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Abstract 

Background  Cultivated peanut (Arachis hypogaea), a progeny of the cross between A. duranensis and A. ipaensis, is an 
important oil and protein crop from South America. To date, at least six Arachis genomes have been sequenced. WRKY 
transcription factors (TFs) play crucial roles in plant growth, development, and response to abiotic and biotic stresses. 
WRKY TFs have been identified in A. duranensis, A. ipaensis, and A. hypogaea cv. Tifrunner; however, variations in their 
number and evolutionary patterns across various Arachis spp. remain unclear.

Results  WRKY TFs were identified and compared across different Arachis species, including A. duranensis, A. ipaen-
sis, A. monticola, A. hypogaea cultivars (cv.) Fuhuasheng, A. hypogaea cv. Shitouqi, and A. hypogaea cv. Tifrunner. The 
results showed that the WRKY TFs underwent dynamic equilibrium between diploid and tetraploid peanut species, 
characterized by the loss of old WRKY TFs and retention of the new ones. Notably, cultivated peanuts inherited more 
conserved WRKY orthologs from wild tetraploid peanuts than their wild diploid donors. Analysis of the W-box ele-
ments and protein–protein interactions revealed that different domestication processes affected WRKY evolution 
across cultivated peanut varieties. WRKY TFs of A. hypogaea cv. Fuhuasheng and Shitouqi exhibited a similar domes-
tication process, while those of cv. Tifrunner of the same species underwent a different domestication process based 
on protein–protein interaction analysis.

Conclusions  This study provides new insights into the evolution of WRKY TFs in Arachis spp.

Keywords  Arachis, Domestication, Homolog, WRKY

Background
WRKY transcription factors (TFs) play crucial roles in 
plant growth, development, and response to abiotic and 
biotic stresses [1–4]. These abiotic and biotic stresses 
include drought, salt, extreme temperatures, waterlog-
ging, ultraviolet, and various pathogen and insects [1–3]. 
The plant developmental stages regulated by WRKY TFs 
include flowering time, senescence, nutrient utiliza-
tion, and the development of seeds, pollens, stems, and 
roots plant [2, 3]. WRKY TFs have a conserved WRKY 
domain, containing a WRKYGQK motif at the N-termi-
nal end and a zinc finger motif at the C-terminal end [1]. 
WRKY TFs are classified into three groups; I, II, and III 
[1]. Group I WRKY TFs contain two domains and a zinc 
finger (C2H2) motif [1, 2], while group II and III contain 
a WRKY domain but have different zinc finger motifs 
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(group II contains C2H2, whereas group III contains 
C2HC zinc finger motif ) [1, 2]. Group II is further classi-
fied into five subgroups, IIa-IIe [1, 2], of which subgroups 
IIa and IIb cluster in one clade, and IId and IIe in a differ-
ent clade [1, 2, 5].

Several WRKY TFs have been identified in diverse 
plant species at the genome level [6, 7]. Notably, most 
studies have mainly focused on the structural variation 
and evolution of WRKY and the prediction of their bio-
logical functions based on RNA-seq and quantitative 
real-time PCR analyses. WRKY TFs have been identi-
fied in at least 12 legumes, including Arachis duranensis, 
Arachis ipaensis, Cajanus cajan, Cicer arietinum, Gly-
cine max, Lotus japonicas, Lupinus angustifolius, Med-
icago truncatula, Phaseolus vulgaris, Trifolium pratense, 
Vigna angularis, and Vigna radiate [6]. The WRKYGQK 
domain reportedly tends to mutate into WRKYGKK [6]. 
Duplicated WRKY TFs of the 12 legumes had longer pol-
ypeptides than the single WRKY TFs [6]. Synteny analysis 
revealed that segmental duplication event plays a major 
role in paralog formation in G. max, A. duranensis, and 
A. ipaensis [8, 9]. Moreover, accumulating evidence also 
demonstrated that WRKY paralogs and orthologs mainly 
underwent purifying selection, suggesting that WRKY 
homologs have conserved functions [6, 8].

