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Abstract 

Background As a significant process of post-transcriptional gene expression regulation in eukaryotic cells, alternative 
splicing (AS) of exons greatly contributes to the complexity of the transcriptome and indirectly enriches the protein 
repertoires. A large number of studies have focused on the splicing inclusion of alternative exons and have revealed 
the roles of AS in organ development and maturation. Notably, AS takes place through a change in the relative abun-
dance of the transcript isoforms produced by a single gene, meaning that exons can have complex splicing patterns. 
However, the commonly used percent spliced-in (Ψ) values only define the usage rate of exons, but lose information 
about the complexity of exons’ linkage pattern. To date, the extent and functional consequence of splicing complexity 
of alternative exons in development and evolution is poorly understood.

Results By comparing splicing complexity of exons in six tissues (brain, cerebellum, heart, liver, kidney, and testis) 
from six mammalian species (human, chimpanzee, gorilla, macaque, mouse, opossum) and an outgroup species 
(chicken), we revealed that exons with high splicing complexity are prevalent in mammals and are closely related to 
features of genes. Using traditional machine learning and deep learning methods, we found that the splicing com-
plexity of exons can be moderately predicted with features derived from exons, among which length of flanking 
exons and splicing strength of downstream/upstream splice sites are top predictors. Comparative analysis among 
human, chimpanzee, gorilla, macaque, and mouse revealed that, alternative exons tend to evolve to an increased 
level of splicing complexity and higher tissue specificity in splicing complexity. During organ development, not only 
developmentally regulated exons, but also 10–15% of non-developmentally regulated exons show dynamic splicing 
complexity.

Conclusions Our analysis revealed that splicing complexity is an important metric to characterize the splicing 
dynamics of alternative exons during the development and evolution of mammals.

Keywords Alternative splicing, Splicing complexity, Machine learning, Development and evolution

Background
Alternative splicing (AS) is an important process in 
gene regulation. It allows multiple mRNA transcripts to 
be produced from one pre-mRNA through the differ-
ent combinations of splicing sites, contributing to the 
diversity of mature mRNA molecules in their localiza-
tion, stability, and translation properties [1]. The pro-
portion of multiexon protein-coding genes that are 
subjected to AS in human is up to 95%, leading to ~ 37% 
protein-coding genes producing more than one protein 
variant [2], thus greatly expanding the transcriptome 
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and proteome repertoire [3, 4]. Typically, the splicing 
of exons occurs in a tissue- or development-dependent 
manner. A well-studied case is the titin gene, for which 
its long isoforms are primarily expressed in neonates, 
promoting passive tension of cardiomyocytes and 
stiffness of the myocardium wall, while the short iso-
forms dominate in adults [5–7]. It was observed that 
physiologically related splicing transitions during the 
development of homologous tissues/organs are largely 
conserved across species [8, 9]. The dysregulation of 
splicing site recognition leads to aberrant splicing, 
which can cause diseases [10].

Over the past decades, a large amount of RNA-seq 
data has been produced in human and other mammals, 
and important insights into the evolutionary and devel-
opmental dynamics of RNA splicing have been achieved 
[11–13]. A recent study revealed that developmentally 
dynamic AS events are substantially more conserved 
than non-dynamic ones, by assessing AS patterns across 
pre- and post-natal development of seven organs in 
mammals [14]. Many regulatory aspects of AS networks 
and functions have also been uncovered by focusing on 
the ‘percentage spliced-in’ (PSI; Ψ) values of local alter-
native splicing events [15]. However, AS takes place 
through a change in the relative abundance of the tran-
script isoforms produced by a single gene, which may 
involve complex patterns. For example, the 5’ splice site 
of an exon could be linked to two different 3’ splice sites, 
or the exon itself may have multiple 3’ splice sites and 
complex linkage patterns (Fig. S1A). This indicates alter-
native exons may differ in not only how frequently they 
are included in the final transcripts, but also how they 
are linked to multiple splice sites. If an alternative exon 
only involves in two transcripts (e.g., present in one tran-
script while absent in the other transcript), its splicing 
complexity is low; otherwise, we can consider the exon 
has high splicing complexity. Although complex splicing 
events can be decomposed into multiple binary events 
that can be quantified with the Ψ values [16, 17], such a 
method ignores alternative exons’ difference in linkage 
relationship with other exons. Recently, Sterne-Weiler 
et al. [18] used the Shannon’s entropy (i.e., − i�ilog2�i ; 
in which �i is the inclusion level of path i ) and discrete 
bins of complexity [K(n); n = log

2
(paths) ] to study the 

splicing complexity of alternative exons at the event 
level. Splicing entropy is a Ψ-dependent measure of AS 
complexity that formalizes the relative contribution of 
all splicing outcomes to gene expression in a read-depth 
independent manner. Their analysis revealed that the 
splicing complexity is conserved across vertebrates and 
elevated splicing entropy is associated with specific pro-
tein structural features [18], indicating that events with 
high splicing entropy have specific roles in gene function.

Furthermore, the identification of molecular mecha-
nisms responsible for exon splicing has long been a fun-
damental goal in biology. Persistent efforts have revealed 
that whether or not an exon is included in mature mRNA 
is mainly determined by the recognition efficiency of 
the splice site by the spliceosome [19]. At the same time, 
RNA motifs recognized by RNA binding proteins (RBPs) 
and other particular RNA features/structures constitute 
the blueprint of the so-called “splicing code” [20], which 
dictates the splicing in different cell types and condi-
tions [21–23]. Consequently, a number of in silico tools 
[24–27] and experimental assays [28–30] have been 
designed to predict AS changes at a genome-wide scale, 
which have shed important insights into the regulation 
and function of splicing code, especially in evaluating the 
pathogenic roles of splicing-related variants. However, 
these studies are all apt at predicting the Ψ values of sim-
ple AS events, there is a lack of models to predict splicing 
complexity of alternative exons.

Therefore, some important principles related to exons’ 
splicing complexity merit further investigation, such 
as, (i) whether exons with high splicing complexity are 
pervasive in mammals? (ii) what types of genes tend 
to contain events with high splicing complexity? (iii) 
can splicing complexity of exons be predicted with fea-
tures of exons? (Ψ) do splicing complexity of alternative 
exons change among tissues and during development? 
(v) if so, what is the evolutionary and functional signifi-
cance of changes in splicing complexity? To answer these 
questions, we acquired RNA-seq data from six tissues 
across seven species and quantified the splicing com-
plexity of AS events (Fig. S2). Our results indicate that 
high-complexity events (i.e., splicing entropy ≥ 1.0; two 
or more splicing outcomes in a sample) are prevalent in 
mammals. We also revealed that the splicing complex-
ity of exons tends to be related to features of host genes, 
and the machine learning and deep learning models 
trained using attributes of exons can moderately predict 
the splicing complexity of alternative exons. Addition-
ally, we discovered that some alternative exons tend to 
have splicing entropy changes between tissues or during 
development. Overall, we systematically characterized 
the splicing complexity of alternative exons in mammals, 
suggesting that splicing complexity is another important 
attribute of alternative exons, in addition to the com-
monly used splicing inclusion level.

