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Abstract 

Background  Egg quality is a major concern in fish reproduction and development. An effective evaluation of egg 
quality prior to fertilization is helpful in improving the fertilization rate and survival rate of the larva. In this study, we 
aim to identify quality instructors from the combination study of fertilization rate, hatching rate, embryo malformation 
rate and gene expression profile.

Results  Eggs from 25 female fish were fertilized with sperm from the same fish. The egg quality was determined 
by the fertilization rates, hatching rate and embryo malformation rate and divided into three categories, low-quality 
(< 35%), medium-quality (35 to 75%), and high-quality (> 75%). Due to the distinct difference in fertilization, hatching 
and embryo malformation rate between low-quality eggs and high-quality eggs, these two groups were considered 
for the identification of quality markers. Then RNA-seq was performed for the originally preserved eggs from the 
low-quality group and high-quality group. We profiled the differentially expressed genes and identified a group of 
RNA-binding proteins (RBPs) as potential regulators. Gene function analysis indicated that most of these genes were 
enriched in RNA-regulated pathways including RNA processing. The RBPs were more related to egg quality from the 
PLS-DA analysis. Finally, gene expression was validated by qRT-PCR.

Conclusions  We found a cluster of RBP genes including igf2bp3, zar1, elavl1, rbm25b and related regulatory factors 
including yy1, sirt1, anp32e, btg4 as novel biomarkers of egg quality.
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Background
The reproductive performance of fish is determined by 
its genetic characteristics (gene expression, RNA abun-
dance, etc.) and environmental factors (temperature, 
light, nutrients, etc.), and regulated by internal factors 
such as hormones and endocrine factors through the 

hypothalamic-pituitary-gonadal axis [1]. Egg quality is 
also an important factor affecting fish reproduction by 
directly related to the fertilization rate, development of 
embryos, and survival rate of juveniles [2]. Many stud-
ies have confirmed that endogenous and exogenous fac-
tors can affect egg quality [3–5]. However, the molecular 
and cellular mechanisms regulating egg quality are still 
unclear, and the evaluation criteria for egg quality have 
not been defined in catfish. Therefore, to promote healthy 
breeding, the essential work is to summarize the influ-
encing factors and screen out egg quality markers.

There are diversities of evaluation criteria for egg qual-
ity. Preliminarily, it can be evaluated from the parameters 
of egg morphology, biochemical composition, fertiliza-
tion rate, hatching rate and embryo malformation rate 
[1]. Many studies have confirmed that for some teleosts, 

†Fan Ren and Quan Zhou contributed equally to this work.

*Correspondence:
Qin Tang
tangqin@mail.hzau.edu.cn
Jie Mei
jmei@mail.hzau.edu.cn
1 College of Fisheries, Huazhong Agricultural University, Wuhan 430070, 
China
2 Hubei Hongshan Laboratory, Wuhan 430070, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-023-09220-9&domain=pdf


Page 2 of 13Ren et al. BMC Genomics          (2023) 24:121 

the quality of eggs can be reflected by morphology such 
as diameter, surface color, transparency, buoyance, shape 
and distribution of oil globules [6–10]. For example, egg 
diameter can be used as an essential indicator to deter-
mine egg activity for turbot (Scophthalmus Maximus) 
[11]. When the egg diameter is 0.9 ~ 1.1 mm, it can pro-
duce a high fertilization rate, a larger egg diameter does 
not represent a higher fertilization rate and hatchability 
[11, 12]. Biochemical composition is also an indicator 
of egg quality. Lahnsteiner et al. (2005) showed that the 
shape and size of lipid droplets in eggs could affect the 
survival rate of young bream [13]. Mansour et al. (2007) 
studied brown trout and found that the distribution of 
lipid droplets in eggs could affect the development of 
embryos [8]. However, Ciereszko et  al. (2009) applied 
the same method to evaluate the quality of eggs from 
cultured rainbow trout, but it had no significant effect 
[14]. Therefore, some researchers believe that embry-
onic development after fertilization can more accurately 
reflect the quality of the egg [1, 15]. The fertilization 
rate indicated by the proportion of abnormal embryos 
and malformed larvae is another evaluation criterion of 
egg quality. After fertilization, embryonic cells undergo 
cleavage, previous study on Atlantic cod (Gadus morhua) 
indicated that low-quality eggs resulted in abnormal 
cleavage of zygote and caused the death of early embryos 
[16]. Besides, the development status of embryos at vari-
ous stages is often used to evaluate the quality of eggs, 
such as the gastrula stage, incubation stage and yolk 
absorption stage [2].