Cultivated peanut (Arachis hypogaea) is an impor-
tant oil and protein crop from South America [10, 11]. 
It is an allotetraploid plant that resulted from a cross 
between A. duranensis and A. ipaensis [11–13]. A. mon-
ticola is a wild allotetraploid plant known to be the 
direct progenitor of A. hypogaea [14]. To date, genome 
sequencing of at least six Arachis species has been com-
pleted, including A. duranensis, A. ipaensis, A. mon-
ticola, A. hypogaea cv. Fuhuasheng, A. hypogaea cv. 
Shitouqi, and A. hypogaea cv. Tifrunner [11, 12, 15–17]. 
The genomic information of the six Arachis species pro-
vides crucial data for evolutionary studies at the genome 
level. In A. duranensis, duplicated gene pairs have dif-
ferent responses to drought and nematode stress, and 
old and young duplicate genes have divergent functions 
[18, 19]. Old duplicate genes mainly participate in lipid 
and amino acid metabolism and responses to abiotic 
stresses, while young duplicate genes are preferentially 
involved in photosynthesis and biotic stress responses 
[19]. In A. duranensis and A. ipaensis, gradual selec-
tion and purifying pressure act on the somatic tissue-
specific and sex-specific genes [20]. A comparison of the 
genomic structure between wild and cultivated peanuts 
revealed that the sub-genomes of cultivated peanuts 
underwent asymmetric evolution [21]. However, no 
homoeolog expression bias was observed in vegetative 
tissues between two sub-genomes of A. hypogaea except 
in reproductive tissues [12, 15, 16, 22]. Whole-genome 

re-sequencing of 203 cultivated peanut varieties was 
performed to verify the botanical classification of pea-
nuts, and the results revealed that var. peruviana is pos-
sibly the earliest variant from tetraploid progenitors 
[23]. In addition, seed weight and length-related genes 
have been identified using genome-wide association 
analysis, and their functions have been verified in Arabi-
dopsis [23].

In addition to genome-level analysis, gene fam-
ily identification has also been used to study Arachis 
evolution. A. duranensis, A. ipaensis, and A. hypogaea 
cv. Tifrunner genomes have been used to identify 
gene families such as nucleotide-binding site-leucine-
rich repeat (NBS-LRR), LRR-containing genes, and 
heat shock transcription factor (HSF) [24–26]. To our 
knowledge, only the valine-glutamine (VQ) gene fam-
ily has been compared among the above-mentioned six 
Arachis genomes [27]. The study found that the VQs 
increased in A. monticola, A. hypogaea cv. Fuhuasheng, 
and A. hypogaea cv. Shitouqi compared to A. duranen-
sis and A. ipaensis [27].

Previous studies identified WRKY TFs in A. duranensis, 
A. ipaensis, and A. hypogaea cv. Tifrunner [8, 28]. How-
ever, some coordinates changed, and a few gene models 
got duplicated in A. hypogaea cv. Tifrunner genome [29]. 
Therefore, this study aimed to identify WRKY TFs in A. 
monticola, A. hypogaea cv. Fuhuasheng, A. hypogaea cv. 
Shitouqi, and A. hypogaea cv. Tifrunner. We compared 
the number of WRKY TFs across the various Arachis 
species to determine their homologous relationships and 
regulatory networks. Therefore, this study provides new 
insights into the evolution of Arachis spp.

Methods
Identification of WRKY TFs in Arachis species
The released genome sequences of A. monticola, A. 
hypogaea cv. Fuhuasheng, A. hypogaea cv. Shitouqi, 
and A. hypogaea cv. Tifrunner were obtained from 
GigaDB (http://​gigadb.​org/​datas​et/​100453), NCBI 
(ftp://​ftp.​ncbi.​nlm.​nih.​gov/​genom​es/​all/​GCA/​004/​
170/​445/​GCA_​00417​0445.1_​ASM41​7044v1), Peanut 
Genome Resource (http://​peanu​tgr.​fafu.​edu.​cn), and 
PeanutBase (https://​www.​peanu​tbase.​org) databases 
[12, 15–17, 29]. The Hidden Markov Model (HMM) file 
of WRKY domains (PF03106) was downloaded from 
the Pfam database [30], and the HMMER program with 
default parameters  was used to identify the WRKY 
domains among the Arachis spp. [31]. The WRKY 
sequences were extracted using in-house Perl script 
and were uploaded to the Pfam database to re-confirm 
the WRKY domains. The identification of WRKY TFs 
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in A. duranensis and A. ipaensis was based on a previ-
ous study [8].