Results
High‑complexity AS events are pervasive in mammalian 
species
To investigate the pervasiveness of events with high 
splicing complexity, with publicly available RNA-seq 
data from six tissues (brain, cerebellum, heart, liver, 
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kidney, testis) across six mammalian species (human, 
chimpanzee, gorilla, macaque, mouse, opossum) and 
chicken (Table S1) [31], we first calculated the Ψ values 
and splicing complexity (Ψ-dependent entropy) for all 
types of events from protein-coding genes expressed in 
each sample with Whippet [18]. It should be noted that 
Whippet uses the “contiguous splice graphs” (CSGs) to 
estimate the Ψ value for each AS event. In contrast to 
conventional binary events, AS events in Whippet can be 
of any complexity, which is defined as the collective set of 
skipping or connecting edges of a node (non-overlapping 
exonic sequences) in the CSGs (Fig. S1A). In Whippet, 
there are eight main types of nodes (Fig. S1B), i.e., alter-
native acceptor splice site (AA), alternative donor splice 
site (AD), alternative first exon (AF), alternative last exon 
(AL), core exon (CE), retained intron (RI), tandem alter-
native polyadenylation site (TE), tandem transcription 
start site (TS). The node is manifested as either a whole 
exon or part of an exon with flanking alternative splice 
sites. In this study, only nodes in expressed genes (tran-
scripts per million, TPM ≥ 1.0) and their associated AS 

events with a total of at least ten supported reads were 
considered. Alternative exons in a sample were defined 
if their corresponding nodes had 0 < Ψ < 0.97; while con-
stitutive exons were those with nodes had Ψ ≥ 0.97. As 
shown in Figs.  1A and S3, there are two peaks in the 
splicing entropy profile in all tissues, suggesting the 
existence of two types of exons. Notably, such a pattern 
is also observed for the TE, AF, AL, and TS types of AS, 
but is not apparent for the AA and AD types (Fig. S4). 
When our analysis was limited to conserved core exons 
in the seven species, events with low splicing entropy 
are more frequent (Fig.  1B). Furthermore, 20–50% of 
events in human show high splicing complexity (splic-
ing entropy ≥ 1.0; i.e., two or more splicing outcomes 
are produced) for the eight types of events defined in 
Whippet. Notably, for the CE nodes, the proportion of 
high-complexity events is up to 40% in human brain, cer-
ebellum, and testis (Fig. 1C). Complex splicing events are 
also prevalent in the other six studied species (Fig. S5). 
The proportion of high-complexity events is considerable 
even if we take splicing entropy ≥ 1.5 as a cut-off (Fig. S6). 

Fig. 1 Splicing complexity of alternative exons. A distribution of splicing entropy for all alternative CE events in protein-coding genes in brain. B 
splicing entropy for conserved CE events across seven species in brain. Red arrows indicate the position of two peaks. C frequencies of events with 
high splicing entropy (≥ 1.0) for each type of events in human. D density plot for Ψ values (x-axis) and splicing entropy (y-axis) in brain of human
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Different types of AS exhibit apparent variation in the 
distribution of splicing entropy and proportion of high-
complexity events, which may be caused by differential 
usage of individual AS types in tissue. This analysis sug-
gested that events with high-entropy account for a large 
proportion of AS events and make a great contribution to 
the complexity of transcriptome.

Next, we examined the relationship between splic-
ing complexity (entropy) and splicing inclusion level (Ψ) 
of core exons in each sample. We can see from Fig.  1D 
that due to the high proportion of events with high Ψ 
values, the events with high splicing entropy appear 
mainly among events with high Ψ values. This pattern is 
observed in all species and tissues (Fig. S7). For AS types 
other than CE, most AS events have low splicing inclu-
sion levels, and high-complexity events are usually found 
among events with low Ψ values (Fig. S8). Taken together, 
these results revealed that high-complexity AS events are 
prevalent in mammals and depicted a different perspec-
tive of AS.

To justify the robustness of the above results, we 
performed additional analyses. First, because splic-
ing complexity of events are potentially affected by the 
completeness of transcript annotation in database, we 
quantified splicing entropy of the events according to 
annotation that were de novo assembled with RNA-seq 
data [32] from early organogenesis (mid-organogenesis 
for the heart) to adulthood across four species (human, 
rhesus macaque, mouse and chicken; Table S1). As a 
result, the proportion of CE events with high splicing 
complexity in each species is up to 50% in almost all spe-
cies (Fig. S9). Second, sequencing depth, gene expres-
sion and splicing inclusion levels possibly influence the 
results of comparison, so we down-sampled total reads 
for each sample to the same level, or selected alterna-
tive exons in high-expression genes (TPM > 50 and total 
reads number > 50), or defined alternative exons with 
different cutoff (0.05 < Ψ < 0.95) and then repeated the 
above analyses. Results of these analyses show a similar 
pattern (Figs. S10, S11 and S12).

Splicing complexity of exons is closely related to attributes 
of genes
Previous research has revealed that AS events with high 
splicing entropy tend to reside in the intrinsically disor-
dered regions (IDRs) of proteins [18]. We further exam-
ined what types of genes tend to contain alternative exons 
that have high splicing complexity. We hypothesized that 
alternative exons with high splicing complexity prefer to 
reside in some specific genes. To test our hypothesis, we 
limited our analysis to alternative CE events in human 
genes, because there is a wealth of annotated data about 
human genes. For example, housekeeping genes are 

constitutively expressed in all tissues to maintain basic 
cellular functions [33], we observed that events from 
housekeeping genes have lower splicing entropy than 
those from non-housekeeping genes (P < 2.22 ×  10–16, 
two-sided Wilcoxon rank-sum test; Fig. 2A), which indi-
cates that the housekeeping genes not only require sta-
ble transcription but also have fewer splicing variants. 
Interestingly, events in old genes show higher splicing 
entropy than those in young genes (P < 2.22 ×  10–6, two-
sided Wilcoxon rank-sum test; Fig.  2B), suggesting that 
old genes contribute disproportionately to transcriptome 
complexity. This is consistent with previous research 
which compared the splicing isoforms of genes with dif-
ferent ages [34, 35]. Although the splicing entropy of 
events in genes with different expression levels has no 
significant difference (P = 0.1, two-sided Wilcoxon rank-
sum test; Fig. 2C), events in genes with high tissue speci-
ficity have significantly higher splicing entropy than those 
in genes with low tissue specificity (P < 2.22 ×  10–16, two-
sided Wilcoxon rank-sum test; Fig.  2D). Previous stud-
ies revealed that AS was associated with a considerable 
reduction in selection pressure on amino acid substitu-
tions [36, 37]. We speculated that the events in genes 
with higher evolutionary rates may have more complex 
splicing patterns. As we expected, the events in fast-
evolving genes show higher splicing complexity than 
events in slow-evolving genes (P < 2.22 ×  10–16, two-sided 
Wilcoxon rank-sum test; Fig. 2E). And also, events in the 
genes with a high degree of centrality in the protein–pro-
tein interaction network show significantly lower splic-
ing complexity than events in genes with a low degree of 
centrality (P < 2.22 ×  10–16, two-sided Wilcoxon rank-sum 
test; Fig. 2F). When only CE events in genes with expres-
sion level greater than 10 TPM were considered, the same 
pattern was observed for all features (Fig. S13).

