used for clonal selec-
tion for further improvement of taro landraces. Similarly, 
Mukherjee et al. [50] reported that high genotypic coef-
ficient of variability (GCV) values for weight of cormels 
per plant and number of cormels per plant. The trait her-
itability varied from medium to high except in number 
of cormels per plant trait. Both heritability and genetic 
advance were high for corm diameter, and yield per 
hectare. Such high heritability followed by high genetic 
advance indicates that clonal selection may be effective 
for the improvement of such characters. The phenotypic 
coefficient of variability (PCV) was generally higher than 
the GCV for all the studied traits but the differences were 
quite small except for the number of cormels per plant. 
This suggests that environmental effects constitute a less 
portion of the total phenotypic variation in the traits [51].

Collinear explained SNP variation more than single climatic 
variable
Although RDA and LFMM are efficient methods to iden-
tify candidate SNPs associated with variability in environ-
mental conditions [52, 53], no significant relationship was 
detected between any of the SNPs and climatic variables 
(the temperature and precipitation) alone. In total, only 
10% variation of the SNP explained by collinear of alti-
tude, annual temperature, annual precipitation, and space 
among 92 Nigerian taro landraces. The maximum SNPs 
variation (4%) is explained by the collinear of annual tem-
perature, altitude, and space. This suggests that collinear 
climatic variables are more important than single climatic 
variables in shaping variation for taro clinal adaptation. A 
considerable percentage of the variance was not explained 
by either geographic location or climatic variables, imply-
ing that other factors such as human activities or human 
habitation may be important. According to recent studies, 
sorghum genetic structure has also been shaped via seed 
sharing and ethnolinguistic grouping [8, 54]. Markwei 
et  al. [47] also reported that the development of human 
selection based on people’s interests and their cultural 
communication habits has great impact on taro diversity 
and distribution in China. Taro seeds that are exchanged 
among farmers and grown often harbour a unique genetic 
diversity in landraces [55].

Southeast Nigerian taro has low admixture
The success of plant breeding is associated with access-
ing landraces and wild relatives of crop species for new 
sources of variation [56]. Hence, knowledge about the 

genetic diversity and the population structure of lan-
draces is needed to access the reservoir of favourable 
alleles within landrace or wild germplasm. The collection 
(92 taro landraces) was grouped into four subpopulations 
with low admixture (6.5%) among the individuals in the 
collection. The low admixture observed is likely due to 
low gene flow among subpopulations or individuals in 
the subpopulation. This indicates the introduction of new 
genetic lineages into a population is low. Different studies 
reported that taro is not native to Africa and it reached 
through human migration with a single clone introduc-
tion from a single point of origin, then the accumulation 
of mutations leading to different multi-locus genotypes 
during the dissemination process [10, 11]. This may lead 
to loss of genetic resources due to outbreaks (such as new 
pests and diseases or climatic changes). Recently, loss 
of genetic resources started with the outbreaks of taro 
leaf blight disease in west Africa including Nigeria [57]. 
Hence, taro breeding through hybridization is impor-
tant in Nigeria. However, taro is a clonally propagated 
crop with different polyploidy levels 2n = 2x = 14, 28, 42 
[58, 59]. One, the challenge of performing cross-pollina-
tion due to the infrequent flowering habit such as rarely 
flowers and its flower anatomy discourages natural pol-
lination when it does. However, Wilson and Cable [60] 
reported that the application of gibberellic acid-induced 
flower formation in taro increases the possibility of pro-
ducing new taro varieties or hybrids. Another option is 
the introduction of the germplasm from centre of origin 
or centre of diversity. The region may have germplasm 
suitable for hybridization breeding such as Oceania, New 
Guinea, and Hainan Island [12, 61].

No single model exclusively is suitable for all studied traits 
in taro
The Q-Q plot shows how well the null hypothesis fits 
without phenotypic association with SNP. The expected 
and observed distributions should overlap and most 
SNPs should be diagonal. Power et al. [62] reported that 
some SNP deviations may reflect expanded p-values ​​due 
to population structure, but very few deviates from the 
diagonal of a truly polygenic trait. Overall, the results 
showed that for all the properties investigated, there is 
no single method that can better detect population-con-
founding effects than other methods. However, given the 
overall performance of the five models, Blink appeared 
to have a slight advantage over the other models and was 
selected for subsequent evaluation of all GWAS models.