Phylogenetic tree construction
Six Arachis WRKY domains were aligned using MAFFT 
program [32], and the ProtTest program was used to 
estimate the best-fit model of maximum likelihood 
(ML) trees [33]. The ML trees were constructed using 
the IQ-tree program [34]. The phylogenetic tree visual-
ized using the Figtree program.

Identification of WRKY paralogs and homoeologs 
in Arachis species
Paralogs occur due to gene duplication events, while 
homoeologs are formed via polyploidy [35, 36]. In 
this study, we identified paralogs and homoeologs of 
the Arachis species using the local BLAST program as 
per the following parameters: (1) the alignment region 
exceeds 80% of each sequence, (2) sequence identity 
over 80%, and (3) E-value ≦ 10–10 [18, 20, 37, 38].

W‑box cis‑acting elements of WRKY genes in Arachis 
species
WRKY TFs are auto- and cross-regulated by the W-box 
cis-acting elements [27, 39, 40]. In this study, the 2-kb 
upstream sequences of WRKY genes were extracted using 
the genetic feature format (GFF) by the TBtools program 
[41]. These sequences were uploaded to the NSITE web 
service to predict their WRKY binding sites [42].

Prediction of protein–protein interaction among the WRKY 
TFs of Arachis species
The WRKY TFs were uploaded to the STRING data-
base, and the A. hypogaea WRKY sequences were 
used as a reference for predicting the protein–protein 
interactions.

Results
New WRKY TFs originated from tetraploid Arachis species
The WRKY domains were contained in 138, 131, 158, 
and 146 sequences of A. monticola, A. hypogaea cv. 
Fuhuasheng, A. hypogaea cv. Shitouqi, and A. hypogaea 
cv. Tifrunner, respectively (Fig.  1A and Table S1). 
Among them, 124, 131, 158, and 139 WRKY TFs in A. 
monticola, A. hypogaea cv. Fuhuasheng, A. hypogaea 
cv. Shitouqi, and A. hypogaea cv. Tifrunner, respec-
tively, were full-length sequences (Fig. 1A). A previous 
study identified 75 (70 full-length sequences) and 77 
(69 full-length sequences) WRKY TFs in A. duranensis 
and A. ipaensis, respectively [8]. In this study, the tetra-
ploid and diploid peanut species had an equal number 
of WRKY TFs (Fig.  1). Similarity, an equal number of 

WRKY TFs was identified between the sub-genomes 
and their corresponding ancestral donors (Fig. 1B). The 
WRKY TFs were classified into three groups: I, II, and 
III, according to the WRKY domain number and zinc 
finger type [1, 2]. The number of WRKY TFs in tetra-
ploid peanut species ranged from 16–25, 90–111, and 
22–29 in groups I, II, and III, respectively (Fig.  1C). 
Moreover, the number of WRKY TFs in groups I, II, and 
III was equal between the tetraploid and diploid pea-
nut species except for group I WRKY in A. hypogaea cv. 
Fuhuasheng (Fig. 1C).

We constructed ML phylogenetic trees using the 
WRKY domains of Arachis spp. and the results showed 
that WRKY domains were clustered in three major 
groups: I, II, and III. The group WRKY II domains were 
further classified into five subgroups: IIa, IIb, IIc, IId, and 
IIe, consistent with previous studies [1, 2]. However, sev-
eral group II members from the tetraploid peanut species 
did not cluster with the corresponding group members 
from the diploid peanut species (Fig.  2 and Table S1). 
This indicated that novel WRKY TFs originated from the 
tetraploid peanut. In addition, several members of sub-
groups IIb and IIc were clustered with those in subgroups 
Ic and In, respectively (where In and Ic represent group 
I members with their WRKY domain on the N-terminal 
and C-terminal ends (Fig.  2). Several groups Ic and In 
members also clustered with group IIc and III (Fig.  2). 
These results indicate that Arachis WRKY TFs have mul-
tiple origins and that new WRKY TFs originated from 
the tetraploid peanuts as opposed to diploid peanut.