At last, the genes from different pathways have dif-
ferent splicing entropy. For example, CE events in 
genes from nitrogen cycle metabolic process and pro-
teinaceous extracellular matrix have globally high 
splicing complexity, while events in genes associated 
with structural constituent of ribosome, unfolded pro-
tein binding, and vacuolar transport have low splicing 
complexity (Fig. S14), indicating the close association 
between splicing complexity of exons and gene func-
tion. In summary, these results indicate that the events 
with different splicing entropy are located in genes with 
distinct features, highlighting that splicing complexity is 
another important attribute of AS.

The splicing complexity of alternative exons can be 
moderately predicted with machine learning
Having revealed the importance of splicing com-
plexity of alternative exons, we next investigated the 
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regulatory mechanisms of splicing complexity. We 
hypothesized that if the splicing complexity of alter-
native exons is biologically relevant rather than the 
result of splicing noise, it could be predicted with 
attributes of exons. Then we focused on CE events 
from human protein-coding genes and extracted 59 
features associated with alternative exons using Matt 
(see “Methods”) [38]. These features include informa-
tion of the target exon, its flanking exons and introns, 
and splicing sites (Table S2). Considering the complex-
ity of linkage among splice sites and the advantages 
of the different models in prediction, we trained dif-
ferent machine learning models, including lasso, deci-
sion trees, SVM, random forest, xgboost, and a deep 
learning (DL) model, to predict mean splicing entropy 
among six tissues. The architecture of the deep neural 

network is illustrated in Fig.  3A, in which two con-
volution layers are used to extract the features, three 
SENet layers are included to weight the feature maps 
to evaluate the contribution of different filters and 
three long short-term memory (LSTM) layers are 
applied to capture the interaction of different features. 
In general, the two nonlinear models (xgboost and 
deep learning) have better performance than the lin-
ear models, and the xgboost model has slightly higher 
accuracy than the DL model (PCC = 0.579 and 0.557, 
respectively; Fig. 3B, C). For both the DL and xgboost 
models factors contributing to the splicing pattern of 
exons (i.e., alternative or constitutive), such as length 
of flanking exons and splicing strength of upstream/
downstream splice sits, are also top predictors of 
splicing complexity (Figs.  3D and S15). However, the 

Fig. 2 Splicing entropy of events from different types of genes. The bean charts display differential splicing entropy of AS events in genes with 
different categories. A Housekeeping genes (n = 16,387) vs. Non-housekeeping genes (n = 35,205). B gene age, Young: human-specific genes 
(n = 315), Old: non-human-specific genes (n = 40,342). C expression level, Low: TPM < 50 (n = 39,838), High: TPM ≥ 50 (n = 11,754). D gene 
expression tissue specificity, Low tissue specificity: tau < 0.3 (event number: 24,229), High tissue specificity: tau ≥ 0.3 (n = 27,363). E Evolutionary 
rate, Low (slow-evolving): 0.000923 ≤ dN/dS ≤ 0.0993 (n = 45,272), High (fast-evolving): 0.0993 < dN/dS ≤ 29.3 (n = 45,256). F degree in protein–
protein interaction (PPI) network, Low degree: 2 ≤ degree ≤ 1.34 ×  103 (n = 25,442); High degree: 1.34 ×  103 ≤ degree ≤ 1.38 ×  104 (n = 25,350). 
All significances were evaluated with Wilcoxon rank-sum test. Dashed lines indicate the median of all two groups of CE events, solid vertical lines 
indicate median for each group of events
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contribution of individual features is limited, indicat-
ing that exon features used in the model may not be 
sufficient to explain complex AS events. Overall, we 
showed that the splicing complexity of events is mod-
erately predictable with features associated with exons.

Changes in splicing complexity and splicing inclusion level 
among tissues
Previous research revealed that some alternative exons 
function in a tissue-specific manner, by comparing Ψ 
values of each event among tissues [4, 39]. However, few 
studies have investigated splicing complexity changes of 
alternative exons among tissues, and little is known about 
the contribution of splicing complexity to the splicing 
changes of exons in different tissues. To this end, we com-
pared AS change among human tissues at both the splic-
ing inclusion and splicing complexity levels. Owing to the 
inner correlation between splicing complexity and splic-
ing inclusion level, the two features were investigated and 
compared simultaneously. To simplify the comparison, 
events having Ψ = 0 or with not enough reads to quantify 
in both compared tissues were excluded. The CE events 
were classified into ten classes (Fig.  4A), depending on 

discrete bins of splicing complexity (Kn) and Ψ values. 
For example, K1_Low refers to events that have simple 
splicing pattern (complexity = K1; produce at most two 
splicing outcomes) and have a low Ψ value (0 < Ψ ≤ 0.2). 
Globally, only a few events belong to same class in any 
two compared tissues (Figs.  4A and S16), revealing the 
huge difference between tissues in both splicing complex-
ity and splicing inclusion level. Considering the AS events 
in brain and cerebellum, only about one-third of events 
from class K1_Low in brain are still belong to K1_Low 
in cerebellum (Fig.  4A), representing events that have 
minor changes in both splicing complexity and splicing 
inclusion level. Most of the remaining events from class 
K1_Low in brain were categorized into the “others” class 
(i.e., exons with no mapped reads) in cerebellum. Among 
the K1_Low events in brain, those categorized into the 
K2_Low class (change only in splicing complexity) were 
almost twice as many as those categorized into the K1_
Middle class (change only in splicing inclusion level) in 
the cerebellum (Fig.  4B), which indicates that a larger 
proportion of events changed in splicing complexity 
between the two tissues compared with that in splicing 
inclusion level. To mitigate the influence of difference in 

Fig. 3 Prediction of splicing entropy with machine learning. A simplified diagram of deep learning model used to predict splicing entropy. For each 
event, 59 features were used as input and processed with two one-dimension convolutions, The subsequent Squeeze-and-Excitation Networks 
(SENet) was applied to process features. What follows is the recurrent layer which contains LSTM units that have end-to-end connection in both 
directions to capture dependencies between features. Recurrent outputs are the input of fully connected layer (FC) to predict the splicing entropy 
of events in test data. B comparison of the average performance of different methods with test data. PCC: Pearson product-moment correlation 
coefficient; SCC: Spearman’s rank correlation coefficient;  R2: explained variation. C scatter plot shows the predictive power of xgboost and deep 
learning model respectively, the red line in each graph indicates the linear fit between the predicted and measured splicing entropies. D the rank of 
feature importance for the predictive splicing entropy (top 10) with xgboost model
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sequencing depth and completeness of transcript annota-
tion, down-sampled bam files or de novo assembled tran-
scripts were used to repeat the analysis. As a result, the 
same pattern is observed (Figs. S17 and S18), supporting 
the robustness of our analyses. Our analysis revealed that 
changes in splicing entropy and splicing inclusion level 
have a comparable contribution to tissue-specific splicing 
difference.