With the continuous development of molecular biol-
ogy, the detection of egg quality at the molecular level 
has been widely carried out. For example, cytokines and 
growth factors play synergistic roles in the regulation of 
oogenesis and early embryonic development of mam-
malian [17, 18]. Except for endocrine factors, investiga-
tion of maternal RNA levels is also a consideration to find 
indicators for evaluating oocyte quality in the teleost [19, 
20]. To our knowledge, the stability of maternal RNAs 
deposited in oocytes can indicate the healthy develop-
ment of embryos. A defective turnover of maternal RNA 
results in the failure of oocyte maturation and embryo-
genesis. Among these maternal factors, RNA-binding 
proteins can be considered as critical determinants of 
egg quality in mice and zebrafish [21, 22]. The disruption 
of RNA-binding protein stability led to severe develop-
mental defects in zebrafish and medaka [23–26]. Besides, 
some maternal mRNA regulators were also revealed as 
biomarkers of oocyte development by facilitating the 
maternal mRNA degradation, loss of them cause female 
infertility and impaired degradation of maternal mRNA 
in oocytes [27–30]. According to these studies, it is valid 

to infer that RNA-binding proteins potentially regulate 
egg quality by controlling maternal RNA abundance. It 
provides us insights into identifying markers from RNA-
binding proteins through a comparison of high-quality 
eggs and low-quality eggs prior to fertilization.

From the above, a combined assessment of morphol-
ogy, fertilization rates, hatching rate and embryo malfor-
mation rate and expression abundance of biomarkers is 
a comprehensive consideration to improve the quality of 
eggs and optimize breeding. In this study, we evaluated 
the egg quality of yellow catfish by investigating the fer-
tilization, hatching and embryo malformation rate and 
profiled the transcriptome of high-quality and low-qual-
ity eggs. By comparing the abundance of RNA-binding 
proteins, we identified biomarkers related to egg quality. 
In general, identification of quality markers from eggs 
and evaluation of their abundance will help us promote 
fertilization and create a sustainable development of fish 
culture.

Results
Assessment of egg quality and RNA‑seq for high 
and low‑quality eggs
To estimate the developmental potential of eggs, 
evaluating egg quality is critical before fertilization. 
In addition to the estimation by size and morphol-
ogy, the success rate of fertilization, hatching rate and 
malformation rate are also criterion for evaluating the 
quality. In this study, we sampled eggs from 25 female 
yellow catfish and fertilized them with sperm from 
the same male fish, respectively. For each group, the 
fertilization rate, hatching rate and malformation rate 
were calculated. The quality of eggs was classified into 
three groups according to these indicators. In detail, 
the low-quality group with a fertilization rate lower 
than 35%, the medium-quality group with a fertiliza-
tion rate from 35 to 75%, and the high-quality group 
with a fertilization rate higher than 75%, respectively 
(Fig.  1A). The hatching rate increased while the mal-
formation rate decreased from the low-quality group to 
high-quality group (Fig. S1). To dissect quality indica-
tors, the low and high-quality groups were selected for 
further investigation due to the big difference between 
these rates. The originally preserved eggs from three 
female yellow catfish of each group were selected for 
RNA-seq. Principal component analysis (PCA) of 
samples showed that three biological replicates clus-
tered together and the low and high-quality groups 
were distinguished from each other (Fig.  1B). A total 
of 17,589 genes were detected from the low-quality 
group while 11,510 genes were detected from the high-
quality group, of which 11,417 genes were commonly 
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expressed through overlapping the two gene sets, along 
with 93 high-quality-egg-specific and 6172 low-quality-
egg-specific expressed genes (Fig.  1C). To investigate 
the relationship between the change in gene expression 
and the increasing ratio of gene numbers, the cumu-
lative distributions of genes in the two groups were 
detected (Fig.  1D). We used red and turquoise curves 

to represent gene distributions of different groups. In 
the figure, 49% of genes indicated expression levels 
lower than 2.025 (log10FPKM). For this 49% of genes, 
the line of low-quality eggs lies above the line of high-
quality eggs, which means an overall lower expression 
level in the low-quality group. While about 43.7% of 
genes indicated expression levels between 2.025 and 