GEA identified local adapted loci and candidate genes
Signatures of selection and local adaptation can be evalu-
ated in populations across entire genomes or genome 
sampling using population differentiation approaches 
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(i.e., outliers) or in association with environmental vari-
ables to test the influence of biotic and abiotic factors in 
the spatial genomic structure. A total of nine SNP mark-
ers were associated with environmental variables. Spe-
cifically, S_101024366 marker was significantly associated 
with all environmental variables except precipitation of the 
warmest quarter. The scaffold that contains this significant 
marker is NMUH01001869.1 genebank accession number 
in NCBI. This accession region contains six candidate genes 
(Fig. 6). Hence, all the genes are six hypothetical unknown 
proteins in taro genome. The genes nucleotide sequences 
blasted in NCBI using default parameters. Hence, one of 
the genes, accession number MQL96045.1 (Taro_0284712), 
identified the homologues region in Diospyros lotus (date-
plum) DNA for the astringency trait with the 2e-15 E-val-
ues and 85.86% of identity. This Taro_0284712 is in the 
range of LD window size (35 kb). One of the most essen-
tial aspects of fruit sensory quality is astringency [63, 64]. 
This might favour during human selection. Astringency is 
dominant in tannin sorghums [65]. Traditional sorghum 
varieties with medium tannin (moderate astringency) levels 
are widely cultivated and utilized for staple foods and alco-
holic beverages in eastern and southern Africa [66]. How-
ever, some African cultures prefer tannin sorghums (more 
astringency) because the porridge from tannin sorghums 
stays in the stomach longer and giving the farmer the feel-
ing of being full for the majority of the working day. Taro 

leaves are known by astringent due to the acridity content 
of the plant [65].

Another significantly associated marker is S_100991964. 
It was associated with all precipitation variables such as 
annual precipitation, precipitation of wettest quarter, pre-
cipitation of driest quarter, precipitation of warmest quar-
ter, and precipitation of coldest quarter. NMUH01002301.1 
(Colocasia esculenta cultivar Niue isolate Niue_2 TARO_
scaffold_002301) accession number or Scaffold contained 
this S_100991964 SNP marker. Seven genes were linked 
within NMUH01002301.1 accession which was identi-
fied as hypothetical protein in taro (Fig.  7). Again, the 
genes nucleotide sequences blasted in NCBI using default 
parameter. One of the genes (MQL99127.1, Taro_031845) 
is homologous with diaminopimelate decarboxylase gene 
in different crops (Hevea brasiliensis, Gossypium arbore-
tum, Manihot esculenta, Jatropha curcas, Ricinus commu-
nis, Populus alba, and Citrus sinensis) with E-values 2e-37 
to 4e-19. Interestingly, this diaminopimelate decarboxylase 
gene is highly expressed under induced drought stress in 
different crops [67].

Another gene (MQL99126.1), co-located with 
S_100991964 SNP marker, was found homologues with 
cyclin dependent kinase (CDK) gene in different plants 
(Populus alba, Daucus carota, Prosopis alba, Zingiber 
officinale, Glycine max, and Brassica rapa) with the 
E-values ranging 5e-08 to 4e-04. CDKs are core cell cycle 
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Fig. 6  Graphic representation of candidate genes for S_101024366 SNP marker region. The red colour is gene identified homologous region for 
astringency trait in Diospyros lotus (date-plum) and the green colours is other genes identified for the S_101024366 SNP marker region 
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Fig. 7  Graphic representation of candidate genes for S_100991964 SNP marker region (NMUH01002301.1). The red, blue and yellow colour is 
gene identified homologous region for diaminopimelate decarboxylase gene, Cyclin dependent kinases (CDKs) and MYB transcription factor (MYB), 
respectively. The green colours are other genes identified for the S_100991964 SNP marker region still unknow protein
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regulators and play important role in different aspects 
of plant growth and development [67, 68]. Several stud-
ies have indicated the involvement of CDKs in the plant 
stress responses [68–71]. Magwanga et  al.  [70]  also 
reported that the possibility of CDKF-4 s and CDKG-2 s 
primary regulators of drought responses in cotton.

MQL99125.1gene, co-located with S_100991964 SNP 
marker, has a homologues region with MYB transcription 
factor (MYB) in different plants (Anthurium andraeanum, 
Elaeis guineensis, Ricinus communis, Pinus radiata, Triti-
cum aestivum, and Hordeum vulgare). MYB family tran-
scription factors play crucial roles in response to abiotic 
stresses [72, 73]. For instance, TaMYB31 is transcription-
ally induced by drought stress in Arabidopsis thaliana [74].

Genome‑wide association study (GWAS)
Mapping traits in taro population provides another 
opportunity to validate and use the SNP markers for 
further breeding programs. GWAS identified a total of 
45, 40 and 34 significant SNP markers associated with 
studied traits in combined, year 1 and year 2 data sets, 
respectively. Out of these, five markers were identified 
in two data sets out of the three, including S1_18891752 
S3_100795476, S1_100584471 S1_100896936 and 
S2_100587991. Additionally, single SNP marker 
(S2_100587991 SNP) was associated with a climatic vari-
able (mean temperature of warmest quarter) and phe-
notypic trait (yield per hectare). S2_100587991 SNP is 
found in scaffold of NMUH01001840.1. This scaffold con-
tains 17 genes identified as hypothetical proteins in the 
taro genome. Several genes are linked to the identified 
five significant SNP markers that are identified as hypo-
thetic proteins in the taro genome with the 35 kb window 
size. The Blast result is presented in detail in Table S5.