As a case, exon 16 (2:165,327,155–165,327,202) of the 
SCN2A gene has similar Ψ values but different splicing 
complexity between brain and cerebellum. Specifically, 
there are two splicing patterns for this exon in cerebel-
lum, and only one splicing pattern in brain (Fig. S19A). 
On the other hand, exon 2 (1:159,189,771–159,189,872) 
of the CADM3 gene has two splicing patterns in brain 
and cerebellum, but the Ψ values are substantially differ-
ent (0.112 vs. 0.271) in the two tissues (Fig. S19B).

Evolutionarily old AS events have high splicing entropy 
in mammalian clade
Valuable insights have been obtained by comparing the 
Ψ values of events with different splicing ages [11, 12]. 
We asked whether the evolutionary dynamics of splicing 
complexity could also be used to reveal the evolutionary 
rules of alternative exons. To this end, exons with differ-
ent splicing ages in human were compared. For simplic-
ity, the following comparative analysis was limited to CE 

nodes that had one-to-one orthologs across all the seven 
species and were alternatively spliced in at least one of 
the studied species. Cluster analysis based on the Ψ val-
ues of 22,294 orthologous exons (in 5,255 one-to-one 
orthologous genes) recapitulated the previous findings 
that the splicing of exons presented a species-dominated 
clustering pattern, i.e., the exons from different tissues 
within species showed more similar Ψ values than that of 
the matching tissues among different species (Fig. S20A). 
When clustering using splicing entropy of the same set 
of CE events, a similar pattern was obtained (Fig. S20B). 
What’s more, the clustering result using Ψ values of 251 
CE nodes (in 204 one-to-one orthologous genes) that are 
conservatively spliced in all the seven species presented 
a prominent tissue signature (Fig. S20C), consistent with 
the findings of Merkin et al. (2012) and Barbosa-Morais 
et al. (2012) [11, 12]. However, the result based on splic-
ing entropy of the same set of conservatively spliced 
exons showed slightly inconsistence compared with 
that based on splicing inclusion level (Fig. S20D). It can 
be observed that although the brain and cerebellum are 
clustered together and separated from other tissues, the 
samples of primates are also separated from non-primate 
samples, possibly because splicing complexity evolves 
faster than splicing inclusion level. Together, these results 
suggested that splicing entropy could be used to charac-
terize the evolution of alternative exons.

Fig. 4 Comparison of splicing complexity and Ψ values between paired tissues in human. A Sankey plots show conversion of belonged groups 
for event among tissues. Events were categorized depending on their splicing complexity and Ψ values in each tissue, and each row is for one 
tissue. K{n}_{m}, n is splicing complexity category and m is Ψ category. K1_Low: complexity = K1 and 0 < Ψ ≤ 0.2; K1_Middle: complexity = K1 and 
0.2 < Ψ < 0.8; K1_High: complexity = K1 and 0.8 ≤ Ψ < 0.97; K2_Low: complexity = K2 and 0 < Ψ ≤ 0.2; K2_Middle: complexity = K2 and 0.2 < Ψ < 0.8; 
K2_High: complexity = K2 and 0.8 ≤ Ψ < 0.97; K3_Low: complexity = K3 and 0 < Ψ ≤ 0.2; K3_Middle: complexity = K3 and 0.2 < Ψ < 0.8; K3_High: 
complexity = K3 and 0.8 ≤ Ψ < 0.97; Others: not in the above categories (NA in one tissue, but not NA in the other). B bar plot showing the 
frequency of events from different groups in brain and cerebellum with transcript annotation from Ensembl database
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We next examined the relative rate at which splicing 
entropy has evolved. By pairwise comparisons of splicing 
entropy in homologous tissues between human and the 
other six species, we observed that splicing entropy simi-
larity to human decreased with evolutionary divergence 
from human for each tissue (Fig. 5A). Then, we inspected 
in which species the orthologous events tended to have 
the highest splicing entropy. We investigated those 
events for which the difference between the top two 
splicing entropy among the seven species was up to 1.0, 
and found that CE events with highest splicing entropy 
frequently occur in human (Fig.  5B). This pattern is 
observed in all the six tissues, suggesting that AS events 
in human tissues tend to have the highest splicing com-
plexity. Then, we extracted events that showed mono-
tonic changes in splicing entropy during evolution for 
each tissue (Fig. 5C). Among these events, more than half 
of events showed increased splicing entropy during evo-
lution. However, when concerning AS events that showed 
evolutionarily consistent change in splicing entropy 
across the six tissues, we found that there are a few over-
laps among tissues (Fig. S21), revealing the evolutionary 

difference of AS events in splicing complexity among 
tissues. Furthermore, we examined whether the genes 
containing events with decreased-complexity have dif-
ferent functions compared with those having events with 
increased -complexity. Gene ontology enrichment analy-
sis revealed that genes containing events with monotonic 
increased or decreased splicing complexity are related to 
different terms. For example, in brain, genes containing 
events with increased complexity are enriched in delayed 
speech, language development and cell leading edge, 
while genes containing events with decreased complexity 
are enriched in some complex formation (Fig. S22).

By fixation of mutations that affect splicing, constitu-
tive exons are an evolutionary source of new alternative 
exons, a process that was termed as “alternification” 
[40]. Thus, we assessed the evolutionary change of 
exons in splicing entropy after “alternification”. A total 
of 36,731 one-to-one orthologous CE events with esti-
mated Ψ values in all seven species were analyzed. 
These exons were classified into different categories 
based on the time of splicing state changes along the 
phylogeny of the seven species. The estimation of 

Fig. 5 Evolution of splicing complexity. A Spearman correlation between human and other species when comparing splicing entropy pairwise 
for orthologous events in each tissue. For each pair of species, correlation is calculated for splicing entropy of all orthologous exons in the seven 
species. B the numbers of conserved alternative exons in seven species with highest splicing entropy in each species for each tissue. C line chart 
showing splicing entropy of events with decrease/increase in splicing entropy during evolution in each tissue. D bar plot displaying the ratio of 
alternative exons with maximum splicing entropy ≥ 1.0 for each group. E bar plot displaying the ratio of alternative exons with maximum changes 
in splicing entropy ≥ 1.0 among tissues for each age group of events. VCA: vertebrate conserved alternative exons; MCA: mammalian conserved 
alternative exons
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splicing age was performed using parsimony, follow-
ing the method of Merkin et  al. (2012) [12] (Fig. S23; 
see Methods). By comparing the maximum entropy of 
alternative exons among the six tissues, we found that 
the ratio of high-complexity exons (entropy > 1.0) gen-
erally increased with their splicing ages (Fig.  5D). For 
example, the proportion of high-complexity events 
for human-specific alternative exons  (humangain) is 
38.5%, while this number is doubled (74.5%) for verte-
brate conserved alternative exons (VCA). Meanwhile, 
a large proportion of events present substantial differ-
ence (entropy change > 1.0) in splicing entropy among 
tissues (Fig.  5E; 38.1% in  humangain, 62.5% in VCA), 
highlighting the importance of change in splicing com-
plexity during organ evolution. It should be noted that 
the above estimates are conservative because splicing 
entropy < 1.0 can also occur for events with more than 
two expressed isoforms. These results suggest that at 
the onset of the switch from a constitutive exon to an 
alternative exon, the alternative exon usually exhibits 
low splicing complexity, then evolve to be an alternative 
exon with higher splicing complexity.