Fig. 1  Schematic pipeline of fertilization, evaluation of egg quality and RNA-seq for originally preserved eggs of yellow catfish. A Sampling of eggs 
and sperm, fertilization, statistic of fertilization rate, evaluation of egg quality, and RNA-seq for originally preserved eggs. B Principal component 
analysis (PCA) of RNA-seq samples. C Overlapping of genes expressed in high-quality egg and low-quality egg. D The cumulative distribution 
of genes in high-quality egg and low-quality egg. The x-axis indicates expression level of genes and y-axis indicates the cumulative percentage 
of genes. From left to right, gene expression level increases gradually, while from bottom to up the cumulative percentage of genes increases 
gradually
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3.322. Generally, at these genes, the low-quality group 
showed a higher expression level than the high-quality 
group. Besides, 7.3% of genes are highly expressed with 
log10FPKM greater than 3.322. Above this expression 
level, the low-quality group showed a lower expression 
level than the high-quality group. In general, the overall 
gene expression of low-quality eggs was slightly lower 
than high-quality eggs.

Gene expression differences between low and high‑quality 
eggs of yellow catfish
Profiling gene expression difference between low and 
high-quality eggs is an effective way to detect quality 
indicators. In this study, we identified 4834 differentially 
expressed genes (DEGs) from low-quality vs. high-quality 
eggs, including 2453 down and 2381 upregulated genes 
(Fig. 2A). Although the number of downregulated genes 

Fig. 2  Identification of differentially expressed genes from low-quality eggs vs. high-quality eggs. A Volcano plot of differential genes identified 
from low-quality eggs vs. high-quality eggs. B Heatmap showing DEG expression pattern. C Functional annotation of DEGs, enriched GO terms. D 
Functional annotation of DEGs, enriched KEGG pathways
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was close to that of upregulated genes, a slight difference 
could still be caught, which was consistent with the con-
clusion from the overall cumulative distribution that the 
low-quality genes are more than high-quality genes. The 
expression pattern of DEGs is shown in Fig.  2B. Func-
tion annotation of the total DEGs was performed by GO 
analysis and KEGG pathway enrichment. The top-ranked 
terms from the biological process, molecular function, 
and cellular components were listed in Fig.  2C, and the 
KEGG pathways were listed in Fig.  2D. Among these 
functions, DEGs enriched RNA and oocytes-related 
activities were marked in yellow, which indicates that the 
mRNA levels of eggs are potentially correlated with egg 
quality. Our results indicated that the process of RNA 
degradation and oocyte meiosis were essential for the egg 
quality maintenance.

Annotation and validation of downregulated genes
To find genes that indicate egg quality, we further anno-
tated the downregulated genes and upregulated genes, 
respectively. The genes downregulated in low-quality 
eggs and upregulated in high-quality eggs were sig-
nificantly enriched at the GO terms of mRNA binding, 
mRNA 3′-UTR binding, mRNA processing, and chro-
matin-related process (Fig. S2A). Meanwhile, the KEGG 
results displayed that these genes also enriched in ovarian 
development and egg quality-related pathways including 
oocyte meiosis, oocyte maturation and the p53 signaling 
pathway (Fig. S2B). These pathways were all involved in 
ovarian development and egg quality. Next, we checked 
the expression of genes including p53, btg4, p15, anp32e, 
elavl1 and rbm25b from RNA-seq (Fig. 3A). As a result, 
these genes played fundamental functions in maternal 
RNA degradation, RNA stability and splicing and chro-
matin regulation to regulate oocyte and embryo devel-
opment, were all downregulated in the low-quality eggs. 
Except for these genes, the Sankey diagram showed more 
downregulated genes enriched at the mRNA processing, 
mRNA binding, chromatin assembly and some poten-
tial egg quality control pathways, such as wtap, pabpn1, 
rbm8a, kiaa0101 (Fig.  3B). Gene expression were vali-
dated by qRT-PCR (Fig. 3C), which were in keeping with 
the RNA-seq gene expression.