Conclusion
Southeast Nigerian taro is high in phenotypic and 
genetic diversity with low admixture. This may be due 
to taro being an asexually propagated crop. The Nige-
rian taro diversity is less explained by the environment 
as other factors such as human activities might have a 
major role in taro diversity. Therefore, feasible strategy 
must be in place to encourage farmers to conserve the 
genetic resources. This study identified that genomic sig-
natures of adaptation are useful for germplasm charac-
terization, potentially enhancing future marker-assisted 
selection and taro crop improvement in Nigeria. These 
findings suggest that the allelic distribution at astringent, 
CDK, and MYB transcription factors might be shaped by 
geographical gradients in human and natural selection. 
However, further evaluation of the genes or genomic 
region is recommended.
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plant) using different models (Blink = Bayesian-information and Linkage-
disequilibrium Iteratively Nested Keyway, CMLM = copressed mixed linear 
models, GLM = general linear model, MLM = mixed linear models, and 
FarmCPU = Fixed and random model Circulating Probability Unification).

Additional file 8: Fig. S4. genome-environment association (GEA) across 
the Nigerian taro landrace collection using 9442 SNP markers (MFA ≥ 0.01). 
Manhattan plots showing significant false discovery rate (FDR) adjusted 
P-value of < 0.05 associated with climatic variables for climatic variables 
(BIO1 = Annual mean temperature, BIO8 = Mean temperature of wettest 
quarter, BIO9 = Mean temperature of driest quarter, BIO10 = Mean tem-
perature of warmest quarter, BIO11 = Mean temperature of coldest quarter, 
BIO12 = Annual precipitation, BIO16 = Precipitation of wettest quarter, 
BIO17 = Precipitation of driest quarter, BIO18 = Precipitation of warmest 
quarter and BIO19 = Precipitation of coldest quarter). The x-axis represents 
the chromosomes and the y-axis the –log10 (P-values) for marker–environ-
ment association. Each point represents the SNP marker. The threshold is 
set based on the Genetic Type I error calculator (GEC) of the P-values.

Additional file 9: Fig. S5. A. Genome-wide association study across the 
Nagerian taro landrace collection using 9442 SNP markers (MFA ≥ 0.01) 
and combined data set. Manhattan plots showing significant false 
discovery rate (FDR) adjusted P-value of < 0.05 associated with phenotypic 
traits. The x-axis represents the chromosomes and the y-axis the –log10 
(P-values) for marker–trait association. Each point represents the SNP 
marker. The threshold is set based on the Genetic Type I error calculator 
(GEC) of the P-values.

Additional file 10: Table S5. List of co-located genes around five 
significant markers of the traits: COD = corm diameter (cm), COL = corm 
length (cm), CRD = cormel diameter (cm), CRL = cornel length (cm), 
CRW = cormel weight (g), DM = days to maturity, NCR = Number of 
cormels per plant, PH = plant height (cm), NLPP = number of leaves per 
plant, NSPP = number of suckers per plant, PL = petiole length (cm), YPH 
(t/ha) = yield per hectare and YPP = yield per plants (kg/plant).

Acknowledgments
Authors wish to thank IGSS, BecA, ILRI groups for their valuable support 
in genotyping of taro landraces. We also thank all farmers and agricultural 
extension department of southeast Nigeria for active cooperation during the 
collection of taro collection from the region.

Authors’ contributions
HOO and WGA conceived and designed the experiments; TWF carried out the 
experiments; TMM analysed the data; TMM, TWF, HOO, COA, and WGA contrib-
uted writing and reviewing the manuscript. All authors read and approved the 
final manuscript.

Funding
This work was supported by Intra-Africa Mobility Scheme through Mobreed 
project. Mr. Tilahun Wondimu Fufa, from the Oromia Agricultural Research 
Institute, Ethiopia is a scholar of the “Intra-Africa Academic Mobility Scheme” 
under the project grant number 2016–2988 on “Enhancing training and 
research mobility for novel crops breeding in Africa (MoBreed)” funded by the 
Education, Audio-visual and Culture Executive Agency (EACEA) of the Euro-
pean Commission. The project provided a scholarship for academic training 
and research mobility and a research grant to the first Author to complete a 
Ph.D. degree at Ebonyi State University (Nigeria).

Availability of data and materials
All data generated or analysed during this study are included in this published arti-
cle (and its supplementary information files). The sequencing data of 92 accessions 
used in this study have been deposited into the NCBI database under accession 
number PRJNA901400 (https://​www.​ncbi.​nlm.​nih.​gov/​biopr​oject/​PRJNA​901400).