Alternative exons are combinatorically regulated 
by splicing complexity and splicing inclusion level 
during development
We have shown the splicing complexity of alternative 
exons change frequently among tissues. AS may also play 
essential roles during organ development [1, 15]. How-
ever, most research about AS were limited to the study 
of adult tissues. To this end, we analyzed the RNA-seq 
data of six human tissues (brain, cerebellum, heart, liver, 
kidney, and testis) from early organogenesis to adult (Fig. 
S24; Table S1) [32]. To explore the splicing complexity 
change during development, CE events were deliberately 
selected for each tisssue so that all events had splicing 
entropy change ≥ 0.5, had more than 20 supported reads, 
and their host genes’ expression level were larger than 10 
TPM in at least five developmental stages. Cluster analysis 
revealed that some AS events have stable and high splic-
ing complexity, while other events show stage-specific 
high splicing entropy during development (Figs.  6A and 
S25), revealing dynamic changes of splicing complex-
ity between developmental stages. For example, exon 26 
(12:56,318,237–56,318,434) in the PAN2 gene has low 
splicing complexity (splicing entropy = 0.68) at 4th week 
post-conception, but has high splicing complexity at SAC 
(7–9  years old) and adult stage (splicing entropy = 2.03 
in both tissues; Fig. S26). At the transcript level, an addi-
tional isoform that includes the target exon while skips 
the upstream exon appears at SAC and aldult stages, but 
is absent at 4th weeks post-conception. However, little 

change in Ψ values (< 0.1) is observed among these three 
stages for this exon (Fig. S26).

Because splicing inclusion level and splicing complex-
ity are correlated to some extend, we examined the dis-
tribution of splicing inclusion level and splicing entropy 
changes for developmentally regulated events (Dev-
events, ΔΨ ≥ 0.1 relative to 5th weeks post-conception 
for testis, 4th weeks post-conception for other tissues). 
Figure 6B shows the maximum change in splicing entropy 
and Ψ values in brain, which exhibits symmetric distri-
bution centered on zero. This result indicates that for 
different AS events, changes of splicing inclusion level 
and splicing complexity are not linearly correlated dur-
ing development. Interestingly, it can be observed that a 
bump appears in the density plot of each tissue, except 
for the heart (Figs. 6B and S27), which suggests that some 
AS events show excessive increase in splicing entropy 
during development. We further compared changes of 
splicing entropy for Dev-events and non-Dev-events 
(ΔΨ < 0.1 relative to 5th weeks post-conception for tes-
tis, 4th weeks post-conception for other tissues) during 
development. We found that 10–15% of events have neg-
ligible change in splicing inclusion level (i.e., non-Dev-
events) but show a splicing entropy change larger than 
0.5 (Figs. 6C and S28). It should be noted that the propor-
tion of events showing splicing entropy change is larger 
for Dev-events than that for non-Dev-events (Figs.  6C 
and S28). Overall, our analysis revealed that splicing 
inclusion level and splicing entropy cooperate together 
to characterize AS events’ dynamics during development.

Furthermore, to investigate the evolutionary dynam-
ics of Dev-events, we compared splicing complexity 
during development for exons with different splicing 
age. To obtain enough events for comparison, we lim-
ited our analysis to exons that are conserved across 
five mammalian species (human, chimpanzee, gorilla, 
macaque, mouse), and classified these exons into dif-
ferent age groups based on the time of splicing state 
changes along the phylogenetic tree of the five species. 
For almost all age groups, more than half of non-Dev-
events exhibit substantial splicing entropy changes in 
each tissue (Fig. S29A). Meanwhile, for the brain tis-
sue, the proportion of AS event exhibiting apparent 
complexity change among non-Dev-events shows a 
monotonic increase with the phylogenetic breadth of 
alternative exons (Fig. 6D). Among human-specific non-
Dev-events, 22.9% (liver) to 33.7% (heart) alternative 
exons have maximum changes of splicing entropy larger 
than 0.5 during organ development (Figs. 6E and S29B). 
Gene Ontology (GO) enrichment for genes containing 
non-Dev-events in the  humangain

’ (human-specific CE) 
group revealed that the top enriched terms are similar 
for events with low and high splicing entropy change 
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(Fig. S30), such as autophagy and nuclear envelope. In 
addition, genes containing events with low splicing 
entropy change are also specifically enriched in cellu-
lar amino acid metabolic process, plasma membrane 
organization, cytoskeleton − dependent intracellular 
transport, and cell junction organization. Overall, our 
analysis indicates that evolutionarily old alternative 
exons contribute more to the diversity of transcriptome, 
and that splicing changes during development are the 
result of combinatory regulation of exons in inclusion 
level and splicing complexity.

Discussion
A fundamental question in biology is to decipher and 
understand genotype–phenotype map. Alternative splicing, 
a basic biological process in eukaryotes, provides an essen-
tial layer of gene expression regulation that directly influ-
ence cell identity and cell fate. Therefore, characterizing the 
genome-wide and tissue-wide AS pattern of exons and their 
evolutionary history becomes the first and most important 
step in deciphering the genetic features responsible for par-
ticular AS events and the dynamics of AS. As the basic unit 
of transcript, exons have specific advantage in gene func-
tion evolution. Due to lower selective pressure compared 

Fig. 6 Splicing complexity changes during development. A hierarchical clustering for splicing complexity for events that have confident change (at 
least 20 supported reads) in splicing entropy larger than 0.5 and expression level of located gene larger than 10 TPM. Red arrow represents events 
that have stable and high splicing entropy during development. B 2D kernel density plots showing the largest change in splicing entropy (y-axis) 
and Ψ (x-axis). C the number of events that change in splicing entropy. Dev-events: events with largest splicing entropy ≥ 0.5 during development, 
non-Dev-events: events with largest splicing entropy < 0.5. D The relative ratio of events with splicing entropy changes larger than 0.5 among 
events that are not regulated in Ψ (max Δ Ψ < 0.1). E the distribution of splicing entropy changes for events in the  humangain’ group
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with the birth of new exons or genes, the creation of new 
transcript by exons’ combination without altering genome 
sequence and structure is a shortcut to produce new func-
tional proteins during evolution, although whether most 
of the isoform diversity arising from AS represents tran-
scriptional noise has been debated [41–43]. What has been 
confirmed is that alternative exons tend to be interaction 
domain and rewire tissue-specific protein–protein interac-
tion network [1, 17, 44, 45]. The frequent involvement of 
exons in assembly of different transcript creates not only a 
large number of alternative exons, but also exons with com-
plex splicing pattern in tissues (Fig. 1C).