Annotation and validation of upregulated genes
We also investigated the significantly upregulated genes 
in low-quality eggs. Gene annotation indicated that most 
of these genes were enriched in RNA-related processes, 
such as RNA binding and RNA degradation via the 
CCR4-NOT4 complex (Fig. S2C). KEGG terms showed 
that these genes were enriched in the cell cycle, oocyte 
meiosis, and RNA-degradation pathways, which are 
essential for maintaining normal oogenesis (Fig. S2D). 

These downregulated functions undoubtedly indicated 
the low quality of eggs. Some of the upregulated genes 
from these pathways were subsequently investigated, 
including zar1, sirt1, kdm2aa, kdm2ab, yy1, dnd, igf2bp3, 
ythdf2 (Fig.  4A). These factors including RNA bind-
ing proteins and epigenetic regulation factors mediated 
oocyte development and oocyte meiotic maturation by 
regulating maternal mRNA degradation and transcrip-
tion. Interestingly, the expression levels of the RNA-bind-
ing proteins Igf2bp3 and Ythdf2, m6A readers regulating 
maternal RNA turnover in the processes of oocyte and 
embryo development, were also significantly reduced 
in the high-quality eggs. Moreover, our result showed 
that only Igf2bp3 but not Igf2bp1 and Igf2bp2 were dif-
ferentially expressed between the low and high-quality 
eggs. This indicated that Igf2bp3 might play a special 
role in egg quality by maintaining maternal RNA stabil-
ity. In this study, our findings indicate that Igf2bp3 may 
be a potential marker for oocyte development in yellow 
catfish. Its upregulation could result in defective enrich-
ment of mRNA in oocytes or the lower quality of eggs. 
Except for the genes investigated above, the Sankey dia-
gram also showed that some other genes such as rbm15b, 
stat5b and ddx4 affect the functions mentioned above 
(Fig. 4B). And the gene expression was validated by qRT-
PCR (Fig. 4C). In general, eggs displayed low quality due 
to the dysregulation of RNA-binding proteins and abnor-
mal enrichment of RNAs in eggs, RNA stability and deg-
radation were destroyed in the maturation of eggs.

RNA‑binding protein (RBP) functions in the maturation 
of eggs and its role in controlling egg quality
From the above analysis, RNA-binding proteins play 
essential roles in controlling RNA abundance and regu-
lating egg quality. Here, we investigated all the RBP genes 
of the yellow catfish genome. Firstly, through OPLS-DA 
(Orthogonal Partial Least-Squares Discriminant Analy-
sis), totally we obtained 5517 genes with VIP-score > 1.0. 
The VIP score is a measurement of the importance of 
genes in the OPLS-DA model. A higher VIP score usu-
ally indicates that the gene is more important. As a 
result, the low-quality group and high-quality group were 
clearly distinguished by the 5517 genes (Fig. 5A). We fur-
ther calculated the proportion of RBP genes in the 5517 
genes and found that about 70.3% of the genes are RBP 
genes, about 25.6% are transcription factors (TFs), and 
the rest are common genes without regulatory functions 
(Fig. 5B). We also compared the expression levels of RBP 
genes between low-quality and high-quality eggs and 
found that it was slightly higher in the low-quality group 
(Fig. 5C). This result means that in low-quality eggs the 
higher expression of RBPs destroyed the stability of RNA 
abundance.
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Fig. 3  Validation of downregulated genes. A Expression levels (FPKM) of p53, btg4, p15, anp32e, elavl1, rbm25b in low and high-quality eggs. B 
Sankey diagram showing significantly downregulated genes in low-quality eggs and related processes they were involved in. C Validation of p53, 
btg4, p15, anp32e, elavl1, rbm25b gene expression by qRT-PCR
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Fig. 4  Validation of upregulated genes. A Expression levels (FPKM) of zar1, sirt1, kdm2a, kdm2b, yy1, dnd1, igf2bp3, ythdf2 in low and high-quality 
eggs. B Sankey diagram showing the upregulated genes in low-quality eggs and the corresponding pathways they were involved in. C Validation of 
zar1, sirt1, kdm2a, kdm2b, yy1, dnd1, igf2bp3, ythdf2 gene expression by qRT-PCR
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Next, we focused on a group of RBP genes differen-
tially expressed between low-quality and high-quality 
eggs. Through overlapping the global DEGs with RBP 
genes, we got 595 differential-RBP genes, of which 49% 
were upregulated and 51% were downregulated (Fig. 5D). 
The functions of these up and downregulated genes 
are shown in Fig. S3. And crosstalk analysis indicated 
that some differentially expressed RBP genes including 
igf2bp3, zar1, elavl1, rbm25b and other regulatory factors 
including anp32e, btg4, sirt1, yy1 are working together to 
affect pathways such as RNA binding, mRNA process-
ing, regulation of gene expression, RNA stabilization, and 
chromatin assembly (Fig. 5E). These network genes could 
be taken as potential indicators to distinguish the low 
and high-quality eggs.