Declarations

Ethics approval and consent to participate
The landraces were collected from Southeast states of Nigeria, in this study, 
and identified by Prof. Happiness Ogba Oselebe from Ebony State University. 
All genetic materials conserved Herbarium of Ebonyi State University, the 
National Root Crops Research Institute, Nigeria. The research conducted in this 
study neither required approval from an ethics committee, nor involved any 
human or animal subjects. No specific permits were required for the described 
field and genotypic studies. The location is not privately-owned or protected in 
any way. We complied with the IUCN Policy Statement on Research Involving 
Species at Risk of Extinction and the Convention on the Trade in Endangered 
Species of Wild Fauna and Flora. All methods were carried out in accordance 
with relevant guidelines and regulations in the “Ethics approval” Section.

Consent for publication
Not applicable.

Competing interests
The authors declare there are no competing interests.

Author details
1 Department of Horticulture, Oromia Agricultural Research Institute, Addis 
Ababa, Ethiopia. 2 Department of Crop Production and Landscape Manage-
ment, Ebonyi State University, Abakaliki, Nigeria. 3 Department of Plant Science 
and Horticulture, Jimma University, Jimma, Ethiopia. 4 Cocoyam Improvement 
Programme, National Root Crops Research Institute, Umudike, Nigeria. 

Received: 20 April 2022   Accepted: 13 January 2023

References
	1.	 Haldane JBS. The cost of natural selection. J Genet. 1957;55(3):511. 

https://​doi.​org/​10.​1007/​BF029​84069.
	2.	 Nunney L. Adapting to a changing environment: modeling the interac-

tion of directional selection and plasticity. J Hered. 2016;107(1):15–24. 
https://​doi.​org/​10.​1093/​jhered/​esv084.

	3.	 Foll M, Gaggiotti O. A genome-scan method to identify selected loci appro-
priate for both dominant and codominant markers: a Bayesian perspective. 
Genetics. 2008;180(2):977–93. https://​doi.​org/​10.​1534/​genet​ics.​108.​092221.

	4.	 Storz J. Using genome scans of DNA polymorphism to infer adaptive 
population divergence. Mol Ecol. 2005;14:671–88. https://​doi.​org/​10.​
1111/j.​1365-​294X.​2005.​02437.x.

	5.	 Westengen OT, et al. Spatial structure and climatic adaptation in African 
maize revealed by surveying SNP diversity in relation to global breeding 
and landrace panels; 2012. https://​doi.​org/​10.​1371/​journ​al.​pone.​00478​32.

	6.	 Abebe TD, Naz AA, Léon J. Landscape genomics reveal signatures of local 
adaptation in barley (Hordeum vulgare L.). Front Plant Sci. 2015;6:813. 
https://​doi.​org/​10.​3389/​fpls.​2015.​00813.

	7.	 Olatoye MO, et al. Genomic signatures of adaptation to a precipita-
tion gradient in Nigerian sorghum. G3: genes, genomes. Genetics. 
2018;8(10):3269–81. https://​doi.​org/​10.​1534/​g3.​118.​200551.

	8.	 Menamo T, et al. Genetic diversity of Ethiopian sorghum reveals sig-
natures of climatic adaptation. Theor Appl Genet. 2021;134(2):731–42. 
https://​doi.​org/​10.​1007/​s00122-​020-​03727-5.

	9.	 Matthews PJ. An introduction to the history of taro as a food: Global 
Diversity of Taro; 2010. minpaku.repo.nii.ac.jp

	10.	 Kuruvilla K, Singh A. Karyotypic and electrophoretic studies on taro and its 
origin. Euphytica. 1981;30(2):405–13. https://​doi.​org/​10.​1007/​BF000​34004.

	11.	 Chaïr H, et al. Genetic diversification and dispersal of taro (Colocasia 
esculenta (L.) Schott). PLoS One. 2016;11(6):e0157712. https://​doi.​org/​10.​
1371/​journ​al.​pone.​01577​12.

	12.	 Miyasaka SC, et al. Genetic diversity in taro (Colocasia esculenta), in 
Genetic diversity in horticultural plants: Springer; 2019. p. 191–215. 
https://​doi.​org/​10.​1007/​978-3-​319-​96454-6_7.

	13.	 Amadi C, et al. Hybridization and seed germination of taro (Colocasia 
esculenta) in Nigeria. J Crop Improv. 2015;29(1):106–16. https://​doi.​org/​10.​
1080/​15427​528.​2014.​980023.

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA901400
https://doi.org/10.1007/BF02984069
https://doi.org/10.1093/jhered/esv084
https://doi.org/10.1534/genetics.108.092221
https://doi.org/10.1111/j.1365-294X.2005.02437.x
https://doi.org/10.1111/j.1365-294X.2005.02437.x
https://doi.org/10.1371/journal.pone.0047832
https://doi.org/10.3389/fpls.2015.00813
https://doi.org/10.1534/g3.118.200551
https://doi.org/10.1007/s00122-020-03727-5
https://doi.org/10.1007/BF00034004
https://doi.org/10.1371/journal.pone.0157712
https://doi.org/10.1371/journal.pone.0157712
https://doi.org/10.1007/978-3-319-96454-6_7
https://doi.org/10.1080/15427528.2014.980023
https://doi.org/10.1080/15427528.2014.980023


Page 15 of 16Fufa et al. BMC Genomics           (2023) 24:39 	

	14.	 Matthews, P.J., Genetic diversity in taro, and the preservation of culinary 
knowledge. 2004. http://​hdl.​handle.​net/​10125/​138.