To date, tissue-specific or developmentally regulated 
AS is mainly limited to the quantification and com-
parison of changes in splicing inclusion level of exons 
with short reads [14, 46–49]. Splicing inclusion level of 
alternative exons evaluates change in exon usage, but it 
overlooks change of the exon’s connectivity with other 
splice sites. Ideally, the splicing complexity of exons can 
be quantified by comparing the number of splicing iso-
forms and the expression level of all splicing isoforms. 
Therefore, some efforts have been dedicated to develop 
specialized protocols to infer full-length mRNA isoforms 
with short reads. For example, Tilgner et  al. [50] devel-
oped a “synthetic long read” RNA-seq approach for iso-
form assembly with next-generation sequencing data. 
However, this method is also limited by the error-prone 
nature of de novo assembly with short reads. Moreo-
ver, the assumption that one RNA molecule per gene in 
each pool might not hold true for highly expressed genes. 
Continuing interest in sequencing full-length mRNA 
transcripts also promote the prosperity of third gen-
eration sequencing technology that can determine exon 
connectivity and even full-length mRNAs, especially for 
genes with complex AS pattern or with thousands of dis-
tinct isoforms [51, 52]. Recently, Glinos et  al. [53] used 
long reads to compare the tissue-specificity of transcript 
structure, and found that cerebellar hemisphere, liver 
and fibroblasts have the highest ratio of tissue-specific 
transcript [53]. But due to its low throughput, third gen-
eration sequencing can only provide a relatively small 
number of reads, leading to an inaccurate quantification 
of the relative isoform expression for complex spliced 
genes. What’s more, the large sequencing expense of 
this platform can also be a prohibitive barrier to many 
researchers. Thus, it remains difficult to accurately and 
directly determine the connectivity of exons within the 
same transcript at the genomic scale. However, as with 
what we found in this research, a large number of exons 
have high splicing complexity (Fig. 1C) and the splicing 
complexity difference reflects splicing change among tis-
sues (Fig.  4A). So, splicing entropy used in the present 
study is a tentative yet indispensable metric to leverage 

the study of splicing complexity of exons with short-read 
high-throughput RNA-seq data.

Interestingly, the linkage complexity of exons is closely 
related to gene age, evolutionary rate, gene function, and 
gene connectivity in interaction network. Although the 
causal relationship still needs further research, the cor-
relation between splicing complexity and gene feature 
exists. This reveals that the splicing complexity of exons 
is not randomly distributed among genes, but plays a sig-
nificant role in genes from specific pathways (Fig. 2A-F).

Mechanically, we revealed that splicing complex-
ity of alternative exons were partly controlled by exons’ 
features, including length of flanking exons and splic-
ing strength of downstream/upstream splice sites 
(Fig.  3D). The accuracy of splicing complexity predic-
tion is relatively low compared with that of splicing 
inclusion level prediction by deep learning models [27]. 
The underlying reasons may include three aspects: first, 
splicing complexity of exons are essentially more com-
plicated, because the splicing complexity is potentially 
involved in the combination of all potential splice sites 
of a gene, while whether GT/AG sequence is a splicing 
site is mainly decided by local sequence feature; second, 
because of the lack of tissue information in our predic-
tion variables, we can’t predict the Ψ values variation 
among tissues; third, the architecture of the model needs 
further optimization in future research. Fortunately, with 
the continuing optimization of machine learning con-
structure and increasingly available computing source, it 
is promising to predict the linkage complexity of exons in 
tissues from DNA/RNA sequences directly.

The control of linkage pattern of exons can be created 
by molecular-level changes acting on developmental pro-
grams related to tissue functions and morphologies, pro-
viding a foundation for lineage-specific innovation [54]. 
Splicing complexity across species can also be used to 
uncover the evolutionary dynamics of alternative exons 
(Fig. S20). Previous research has revealed that old alter-
native exons have low inclusion level, high splicing tissue 
specificity along with high evolutionary rate by compar-
ing Ψ values [12]. Accordingly, this study showed old 
alternative exons tended to have high splicing complex-
ity and large splicing entropy variation among tissues 
(Fig.  5D, E). This revealed that the exons might change 
in splicing complexity after evolving to be an alternative 
exon from a constitutive one, suggesting organisms fre-
quently regulated isoforms expression by the transition of 
exons’ connectivity, in addition to the usage rate of exons.

Phenotypically relevant AS change may occur during 
embryonic development, while the majority of compara-
tive transcriptomic studies about AS have been focus-
ing on splicing inclusion level (Ψ) of alternative exons, 
especially in adult organs [48, 49]. A recent relevant 
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study comparing AS changes in splicing inclusion levels 
across pre- and postnatal development of seven organs 
in seven species [14]. In that paper, the authors analyzed 
the proportion of development-regulated events in exons 
with different splicing ages, also revealed that develop-
mentally dynamic AS events are more conserved than 
non-dynamic ones [14]. Here, we revealed that the devel-
opmentally dynamic splicing change occurred not only 
in Ψ values but also in splicing complexity (Fig. 6C, D). 
However, an important limitation of our analysis is that 
bulk RNA-seq don’t allow assess the relative contribution 
of cellular composition change versus cell-type intrinsic 
splicing complexity change to observed change in splic-
ing complexity during development. It requires single-
cell RNA-seq data that allows reliable quantification of 
the splicing complexity in different cell types to disentan-
gle the contributions. At last, the contribution of splicing 
complexity change to phenotypic change during develop-
ment still needs further functional studies.

Conclusions
In summary, our work revealed the roles of splicing com-
plexity in characterizing the diversity for exons’ con-
nectivity among tissues and developmental dynamics. 
Although the splicing complexity of exons is not a perfect 
solution to disentangle the precise contribution of each 
isoform to gene expression level and phenotypic changes, 
it is a compromise way to combine splicing complexity 
and Ψ values before third-generation sequencing tech-
nology is mature enough to quantify expression of each 
isoform.

Methods
Data collection
The 76-bp and 101-bp RNA-seq datasets from brain, 
cerebellum, heart, kidney, liver, and testis of 7 species: 
human (Homo sapiens), macaque (Macaca mulatta), 
mouse (Mus musculus), opossum (Monodelphis domes-
tica), chimpanzee (Pan troglodytes), gorilla (Gorilla 
gorilla) and chicken (Gallus gallus) were downloaded 
from Gene Expression Omnibus (GEO accession ID: 
GSE30352). The reference genomes and annotation files 
(gene transfer format, GTF) were retrieved from Ensembl 
annotations, release 92. The information of protein-cod-
ing genes and longest protein-coding transcripts were 
extracted from GTF files.

RNA‑seq data preprocessing
The quality of reads was controlled using FastQC (http:// 
www. bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc/). 
To obtain a homogeneous comparison, the samples were 
treated as follows: 1) either the single-end reads or the 
forward reads of the paired-end reads were used, 2) the 

reads of all samples were trimmed to 70 bp, and 3) reads 
with more than 5 N bases were filtered out using Trim-
momatic-0.36 [55]. At last, reads from samples of the 
same tissue were combined for further analysis.