Discussion
RNA level is dynamically determined by the RNA acti-
vation and degradation during oocyte development. The 
stabilization of RNA abundance is essential for the devel-
opmental events of oogenesis and subsequent embryo-
genesis. Although previous studies have focused on the 
transcriptomic gene expression during the oogenesis 
of catfish [20, 31], whether RNA abundance and gene 
expression stability can be used as a criterion of egg qual-
ity is still unclear. In this study, we evaluated egg quality 
levels by fertilization rate, hatching rate and embryo mal-
formation rate to detecte the transcriptomic differences 
between high-quality and low-quality eggs. We found 
that the RNA-binding proteins were related to RNA 
abundance, gene expression stability and oogenesis, some 
of them could be considered as potential biomarkers of 
egg quality.

In this study, although all fish were selected from the 
same genetic background and kept under the same con-
dition, the quality of eggs varied among individuals. Pre-
vious study reported that the reproductive performance 
of fish is not only determined by its genetic characteris-
tics and environmental conditions but also regulated by 
some internal factors such as hormones and endocrine 
factors [32–34]. Besides, the feed composition, digestion, 
conversion rate and growth rate also affected the repro-
ductive system development of fish, such as primordial 
germ cell (PGC) formation, oogenesis and egg matura-
tion [2, 4]. Nevertheless, the variation of individuals in 

this study allows us to study differences in egg quality and 
look for markers indicating egg quality. By dividing the 
fertilization rate, hatching rate and embryo malformation 
rate into three levels, we obtained the high and low-qual-
ity eggs and performed RNA-seq analysis. Interestingly, 
we got more genes expressed in low-quality eggs, but 
the expression level is lower than the high-quality group 
globally, which indicated an instability of RNA activation 
and degradation in low-quality eggs. What’s more, we 
got a similar number of upregulated and downregulated 
DEGs from low-quality vs. high-quality eggs. Function 
enrichment indicated that the RNA-level activities such 
as RNA binding and degradations were affected. This 
is inconsistent with our speculation that RNA-binding 
proteins play important roles in regulating RNA abun-
dance and stability during the maturation of eggs. Fur-
ther analysis of the upregulated and downregulated genes 
indicated that different levels of eggs exhibit the same 
function on RNAs by controlling different gene expres-
sions during oogenesis. The DEGs from low-quality vs. 
high-quality eggs were enriched in the pathways of RNA 
degradation, oocyte meiosis, insulin signaling and p53 
signaling, which were consistent with previous studies 
that these pathways were required for oocyte develop-
ment [35–39].