Old WRKY TFs were lost in tetraploid Arachis species
Gene expansion and loss occur after a polyploidy event 
[43], and A. duranensis and A. ipaensis are the progeni-
tors of tetraploid peanuts [11–13]. Ideally, tetraploid pea-
nut species inherited all the WRKY TFs from wild diploid 
peanut species; however, only 44 WRKY TFs from two 
wild diploid peanut species had conserved orthologs with 
four tetraploid peanut species (Fig. 3A and B). A. monti-
cola is known to be the direct ancestor of the cultivated 
peanut species [14]. In this study, 55 WRKY TFs from A. 
monticola had conserved orthologs in three cultivated 
peanuts species (Fig.  3A and B). Among the tetraploid 
peanut species, 96 WRKY orthologous gene pairs were 
distributed across three cultivated peanuts (Fig.  3A and 
B). These results indicate that ancestral WRKY TFs were 
lost after tetraploid formation. Compared with diploid 
peanut species, cultivated peanuts retained more WRKY 
TFs from A. monticola.

Phenotypic variations such as leaf size, seed size, 
oil content, flowering pattern, and testa color have 
been observed across cultivated peanut varieties [10, 
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44–46]. Notably, A. hypogaea cv. Fuhuasheng and 
A. hypogaea cv. Shitouqiare are the breeding parents 
of about 70% of Chinese peanut cultivars [15, 16]. A. 
hypogaea cv. Tifrunner is a commercial cultivar in 
America with high disease resistance [47]. Therefore, 
the three peanut cultivars underwent different evolu-
tionary processes. In this study, orthologs, paralogs, 
and homoeologs were identified across the tetraploid 
peanut species. In total, 26, 22, 31, and 23 WRKY 
homoeologous gene pairs were identified in A. mon-
ticola, A. hypogaea cv. Fuhuasheng, A. hypogaea cv. 
Shitouqi, and A. hypogaea cv. Tifrunner, respectively 
(Fig. 3A and C). Meanwhile, 21, 25, 41, and 31 WRKY 
paralogous gene pairs were identified in A. monticola, 
A. hypogaea cv. Fuhuasheng, A. hypogaea cv. Shitouqi, 
and A. hypogaea cv. Tifrunner, respectively (Fig.  3A 
and C). Compared with A. monticola, A. hypogaea cv. 
Fuhuasheng and A. hypogaea cv. Tifrunner lost WRKY 

homoeologs but gained WRKY paralogs, while A. 
hypogaea cv. Shitouqi gained WRKY homoeologs and 
paralogs (Fig. 3C).

Additionally, 46 WRKY orthologous gene pairs were 
identified between A. duranensis and A. ipaensis. 
Homoeologous WRKY TFs were lost in the tetraploid 
peanut species compared to the two wild diploid peanut 
species; however, paralogous WRKY TFs were produced 
and retained in tetraploid peanut species. Although there 
was no difference in the number of WRKY TFs between 
the tetraploid peanut species and their diploid donors, 
the tetraploid peanut species lost and retained some 
WRKY TFs, indicating a dynamic equilibrium of WRKY 
TFs in tetraploid peanut species.

Domestication affected WRKY evolution in peanut
WRKY TFs exert their biological functions, includ-
ing auto- and cross-regulation, by binding the W-box 