Gene expression and AS quantification
We used Whippet (v0.5) [18] to detect and quantify Ψ 
and splicing complexity of AS events. First, the RNA-seq 
reads were mapped onto the respective reference genome 
with TopHat2 (v2.1.1, -N 3, –no-novel-indels, –no-dis-
cordant, –no-mixed) [56]. The unique reads from mapped 
bam files for the same species were merged and sorted, 
and duplicates were removed with SAMtools v1.4.1. In 
order to identify new transcripts, we ran Cufflinks (ver-
sion 2.2.1, -I 200,000 –max-bundle-length 10,000,000) 
on merged reads. Cuffcompare was used to compare pre-
dicted transcripts with that of annotated GTF file from 
the Ensembl database. Transcripts with Cufflinks class 
codes of “c”, “j”, “ = ”, “e”, or “o” were kept for further analy-
sis. The merged bam file for each species and the derived 
GTF files were combined to create splice graphs. Whip-
pets was run using the default settings to quantify events 
and gene expression levels for each sample. In brief, anno-
tated transcripts from genes were collapsed into non-
overlapping exon bins (nodes), then a Contiguous Splice 
Graph (CSG) was built. In CSG, edges represent splice 
junctions or adjacent exonic regions, so that isoforms 
can be represented as paths through nodes. After align-
ing to edges, paths through each node’s AS event can be 
estimated. For each exon, all paths through the AS event 
are enumerated and quantified. The Ψ value of a node is 
defined as the sum of the relative abundance of the paths 
containing the node [18] (Fig. S1A). Splicing complexity 
of exon can be classified into discrete bins of complexity 
based on the total enumerated paths number from the 
event (n = log2(path number), such that K(n) can pro-
duce at most  2n spliced outcomes), or Ψ-dependent Shan-
non’s entropy (entropy = -

∑
i�ilog2�i , �i is the inclusion 

level of path i). The two metrics are related, because the 
maximum entropy for an event with K(n) is n according 
to above formula [18]. Only nodes in expressed genes 
(TPM ≥ 1) and with a total of at least ten supported reads 
for the associated AS events were kept. To estimate the 
bias from annotation completeness, we obtained the de 
novo transcript annotation from (https:// apps. kaess mannl 
ab. org/ alter native- splic ing/) which performed detailed 
de novo annotation of transcribed regions for all species 
by RNA-seq data of (forebrain/cerebrum, hindbrain/cer-
ebellum, heart, kidney, liver, ovary, and testis) from early 
organogenesis (mid-organogenesis for the heart) to adult-
hood across six mammals. These annotated transcripts 
from four species (human, rhesus macaque, mouse and 
chicken) were used in this study to alleviate biases from 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://apps.kaessmannlab.org/alternative-splicing/
https://apps.kaessmannlab.org/alternative-splicing/
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genome annotation quality differences among species. 
The same quantification process was used to calculate 
splicing complexity. To mitigate the effect of sequencing 
depth, each sample were down sampled to the same level 
(Chicken brain: 37,033,946 sequencing reads) and then 
quantified the splicing complexity. At last, events with 
sufficient supported reads (reads number ≥ 50) in genes 
with high expression (TPM ≥ 10) were used to compare 
splicing entropy.

Gene sets with different features
Housekeeping gene list (3,804) was obtained from Eisen-
berg et  al. (2013) [33], and other protein-coding genes 
not in the list were considered as non-housekeeping 
genes. The genes were classified into two groups: Low 
expression (TPM < 50) and High expression (TPM ≥ 50). 
Tissue specificity was measured across six tissues using 
the metric tau [57]:

xi is the expression of the gene in tissue i , n is the number 
of tissues.

Genes were classified into low tissue specificity 
(tau < 0.3) and high tissue specificity (tau ≥ 0.3). Gene age 
data were retrieved from Yin et al. (2016) [58]. Similarly, 
the genes were classified into Young (human-specific) 
and Old (non-human specific). dN and dS for each pro-
tein-coding gene were retrieved from Ensembl v92, and 
genes were classified into two groups (slow-evolving: 
0.000923 < dN/dS < 0.0993 and fast-evolving: 0.0993 < dN/
dS < 29.3) with equal gene number. Protein–protein inter-
action networks for human were downloaded from the 
string database (https:// cn. string- db. org). This network 
included 19,385 nodes and 11,938,498 edges. Degree for 
each gene was calculated with the function “degree” in 
the R package igraph [59]. Wilcoxon rank-sum test was 
used to compare differences in splicing entropy of events 
from genes with different features.

Identification of orthologous exons
One-to-one orthologous protein-coding genes were 
obtained from Ensembl release 92. We used two sets of 
orthologous genes: 9371 orthologous genes for all seven 
species (all studied mammalian species and chicken as an 
outgroup) and 13,442 orthologous genes for five species 
(human, chimpanzee, gorilla, macaque, mouse). For each 
orthologous gene, the exons of the longest protein-cod-
ing transcript were used to identify orthologous exons. 
The orthologous exons that were used for cross-species 
comparison of alternative splicing events were obtained 

τ =

∑n
i=1

(1− x̂i)

n− 1
; x̂i =

xi

max
1≤i≤n

xi

by converting the coordinates of the exons using LiftO-
ver from UCSC with at least 0.75 match (-minMatch 
0.75) according to the respective all-chain BLASTZ file. 
Only one-to-one orthologous exons were used for further 
analysis in all considered species. The first and last exons 
in all transcripts were abandoned. Finally, 69,033 and 
117,374 exons were obtained for the two sets of genes.

Estimation of the ages of alternative splicing events
The phylogenetic tree for the seven species was retrieved 
from the TimeTree database (http:// www. timet ree. org/). 
The one-to-one orthologous exons with CE (“core exon”) 
events defined in Whippet were considered to be orthol-
ogous CE events. At last, 47,592 and 83,172 orthologous 
CE events were obtained for the two sets of genes. For 
simplicity, we considered ‘exonic bins’ in Whippet to be 
‘exons’ throughout the text.

To facilitate the comparison of exon splicing patterns 
in various tissues, we classified exons into two major 
groups, according to gene expression level and Ψ values 
in one tissue: 1) alternative CE events, i.e., CE events 
(0 < Ψ < 0.97) in expressed genes (TPM ≥ 1) and with a 
total of at least ten supported reads for the associated AS 
event; 2) constitutive CE events, i.e., CE events (Ψ ≥ 0.97) 
in expressed genes (TPM ≥ 1) and with a total of at least 
ten supported reads for the associated AS event.

One tissue or all six tissues can be used when identify-
ing the splicing pattern of one exon in a species. Alter-
native CE event were defined as those with associated 
exons that are alternatively spliced in at least one of the 
six tissues, while constitutive CE events are those with 
the associated exons that are constitutively included in 
all quantifiable tissues. Orthologous CE events that were 
neither identified as alternative CE events nor constitu-
tive CE events in any species were not used for further 
analysis.