Of all the DEGs identified from the low-quality vs. 
high-quality eggs, a small proportion was validated and 
reported to control egg quality as well as embryo devel-
opment. Such as igf2bp3 and ythdf2, have been revealed 
to maintain RNA stability and control the RNA degra-
dation [22, 23, 40]. These two genes acted as potential 
markers of oocyte development and early embryonic 
development [21, 41]. In accordance with previous find-
ings in Medaka [26], we found the expression level of 
igf2bp3 was significantly increased in the low-quality 
eggs, indicating that the function of igf2bp3 may be con-
served in quality-control of eggs among different spe-
cies. Thus, we considered igf2bp3 as a potential marker 
of egg quality. Additionally, other important factors such 
as sirt1 and p53 are also essential factors for maintaining 
egg quality [42–44], they were both changed in expres-
sion between high-quality and low-quality eggs. Moreo-
ver, the transcriptomic comparison showed that other 
DEGs including RNA binding protein genes such as 
elavl1, rbm25b and dnd1, also involved in the pathways of 

(See figure on next page.)
Fig. 5  RNA-binding protein (RBPs) functions in the maturation of eggs and its role in controlling egg quality. A Screening of genes that contributed 
to the distinction of low and high-quality eggs. Genes were ranked by VIP-score generated from PLS-DA analysis, the threshold was set as 
VIP-score > 1.0, a total of 5517 genes were obtained and used to draw the fig. B Among the screened genes, 70.3% are RBP genes while 25.6% are 
transcription factors (TFs). C Violin plot of RBP gene expression in high and low-quality eggs. D Overlapping of RBP genes and DEGs, statistics of up 
and downregulated genes. E RBP genes and other regulatory factors (such as TFs) enriched the pathways
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Fig. 5  (See legend on previous page.)
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oocyte and embryo development [45–49]. Notably, RNA 
binding protein gene dnd1 was significantly increased 
in low-quality eggs, which has been reported as a germ 
plasm component to play an essential role in the survival 
of primordial germ cells (PGCs) [50, 51]. Meanwhile, the 
expression of some RBP genes, including ddx4, piwil1 
and piwil2, were associated with germ plasm assembly 
and were also perturbed in low-quality eggs. Combined 
with previous studies that the expression of germ plasm-
associated genes may be related to female oocyte and 
embryo development, it’s implicit that the dysregulation 
of these genes leads to low-quality of egg [52, 53].

RNA stored in oocytes, including maternal RNAs, 
guides many fundamental processes of oogenesis and 
embryogenesis. However, the RNA turnover is controlled 
by RNA-binding proteins. Thus, RNA-binding proteins 
play an essential role in maintaining egg quality. In this 
study, through expression analysis, we identified thou-
sands of regulators including RBPs and TFs. And further 
analyzed the contribution of these factors to egg qual-
ity. Results indicated that RBPs contributed more than 
the TFs (70.3% vs. 25.6%) in distinguishing the low and 
high-quality eggs. GO and KEGG results indicated that 
RBPs were significantly enriched at the pathways of RNA 
metabolism and oocyte development. This indicates that 
RBPs play a significant role in controlling egg quality via 
the regulation of RNA levels. Hence, the RBP expression 
level can reflect the egg quality in some extent. As men-
tioned above, Igf2bp3 is a representative member of RBP, 
has been well studied and acted as a regulator in control-
ling the RNA abundance, including maternal RNAs dur-
ing oocyte development, and may be a novel biomarker 
of egg quality. But how Igf2bp3 and the other RBPs medi-
ated RNA abundance and controlled egg quality remains 
to be elucidated. Overall, our results support that RNA-
binding proteins control egg quality during oogenesis, 
but further studies on the mechanisms still need to be 
investigated.

Conclusion
In this article, we revealed that maternal-inherited tran-
scriptome could be used to indicate the developmental 
competence of eggs by our experimental strategy. While, 
We identified a group of differentially expressed genes 
associated with egg quality and found a cluster of RBP 
genes including igf2bp3, zar1, elavl1, rbm25b and related 
regulatory factors including yy1, sirt1, anp32e, btg4 as 
novel biomarkers of egg quality.