	15.	 Mace ES, Godwin ID. Development and characterization of polymor-
phic microsatellite markers in taro (Colocasia esculenta). Genome. 
2002;45(5):823–32. https://​doi.​org/​10.​1139/​g02-​045.

	16.	 Rao VR, et al. Ethnobotany and global diversity of taro: The Global Diver-
sity of Taro; 2010. minpaku.repo.nii.ac.jp

	17.	 Ubalua AO, Ewa F, Okeagu OD. Potentials and challenges of sustainable 
taro (Colocasia esculenta) production in Nigeria. J Appl Biol Biotechnol. 
2016;4:053–9.

	18.	 Matthews PJ, Ghanem ME. Perception gaps that may explain the status 
of taro (Colocasia esculenta) as an “orphan crop”. Plants People Planet. 
2021;3(2):99–112. https://​doi.​org/​10.​1002/​ppp3.​10155.

	19.	 Bellinger MR, et al. Taro genome assembly and linkage map reveal 
QTLs for resistance to taro leaf blight. G3: genes, genomes. Genetics. 
2020;10(8):2763–75. https://​doi.​org/​10.​1534/​g3.​120.​401367.

	20.	 El-Monairy OM. Efficiency of Colocasia esculenta leaves extract and 
histopathological effects on Culex pipiens (Diptera: Culicidae). J Egypt 
Soc Parasitol. 2015;45(1):85–92. https://​doi.​org/​10.​21608/​jesp.​2015.​
89696.

	21.	 Onyeka J. Status of cocoyam (Colocasia esculenta and Xanthosoma spp) 
in West and Central Africa: production, household importance and the 
threat from leaf blight: CGIAR Research Program on Roots, Tubers and 
Bananas (RTB); 2014. p. 1–39. cgspa​ce.​cgiar.​org

	22.	 Amadi C, Mbanaso E, Chukwu G. A review cocoyam breeding in Nigeria: 
achievements, challenges and prospects. Nigeria. Agric J. 2012; 43:8–17

	23.	 Fufa TW, et al. Systematic review on farmers’ perceptions, preferences 
and utilization patterns of Taro [Colocasia esculenta (L.) Scott] for food and 
nutrition security in Nigeria. J Plant Sci. 2021;9(4):224–33. https://​doi.​org/​
10.​11648/j.​jps.​20210​904.​23.

	24.	 Kilian A, et al. Diversity arrays technology: a generic genome profil-
ing technology on open platforms, in data production and analysis in 
population genomics: Springer; 2012. p. 67–89. https://​doi.​org/​10.​1007/​
978-1-​61779-​870-2_5.

	25.	 Hijmans, R.J., et al., Package ‘raster’. R package, 2015.
	26.	 Hijmans RJ, et al. Very high resolution interpolated climate surfaces for 

global land areas. Int J Climatol. 2005;25(15):1965–78. https://​doi.​org/​10.​
1002/​joc.​1276.

	27.	 IPGRI/IITA, Descriptors for taro (Colocasia spp.), I.I.f.T. Agriculture, Editor. 
1990, International Plant Genetic Resources Institute: Rome.

	28.	 Bates D, et al. Fitting linear mixed-effects models using lme4. 2015;67(1):1-
48. https://​doi.​org/​10.​18637/​jss.​v067.​i01

	29.	 Popat, R., R. Patel, and D. Parmar, variability: Genetic Variability Analysis for 
Plant Breeding Research: R package version 0.1.0. https://​CRAN.R-​proje​ct.​
org/​packa​ge=​varia​bility, 2020.

	30.	 Bradbury PJ, et al. TASSEL: software for association mapping of complex 
traits in diverse samples. Bioinformatics. 2007;23(19):2633–5. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​btm308.

	31.	 Remington DL, et al. Structure of linkage disequilibrium and phenotypic 
associations in the maize genome. Proc Natl Acad Sci. 2001;98(20):11479–
84. https://​doi.​org/​10.​1073/​pnas.​20139​4398.

	32.	 R Core Team, R: A language and environment for statistical computing. 2013.
	33.	 Frichot E, François O. LEA: an R package for landscape and ecological 

association studies. Methods Ecol Evol. 2015;6(8):925–9. https://​doi.​org/​
10.​1111/​2041-​210X.​12382.