After identifying the splicing pattern of ortholo-
gous CE, exons were defined in each species accord-
ing to their splicing patterns in one tissue or all tissues, 
orthologous alternative CE events occurring in a sub-
set of species could be considered as evolutionary gain 
(constitutive to alternative spliced) or loss (alterna-
tive spliced to constitutive) of alternative splicing. Par-
simonious principle was applied to identify the gain 
and loss of AS and its evolutionary age, following the 
method described in Merkin et  al. (2012) [12]. The 
exons that could be explained by one gain or loss event 
were grouped to different splicing age classes according 
to the time of gain or loss, the cases that could not be 
explained by one gain or loss event were grouped into 
the “complex” group (Fig. S23). For example, if the splic-
ing pattern for an exon in seven species can be explained 
by an evolutionary gain of skipping in the most recent 

https://cn.string-db.org
http://www.timetree.org/
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common ancestor of human and opossum, then the 
exons were grouped into the human-opossumgain group. 
Orthologous CE events that were constitutive/alterna-
tive exons in all studied seven species were grouped into 
VCC (vertebrate conserved constitutive exons) or VCA 
(vertebrate conserved alternative exons). Exons that 
were constitutive in chicken and alternative exons in 
all mammalian species were grouped into MCA (mam-
malian conserved alternative exons). If the opposite is 
true, the exons were grouped into MCC (mammalian 
conserved constitutive exons). For exon groups from 
the five-species phylogeny tree, the group names were 
additionally labeled with a single quotation mark. For 
example, considering an orthologous CE event that is 
alternative in human and chimpanzee and constitutive 
in gorilla, macaque and mice, the exons were grouped 
into human-chimpanzeegain’.

Approximately half of the analyzed exons (17,687) are 
constitutive across the seven species (vertebrate-con-
served constitutive exons, VCC); 1,305 exons are consti-
tutive in the mammalian lineage but alternatively spliced 
in chicken (mammal conserved constitutive exons, 
MCC); 251 exons are alternatively spliced in all seven 
species (vertebrate-conserved alternative exons, VCA); 
and 130 are alternatively spliced in mammals but consti-
tutive in chicken (mammal conserved alternative exons, 
MCA). Given the present phylogeny, MCA contains two 
types of exons, corresponding to the gain of AS in the 
mammalian lineage or the loss of AS in chicken, respec-
tively. We also identified several sets of exons for which 
the directions and the ages of AS gains or losses can be 
reliably inferred (Fig. S23). For example, there are 170 
AS gains in the lineage before the divergence between 
the mouse and primates, 487 AS gains in the primate 
lineage, and 1,532 AS gains in a human-specific manner 
(Fig. S23). Species-specific gain of AS is also pervasive 
in other mammalian species (1,446 in chimpanzees, 982 
in gorillas, 1,525 in macaques, 1,318 in mice, and 1,619 
in opossum). Compared to AS gain, AS losses are much 
rarer during mammalian evolution, with only 239 losses 
of AS with varying evolutionary ages being detected 
(Fig. S23). Additionally, 6,824 exons experienced more 
than one-time changes in the AS state in the phylogeny, 
which were assigned to the “complex” group (Fig. S23).

Gene Ontology and KEGG enrichment analysis
The GO slim annotation for human was achieved from 
bioMart of Ensembl release 92. The genes with more than 
two exons in their longest protein-coding transcripts were 
used as the background gene set, and Gene Ontology and 
KEGG pathway [60] enrichment analyses were performed 
using g:Profiler (https:// biit. cs. ut. ee/ gprofi ler/ gost), which 
uses a hypergeometric test with Bonferroni correction.

Model building for splicing entropy
The coordinates of CE events were extract from Whip-
pet output, and the get_efeatures command of Matt [38] 
was used to extract features with the GTF file of human. 
At last, 59 features for each exon were fetched, including 
attributes of the target exon (e.g., length, GC content, 
exon rank in transcript), attributes of its upstream and 
downstream exons and introns (e.g., length, GC con-
tent, pyrimidine content), information of splicing sites 
(e.g., strength, maximum entropy score of 3’ splice-site 
and 5’ splice-site). Table S2 gives a detailed description 
of all features. The extracted features were used as pre-
dictor variables and splicing entropy as response vari-
able to train five machine learning models respectively, 
including multiple linear regression, decision tree, ran-
dom forest, xgboost, and SVM. The hyperparameters 
grid were created using the grid_regular function in 
the R packages dials and tuned with fivefold cross-val-
idation on training data with the tune_grid function in 
the R package tune. The hyperparameters with the low-
est error rate were used in modeling. The performance 
of each model was evaluated by the Pearson product-
moment correlation coefficient (PCC), Spearman corre-
lation coefficient (SCC) and the relative contribution to 
 R2 on test data. The importance of predictors was evalu-
ated with the vi function in the vip package.

Deep learning model built for splicing entropy
As illustrated in Fig.  3A, our model architecture utilized 
SENet (Squeeze-and-excitation networks) [61] to weight 
the feature maps to evaluate the contribution of differ-
ent filters, and utilized long short-term memory (LSTM) 
to allow the interaction of different features. All data were 
divided into the training set, validation set, and test set by 
8:1:1. Our models are trained using the Adam algorithm 
as an optimizer and a minibatch size of 10,000 to mini-
mize the mean squared error (MSE) on the training set. 
Validation loss was evaluated at the end of each training 
batch and stopped during the training procedure since we 
found the loss curve of validation data showed a sign of 
plateauing. The importance of features was evaluated with 
Gradient-weighted Class Activation Map (Grad-CAM) 
algorithms after the training step (Grad-cam: Visual expla-
nations from deep networks via gradient-based localiza-
tion). The deep learning model was written in Python 
3.8.8, utilizing the PyTorch 1.7.0 library, and was trained 
on a Linux server with NVIDIA Titan X Pascal GPU.

Analysis of RNA‑seq time‑series data
The RNA-seq datasets of six major organs (brain, cer-
ebellum, testis, heart, liver, and kidney) in human were 
obtained from a Cardoso-Moreira et al. (2019) (Table S1; 
[32]). This dataset includes prenatal development from 4 

https://biit.cs.ut.ee/gprofiler/gost
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to 20 weeks post-conception, postnatal development from 
neonates to teenagers and adults from 20 to 63 years. Post-
natal development was grouped into neonates (New; unit: 
days), infants (Infant: 6–9 months; unit: months), toddlers 
(Toddler: 2–4 years; unit: years), school (SAC: 7–9 years; 
unit: years) and teenagers (Teen: 13–19 years; unit: years). 
For quantification, Whippet (v0.5) was run using the 
previously created index files with default parameters. 
Whippet’s probability estimate was used to identify dif-
ferentially spliced alternative exons by comparing the first 
stage (5th  weeks post-conception for testis, 4th  weeks 
post-conception for other tissues) with other stages. AS 
events with |ΔΨ| ≥ 0.1, posterior possibility ≥ 0.85 were 
considered to be differentially spliced events. Exons were 
defined as developmental regulatory events (Dev-events), 
when they were identified as differentially spliced exons 
in at least five stages compared with the first stage, other-
wise, events were defined as non-Dev-events.

Data analysis
All statistical analyses and plots were done in R (version 
3.56). Plots were created using the ggplot2 [62].
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