Fig. 1  Comparison of WRKY genes across various Arachis species. A Number of WRKY genes across various Arachis species. B Number of WRKY 
genes across various Arachis sub-genomes. The excluded WRKY genes from Arachis monticola and A. hypogaea cv. Fuhuasheng due to lack of 
location information. C Number of WRKY genes in groups I, II, and III across various Arachis species. Statistical analyses were executed using the 
Chi-square test at p ≦ 0.05
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elements of WRKY genes [3, 7]. In this study, 26, 29, 59, 
69, 82, and 64 WRKY genes in A. duranensis, A. ipaensis, 
A. monticola, A. hypogaea cv. Fuhuasheng, A. hypogaea 
cv. Shitouqi, and A. hypogaea cv. Tifrunner contained 
at least one W-box element (Fig.  4A). W-box elements 
of WRKY genes were compared among the orthologs, 
paralogs, and homoeologs of Arachis species. The results 
showed that W-box elements in orthologous WRKY 
genes differed between the diploid and tetraploid peanut 
species (Fig. 4B). However, matching W-box elements of 
orthologous  WRKY genes were found among A. monti-
cola, A. hypogaea cv. Fuhuasheng, and A. hypogaea cv. 
Tifrunner (Fig.  4B). There were 26.92% (7/26), 36.36% 
(8/22), 48.39% (15/31), and 43.48% (10/23) homoeolo-
gous WRKY gene pairs with matching W-box elements in 
A. monticola, A. hypogaea cv. Fuhuasheng, A. hypogaea 
cv. Shitouqi, and A. hypogaea cv. Tifrunner, respec-
tively (Fig.  4C). This indicated that cultivated peanuts 
retained more homoeologous W-box elements than wild 

tetraploid peanuts. In paralogous WRKY genes, match-
ing W-box elements were distributed across A. monti-
cola (38.10%, 8/21), A. hypogaea cv. Fuhuasheng (24.00%, 
6/25), A. hypogaea cv. Shitouqi (26.83%, 11/41), and 
A. hypogaea cv. Tifrunner (25.81%, 8/31) (Fig.  4C). The 
results indicated that cultivated peanuts lost more par-
alogous WRKY genes with similar W-box elements than 
wild tetraploid peanuts. Overall, these results indicated 
that domestication possibly affected the loss and reten-
tion of W-box elements in peanuts.

Studies showed that WRKY-WRKY protein interac-
tion mediates certain biological functions [27, 39]. In 
this study, protein–protein interactions were assessed 
using WRKY TFs from diploid and tetraploid peanut 
species. Compared with WRKY TFs in A. duranensis 
and A. ipaensis, more WRKY-WRKY interaction com-
plexes were formed in tetraploid peanut species (Fig. 5). 
These results indicated that the complex relationships 
could be due to allopolyploidy. Notably, cultivated 

Fig. 2  Phylogenetic analysis of WRKY genes among various Arachis species. The maximum likelihood phylogenetic tree was constructed using 
the IQ-tree program, and the best-fit model (JTT + I + G) was generated by the ProtTest program. I-N and I-C indicate group I members with WRKY 
domains from the N- and C-terminal ends
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peanuts had more complex WRKY protein–protein 
interactions than wild tetraploid peanuts (A. monticola) 
(Fig.  5), indicating that domestication possibly affects 

WRKY protein–protein interaction. Furthermore, simi-
lar WRKY protein–protein interaction patterns were 
detected between A. hypogaea cv. Fuhuasheng and A. 

Fig. 3  Homologous WRKY genes across Arachis species. A Paralogous, homoeologous, and orthologous WRKY genes among various Arachis 
species. B Conserved orthologous WRKY gene pairs across various Arachis species. C Paralogous and homoeologous WRKY gene pairs across various 
tetraploid peanut species
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hypogaea cv. Shitouqi, while A. hypogaea cv. Tifrunner 
exhibited a distinct WRKY protein–protein interaction 
relationship.

Discussion
Several genomes of Arachis spp. have been sequenced 
and publicly released [11, 12, 15–17], accelerating the 
identification and comparison of gene families at the 
genome level [8, 28]. However, two factors should be 
considered when comparing gene families. First, the 
method used to identify the gene families should be 
the same because variations in the methodology have 
been shown to influence the final results. For example, 
Zhang, et  al. [37] found that HMM-based methods are 

fast and efficient and that using full-length sequences in 
evolutionary analyses could eliminate false results [37]. 
Second, various sequencing methods and assembling 
strategies should be considered when analyzing different 
Arachis genomes, or conserved orthologs among Arachis 
species can be analyzed to avoid variations. A previous 
study identified 158 WRKY TFs in A. hypogaea cv. Tif-
runner [28], whose genome was corrected and publicly 
released in the Peanutbase database [29]. In this study, we 
identified 146 WRKY TFs from the updated A. hypogaea 
cv. Tifrunner genome. Nevertheless, 158 WRKY TFs 
identified in the previous study contained 146 WRKY 
TFs from the updated genome. We utilized the same 

Fig. 4  The W-box elements of WRKY genes in various Arachis species. A WRKY genes containing W-box elements. B The number of orthologous 
WRKY gene pairs containing matching W-box elements. C The number of paralogous and homoeologous WRKY gene pairs containing matching 
W-box elements
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method to identify and analyze the evolution of WRKYs 
in Arachis spp.