	34.	 Frichot E, et al. Fast and efficient estimation of individual ancestry coef-
ficients. Genetics. 2014;196(4):973–83. https://​doi.​org/​10.​1534/​genet​ics.​
113.​160572.

	35.	 Kindt R. Vegan: community ecology package. R package version 1.17-8. 
World. 2018. L https://​cran.r-​proje​ct.​org, https://​github.​com/​vegan​devs/​
vegan.

	36.	 Lasky JR, et al. Genome-environment associations in sorghum landraces 
predict adaptive traits. Sci Adv. 2015;1(6):e1400218. https://​doi.​org/​10.​
1126/​sciadv.​14002​18.

	37.	 Duforet-Frebourg N, Bazin E, Blum MG. Genome scans for detecting 
footprints of local adaptation using a Bayesian factor model. Mol Biol 
Evol. 2014;31(9):2483–95. https://​doi.​org/​10.​1093/​molbev/​msu182.

	38.	 Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical 
and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 
1995;57(1):289–300. https://​doi.​org/​10.​1111/j.​2517-​6161.​1995.​tb020​31.x.

	39.	 Wang J, Zhang Z. GAPIT version 3: boosting power and accuracy for 
genomic association and prediction. Genom Proteom Bioinformatics. 
2021. https://​doi.​org/​10.​1016/j.​gpb.​2021.​08.​005.

	40.	 Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigen-
values of a correlation matrix. Heredity. 2005;95(3):221–7. https://​doi.​org/​
10.​1038/​sj.​hdy.​68007​17.

	41.	 Cinar O, Viechtbauer W. Methods for Pooling P-Values from (Dependent) 
Tests; 2021.

	42.	 Yang J, et al. Genomic inflation factors under polygenic inheritance. Eur J 
Hum Genet. 2011;19(7):807–12. https://​doi.​org/​10.​1038/​ejhg.​2011.​39.

	43.	 Browning BL, Zhou Y, Browning SR. A one-penny imputed genome from 
next-generation reference panels. Am J Hum Genet. 2018;103(3):338–48. 
https://​doi.​org/​10.​1016/j.​ajhg.​2018.​07.​015.

	44.	 Fufa, T.W., et al., 2021. DArTSeq SNP-based genetic diversity study 
revealed large differentiation among taro [(Colocasia esculenta (L). Schott)] 
accessions sourced from Africa and Oceania. 8-38. In press.

	45.	 Maxted N, Dulloo ME, Ford-Lloyd BV. Enhancing crop genepool use: captur-
ing wild relative and landrace diversity for crop improvement: CABI; 2016.

	46.	 Sokolkova A, et al. Genomic analysis of Vavilov’s historic chickpea lan-
draces reveals footprints of environmental and human selection. Int J Mol 
Sci. 2020;21(11):3952. https://​doi.​org/​10.​3390/​ijms2​11139​52.

	47.	 Markwei C, Bennett-Lartey S, Quarcoo E. Assessment of cultivar diversity 
and agronomic characteristics of cocoyam (Xanthosoma sagittifolium) in 
Ghana through ethnobotanical documentation: The Global Diversity of 
Taro; 2010. p. 29. minpaku.repo.nii.ac.jp

	48.	 Leitch, I., et al., Plant DNA C-values Database (Release 7.1) https://​cvalu​es.​
scien​ce.​kew.​org/. 2019.

	49.	 NCBI, National Center for Biotechnology Information, https://​www.​ncbi.​
nlm.​nih.​gov/​genom​e/?​term=​taro. 2021.

	50.	 Mukherjee D, et al. A study on genetic variability, character association 
and path co-efficient analysis on morphological and yield attributing 
characters of Taro [Colocasia esculenta (L.) Schott]. American. J Plant Sci. 
2016;7(03):479. https://​doi.​org/​10.​4236/​ajps.​2016.​73042.

	51.	 Eze C, Nwofia G. Variability and inter-relationships between yield and 
associated traits in taro (Colocasia esculenta (L.) Schott). Journal of experi-
mental. Agric Int. 2016:1–13. https://​doi.​org/​10.​9734/​JEAI/​2016/​27053.

	52.	 Caye K, et al. LFMM 2: fast and accurate inference of gene-environment 
associations in genome-wide studies. Mol Biol Evol. 2019;36(4):852–60. 
https://​doi.​org/​10.​1093/​molbev/​msz008.

	53.	 Forester BR, et al. Comparing methods for detecting multilocus adapta-
tion with multivariate genotype–environment associations. Mol Ecol. 
2018;27(9):2215–33. https://​doi.​org/​10.​1111/​mec.​14584.

	54.	 Faye JM, et al. Genomic signatures of adaptation to Sahelian and Souda-
nian climates in sorghum landraces of Senegal. Ecol Evol. 2019. https://​
doi.​org/​10.​1002/​ece3.​5187.