Methods
Experimental fish and fertilization
All experiments procedures and animal handling were 
according to the requirements of the IACUC (the 

Institutional Animal Care and Use Committees) of 
Huazhong Agricultural University. XX female and XY 
male yellow catfish from the wild after three generation 
of selective breeding were bred and cultured on our own 
farm in Wuhan Hubei, China. We also obtained the per-
mit of laboratory animals care and use from the labora-
tory animals center and college of fisheries of Huazhong 
Agricultural University. Sexually mature fish (one year) 
were selected for the experiment. All fish were main-
tained at 23–27 °C in a recirculating freshwater system. 
Artificial fertilization was performed during the mat-
ing season from June 2019 to July 2019. Testis separated 
from male yellow catfish after anesthesia were ground 
with sperm preservative solution (containing 63 mM 
NaCl, 19 mM KCl, 1.3 mM CaCl2, 4.7 mM MgSO4·7H2O, 
2.5 mM NaHCO3, pH 7.4) to release milt, and the qual-
ity was determined by microscopic examination before 
insemination. Meanwhile, females were prepared by 
injecting 2 μg LHRH-A2 at 24 h pre-fertilization, and 
then injecting the mixture of 1 μg LHRH-A2 and 200 IU 
HCG at 12 h pre-fertilization. Eggs, obtained by gently 
squeezing the abdomen of mature females after anesthe-
sia, were mixed with seminal plasma from the same male 
in 100 mm dishes (about 100 embryos/dish). After fer-
tilization, embryonic development was tracked and the 
success rate was recorded. The fertilization rate, hatch-
ing rate and embryo malformation rate were recorded 
and calculated. The originally preserved eggs were clas-
sified into three levels, the low-quality, medium-quality, 
and high-quality groups (total 25 dishes divide into three 
groups).

RNA‑seq of eggs and data analysis
Total RNAs were extracted from unfertilized low-quality 
and high-quality eggs (about 25 eggs in each group) by 
TRIzol Reagent following the manufacturer’s instruc-
tions. The quality of total RNA was examined by 1% 
agarose gel electrophoresis. Only RNA samples of high 
quality were used for the cDNA synthesis. After purifica-
tion, adapters were ligated to the cDNA and then ampli-
fied by PCR. cDNA libraries were built and the quality 
was assessed on the Agilent Bioanalyzer 2100. RNA-seq 
was performed on an Illumina NovaSeq 6000 platform 
with a 150 bp paired-end approach. Three biological rep-
licates were sequenced for each group, respectively. For 
data analysis, fastp (v 0.23.0) [54] was firstly used to trim 
the low-quality bases and the adapters. Then clean reads 
were mapped to the yellow catfish reference genome 
using TopHat (v 2.0.13) [55]. Gene abundance estima-
tion was performed using Cufflinks (v 2.2.1) [55] and 
indicated by FPKM (fragments per Kilobase of transcript 
per million reads mapped). Genes with mean FPKM > 1.0 
in any group were retained for differential expression 
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analysis using R package DESeq2 (v 1.34.0) [56]. Statis-
tical comparisons were performed between low-quality 
and high-quality eggs. Thresholds of padj < 0.01 and |log-
2FoldChange| > 0.5 were used for filtering differentially 
expressed genes (DEGs). Gene Ontology (GO) analysis 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment were performed by R package clus-
terProfiler (v 4.2.0) [57, 58]. Heatmaps with k-means 
clustering were used to display gene expression patterns 
over groups of samples. The orthogonal partial least-
squares discriminant analysis (OPLS-DA) model was 
built to screen species-specific genes that greatly contrib-
ute to the classification [59]. Gene expression levels from 
RNA-seq in this study were all according to the mean of 
FPKM in three replicates.

Validation of gene expression by qRT‑PCR
Total RNA was isolated from eggs of yellow catfish 
using TRIzol reagent (Invitrogen) and transcribed 
into cDNA using PrimeScript RT reagent kit with 
gDNA Eraser (Takara, RR047A). qRT-PCR was car-
ried out using Hieff® qPCR SYBR® Green Master Mix 
(YEASEN) on a CFX Connect (Bio-rad) and mRNA 
expression was normalized to reference gene actb1. The 
data were analyzed using the 2–ΔΔCt program. And the 
gene-specific primer sequences were listed in Table S1.

Statistics
All statistical analyses of qRT-PCR and imaging were 
performed for technical replicates or experimental rep-
licates. Student’s two-tailed unpaired t-test was used 
for statistical comparisons and data were shown as 
mean ± SD. P value of < 0.05 was considered as signifi-
cant (*), while P < 0.01 and P < 0.001 as extremely sig-
nificant (**) and (***), respectively.
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