Cultivated peanuts underwent allotetraploidy and 
domestication [13, 21, 23, 44]. Studies showed that 
cultivated peanuts have more photosynthetic pig-
ments and larger leaves, stomata, and epidermal cells 
than their diploid donors because of their allotetra-
ploid genomes [44]. Notably, Leal-Bertioli, et  al. [48] 
compared drought tolerance among A. duranensis, A. 
ipaensis, synthetic allotetraploid (A. duranensis x A. 
ipaensis)4x, and A. hypogaea cv. Tifrunner and found 
that synthetic allotetraploid and A. hypogaea cv. Tif-
runner had similar but lower drought tolerance than A. 
duranensis and A. ipaensis [48]. These findings indicate 
that the hybrid vigour and not allotetraploidy reduces 
drought tolerance in tetraploid peanuts more than in 
their diploid progenitors. Furthermore, a compari-
son of drought genes between A. hypogaea cv. Tifrun-
ner and two diploid donors showed that A. hypogaea 
cv. Tifrunner lost ancestral drought genes, while new 

copies of drought tolerance genes lack origin func-
tion after allotetraploidy [49]. We found that tetraploid 
peanuts lost the old WRKY TFs and retained the new 
ones. Based on the changes in drought-tolerance genes 
of A. hypogaea cv. Tifrunner, we hypothesized that new 
WRKY TFs possibly have new functions and formed 
complex regulatory networks in tetraploid peanut 
species.

This study showed that domestication affected WRKY 
genes in cultivated peanuts. The number of W-box ele-
ments in WRKY genes was affected in cultivated pea-
nuts compared with A. monticola. In addition, WRKY 
protein–protein interaction results showed that A. 
hypogaea cv. Fuhuasheng and Shitouqi had similar pro-
tein interaction relations, while A. hypogaea cv. Tif-
runner had a different protein interaction pattern. A. 
hypogaea cv. Fuhuasheng and Shitouqi are the progeni-
tors of the Chinese peanut [15, 16], suggesting that the 
two A. hypogaea cultivars possibly underwent a simi-
lar domestication process. A. hypogaea cv. Tifrunner 

Fig. 5  WRKY-WRKY protein interactions across various Arachis species. A WRKY-WRKY protein interactions in Arachis duranensis. B WRKY-WRKY 
protein interactions in A. ipaensis. C WRKY-WRKY protein interactions in A. monticola. D WRKY-WRKY protein interactions in A. hypogaea cv. 
Fuhuasheng. E WRKY-WRKY protein interactions in A. hypogaea cv. Shitouqi. F WRKY-WRKY protein interactions in A. hypogaea cv. Tifrunner. A. 
hypogaea WRKY sequences were used as a reference for predicting the protein–protein interactions
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was bred in the USA in 2007 and is highly resistant to 
various diseases, unlike the Chinese peanut [47]. This 
shows that the differences in the domestication process 
may be the main reason for the structural and func-
tional variation of the WRKY TFs among the three cul-
tivated A. hypogaea cultivars.

Conclusions
This study identified WRKY TFs in six Arachis species. 
The number of WRKY TFs and their evolutionary pat-
terns were compared, and the results revealed dynamic 
equilibrium in the number of WRKY TFs across the six 
Arachis spp. Notably, new WRKY TFs were retained 
while the old ones were lost after allotetraploidy. The pre-
sent study also showed that domestication affected the 
WRKY TFs of cultivated peanuts. The WRKY TFs of A. 
hypogaea cv. Fuhuasheng and Shitouqi were subjected 
to a similar domestication process, while those of cv. 
Tifrunner underwent a different domestication process 
based on the protein–protein interaction analysis.
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