	55.	 Rao VR. Taro genetic diversity and its use in taro improvement: The Global 
Diversity of Taro; 2010. p. 121. minpaku.repo.nii.ac.jp

	56.	 Zoratti L, et al. Genetic diversity and population structure of an important 
wild berry crop. AoB Plants. 2015:7. https://​doi.​org/​10.​1093/​aobpla/​plv117.

	57.	 Singh D, et al. Taro leaf blight—a threat to food security. Agriculture. 
2012;2(3):182–203. https://​doi.​org/​10.​3390/​agric​ultur​e2030​182.

	58.	 Kokubugata G, Konishi T. Implication of a basic chromosome number of 
x= 14 in seven cultivars of two varieties of Colocasia esculenta by fluores-
cent in situ hybridization using rDNA probe. Cytologia. 1999;64(1):77–83. 
https://​doi.​org/​10.​1508/​cytol​ogia.​64.​77.

	59.	 Okada H, Hambali GG. Chromosome behaviors in meiosis of the inter-
specific hybrids between Colocasia esculenta (L.) Schott and C. gigantea hook. 
F. Cytologia. 1989;54(2):389–93. https://​doi.​org/​10.​1508/​cytol​ogia.​54.​389.

	60.	 Wilson JE, Cable WJ. Promotion of flowering, seed production and 
seedling screening in minor edible aroids. In:  Proceedings of the 6th 
Symposium of the International Society for Tropical Root Crops; 1983.

	61.	 Zhang K, et al. Isolates of Phytophthora colocasiae from Hainan 
Island in China: evidence suggesting an Asian origin of this species. 
Mycologia. 1994;86(1):108–12. https://​doi.​org/​10.​1080/​00275​514.​
1994.​12026​379.

	62.	 Power RA, Parkhill J, de Oliveira T. Microbial genome-wide association 
studies: lessons from human GWAS. Nat Rev Genet. 2017;18(1):41–50. 
https://​doi.​org/​10.​1038/​nrg.​2016.​132.

	63.	 He M, et al. Molecular progress in research on fruit astringency. Molecules. 
2015;20(1):1434–145. https://​doi.​org/​10.​3390/​molec​ules2​00114​34.

http://hdl.handle.net/10125/138
https://doi.org/10.1139/g02-045
https://doi.org/10.1002/ppp3.10155
https://doi.org/10.1534/g3.120.401367
https://doi.org/10.21608/jesp.2015.89696
https://doi.org/10.21608/jesp.2015.89696
http://cgspace.cgiar.org
https://doi.org/10.11648/j.jps.20210904.23
https://doi.org/10.11648/j.jps.20210904.23
https://doi.org/10.1007/978-1-61779-870-2_5
https://doi.org/10.1007/978-1-61779-870-2_5
https://doi.org/10.1002/joc.1276
https://doi.org/10.1002/joc.1276
https://doi.org/10.18637/jss.v067.i01
https://cran.r-project.org/package=variability
https://cran.r-project.org/package=variability
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1073/pnas.201394398
https://doi.org/10.1111/2041-210X.12382
https://doi.org/10.1111/2041-210X.12382
https://doi.org/10.1534/genetics.113.160572
https://doi.org/10.1534/genetics.113.160572
https://cran.r-project.org
https://github.com/vegandevs/vegan
https://github.com/vegandevs/vegan
https://doi.org/10.1126/sciadv.1400218
https://doi.org/10.1126/sciadv.1400218
https://doi.org/10.1093/molbev/msu182
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.gpb.2021.08.005
https://doi.org/10.1038/sj.hdy.6800717
https://doi.org/10.1038/sj.hdy.6800717
https://doi.org/10.1038/ejhg.2011.39
https://doi.org/10.1016/j.ajhg.2018.07.015
https://doi.org/10.3390/ijms21113952
https://cvalues.science.kew.org/
https://cvalues.science.kew.org/
https://www.ncbi.nlm.nih.gov/genome/?term=taro
https://www.ncbi.nlm.nih.gov/genome/?term=taro
https://doi.org/10.4236/ajps.2016.73042
https://doi.org/10.9734/JEAI/2016/27053
https://doi.org/10.1093/molbev/msz008
https://doi.org/10.1111/mec.14584
https://doi.org/10.1002/ece3.5187
https://doi.org/10.1002/ece3.5187
https://doi.org/10.1093/aobpla/plv117
https://doi.org/10.3390/agriculture2030182
https://doi.org/10.1508/cytologia.64.77
https://doi.org/10.1508/cytologia.54.389
https://doi.org/10.1080/00275514.1994.12026379
https://doi.org/10.1080/00275514.1994.12026379
https://doi.org/10.1038/nrg.2016.132
https://doi.org/10.3390/molecules20011434


Page 16 of 16Fufa et al. BMC Genomics           (2023) 24:39 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	64.	 Guinard J-X, Pangborn RM, Lewis MJ. The time-course of astringency in 
wine upon repeated ingestion. Am J Enol Vitic. 1986;37(3):184–18964 
Kobue-Lekalake, R.I., Sensory perception of bitterness and astringency in 
sorghum. 2009, University of Pretoria. http://​hdl.​handle.​net/​2263/​23317.

	65.	 Sharma S, et al. Taro (Colocasia esculenta). In:  Antioxidants in vegetables 
and nuts-properties and health benefits: Springer; 2020. p. 341–53. 
https://​doi.​org/​10.​1007/​978-​981-​15-​7470-2_​18.

	66.	 Awika JM, Rooney LW. Sorghum phytochemicals and their potential 
impact on human health. Phytochemistry. 2004;65(9):1199–221. https://​
doi.​org/​10.​1016/j.​phyto​chem.​2004.​04.​001.

	67.	 Shanker AK, et al. Drought stress responses in crops. Funct Integr Genom. 
2014;14(1):11–22. https://​doi.​org/​10.​1007/​s10142-​013-​0356-x.

	68.	 Tamirisa S, Vudem DR, Khareedu VR. A cyclin dependent kinase regulatory 
subunit (CKS) gene of pigeonpea imparts abiotic stress tolerance and 
regulates plant growth and development in Arabidopsis. Front Plant Sci. 
2017;8:165. https://​doi.​org/​10.​3389/​fpls.​2017.​00165.

	69.	 Magwanga RO, et al. Whole genome analysis of cyclin dependent kinase 
(CDK) gene family in cotton and functional evaluation of the role of 
CDKF4 gene in drought and salt stress tolerance in plants. Int J Mol Sci. 
2018;19(9):2625. https://​doi.​org/​10.​3390/​ijms1​90926​25.

	70.	 Kitsios G, Doonan JH. Cyclin dependent protein kinases and stress 
responses in plants. Plant Signal Behav. 2011;6(2):204–9. https://​doi.​org/​
10.​4161/​psb.6.​2.​14835.

	71.	 Dubos C, et al. MYB transcription factors in Arabidopsis. Trends Plant Sci. 
2010;15(10):573–81. https://​doi.​org/​10.​1016/j.​tplan​ts.​2010.​06.​005.

	72.	 Zhao Y, et al. The wheat MYB transcription factor TaMYB31 is involved 
in drought stress responses in Arabidopsis. Front Plant Sci. 2018;9:1426. 
https://​doi.​org/​10.​3389/​fpls.​2018.​01426.

	73.	 Bi H, et al. Identification and characterization of wheat drought-
responsive MYB transcription factors involved in the regulation of cuticle 
biosynthesis. J Exp Bot. 2016;67(18):5363–80. https://​doi.​org/​10.​1093/​jxb/​
erw298.

	74.	 Gupta S, et al. Identification of drought tolerant progenies in tea by gene 
expression analysis. Funct Integr Genom. 2012;12(3):543–63. https://​doi.​
org/​10.​1007/​s10142-​012-​0277-0.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://hdl.handle.net/2263/23317
https://doi.org/10.1007/978-981-15-7470-2_18
https://doi.org/10.1016/j.phytochem.2004.04.001
https://doi.org/10.1016/j.phytochem.2004.04.001
https://doi.org/10.1007/s10142-013-0356-x
https://doi.org/10.3389/fpls.2017.00165
https://doi.org/10.3390/ijms19092625
https://doi.org/10.4161/psb.6.2.14835
https://doi.org/10.4161/psb.6.2.14835
https://doi.org/10.1016/j.tplants.2010.06.005
https://doi.org/10.3389/fpls.2018.01426
https://doi.org/10.1093/jxb/erw298
https://doi.org/10.1093/jxb/erw298
https://doi.org/10.1007/s10142-012-0277-0
https://doi.org/10.1007/s10142-012-0277-0

	Detection of the local adaptive and genome-wide associated loci in southeast Nigerian taro (Colocasia esculenta (L.) Schott) populations
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Materials and methods
	Field experiment
	Genetic materials
	Total genomic DNA extraction and genotyping
	Climatic and phenotype variables
	Morphological data analysis
	Population structure and linkage disequilibrium analyses
	Redundancy analysis

	Detect local adaptation loci
	Genome–environment association studies
	Genome-wide association studies

	Setting significant threshold P values and model validation for GWAS and GEA

	Results
	Phenotype traits and environmental variability
	SNP markers and linkage disequilibrium (LD) decay analyses
	Population structure
	Redundancy analysis

	Suggestive p-value and model validation using GWAS results
	Genome scan and environment association loci
	Genome-wide association

	Discussion
	Significance of the study for taro improvement
	Southeast Nigerian taro has untapped phenotypic variability
	Collinear explained SNP variation more than single climatic variable
	Southeast Nigerian taro has low admixture
	No single model exclusively is suitable for all studied traits in taro
	GEA identified local adapted loci and candidate genes
	Genome-wide association study (GWAS)

	Conclusion
	Acknowledgments
	References


