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Backgroud
Cattle were domesticated around 10,000 years before 
present (YBP), providing mankind with meat, milk, 
skin, and working power, etc. The natural and artificial 
selection has left phenomenal stress marks on the cattle 
genome determining its phenotype, adaptation and pro-
duction performance. To date, a large number of stud-
ies have been reported in various cattle populations 
based on the genomic single nucleotide polymorphisms 
(SNPs), and a set of candidate genes were identified to be 
related to reproduction, meat, milk and environmental 
adaption. For instance, three genes (MATR3, MZB1 and 
STING1) are related to host immune, and SOD1, PRLH 
and DNAJC18 genes are associated with environmental 
thermal stress in the African cattle [1, 2]. Significantly, 

BMC Genomics

†These authors contributed equally to this manuscript.

*Correspondence:
Xiangpeng Yue
lexp@lzu.edu.cn
1State Key Laboratory of Herbage Improvement and Grassland Agro-
ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, 
Ministry of Agriculture and Rural Affairs, Engineering Research Center 
of Grassland Industry, College of Pastoral Agriculture Science and 
Technology, Ministry of Education, Lanzhou University, Lanzhou  
730020, P. R. China
2Key Laboratory of Animal Genetics, Breeding and Reproduction of 
Shaanxi Province, College of Animal Science and Technology, Northwest 
A&F University, Yangling 712100, Shaanxi, China
3College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
4Computational Biology Laboratory, Agricultural Biotechnology Division, 
National Institute for Biotechnology and Genetic Engineering, Faisalabad, 
Pakistan
5Department of Biotechnology, Pakistan Institute of Engineering and 
Applied Sciences, Nilore, Islamabad, Pakistan

Abstract
Backgroud  The single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) are two major genomic 
variants, which play crucial roles in evolutionary and phenotypic diversity.

Results  In this study, we performed a comprehensive analysis to explore the genetic variations (SNPs and CNVs) of 
high sperm motility (HSM) and poor sperm motility (PSM) Simmental bulls using the high-coverage (25×) short-read 
next generation sequencing and single-molecule long reads sequencing data. A total of ~ 15 million SNPs and 2,944 
CNV regions (CNVRs) were detected in Simmental bulls, and a set of positive selected genes (PSGs) and CNVRs were 
found to be overlapped with quantitative trait loci (QTLs) involving immunity, muscle development, reproduction, 
etc. In addition, we detected two new variants in LEPR, which may be related to the artificial breeding to improve 
important economic traits. Moreover, a set of genes and pathways functionally related to male fertility were identified. 
Remarkably, a CNV on SPAG16 (chr2:101,427,468 − 101,429,883) was completely deleted in all poor sperm motility 
(PSM) bulls and half of the bulls in high sperm motility (HSM), which may play a crucial role in the bull-fertility.

Conclusions  In conclusion, this study provides a valuable genetic variation resource for the cattle breeding and 
selection programs.
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hundreds of candidate regions under positive selec-
tion among different cattle breeds were detected, which 
were responsible for production, growth, reproduction, 
immune response and milk production [3, 4].

Copy number variation (CNV) is another kind of 
genomic variant, ranging from 50 bp to 5 Mb [5]. Com-
pared to the SNPs, CNV has a greater influence on the 
function, phenotype and evolution by the gene dosage, 
coding sequence, and regulation of long-range genes 
[6, 7]. The CNV in many species has been investigated 
based on comparative genomic hybridization arrays 
(CGH array), SNP arrays (Illumina BovineHD Bead-
Chip, Illumina BovineSNP50 BeadChip), short-read 
next-generation sequencing (NGS) and single-molecule 
long-read sequencing (SMRT) methods. Compared to 
array technologies, NGS and SMRT exhibit higher pre-
cise breakpoints, sensitivity and resolution [8, 9]. As for 
the short-reads NGS data, many detection methods have 
been developed according to four strategies: read pair 
(RP), split read (SR), read depth (RD) and genome-based 
assembly (AS) [10]. Each strategy has its own strengths 
and weaknesses, and none of them can detect all types of 
CNVs. The SMRT can substantially improve the reliabil-
ity and resolution of variant detection [11]. However, due 
to the high cost, limited studies were conducted to detect 
CNV in cattle genome using SMRT.

The Simmental cattle, a beef/milk dual-purpose breed, 
is one of the most widely distributed cattle breeds in the 
world. Previous studies have explored the selective sig-
natures and copy number variation in Simmental cattle 
using different SNP arrays. The selection signature was 
firstly investigated in a large population of Simmen-
tal cattle using Illumina BovineSNP50, which identi-
fied 224 candidate regions containing genes associated 
with important economical traits [12]. Another study 
identified 263 CNV regions (CNVRs) in the genome of 
Simmental cattle using Illumina Bovine HD BeadChip, 
revealing that genes in CNVRs are related to transmem-
brane activity and olfactory transduction activity [13]. 
Afterward, various genome-wide association studies 
(GWAS) have been performed to identify the candidate 
genes/loci associated with economic traits of Simmen-
tal cattle, including carcass, meat, and growth [14–16]. 
Although it is feasible to detect the positive selective sig-
natures and CNV using the SNP array, the limited resolu-
tion reduces the sensitivity and accuracy of detection. In 
addition, fertility plays an important role in the success of 
calf production. To date, most studies primarily focused 
on the female fertility, while male fertility has received 
much less attention. Though previous studies have iden-
tified a set of single-nucleotide polymorphisms (SNPs) 
associated with bull fertility based on the SNP array [16–
19], the effective markers are still lacking for elite bull 
selection.

In the current study, combining the high-coverage 
short-read NGS data and SMRT data, a comprehensive 
analysis was conducted to identify the genetic variations 
(SNPs and CNVs) in the genome of Simmental bulls, 
which identified a set of positive selected genes (PSGs) 
and CNVRs overlapped with quantitative trait loci 
(QTLs) involving in milk, immunity, reproduction. Sig-
nificantly, a CNV on SPAG16 was completely deleted in 
all poor sperm motility (PSM) bulls and half of the high 
sperm motility (HSM) bulls, indicating its important role 
in bull fertility.

Results
Genomic landscape of SNPs and CNVs in Simmental bulls
In the present study, 30 Simmental cattle were sequenced 
generating ~ 2.17  billion paired-end reads with the aver-
age coverage depth of ~ 25×. The reads were aligned to the 
high-quality taurine reference genome (ARS-UCD1.2) 
[20] with an average alignment rate of 99.83% (Table S1), 
generating 15,154,539 autosomal SNPs (121,568 with a 
minor allele frequency < 1%, 2,643,818 between 1% and 
5%, and 11,490,159 > 5%) which were used for further 
downstream analysis.

In addition, we constructed a confidential CNV dataset 
using high-throughput Nanopore long-reads (Prometh-
ION) and the high coverage Illumina short read sequenc-
ing data. A total of 2,944 copy number variant regions 
(CNVRs) were detected (Fig.  1a &c, Table S2), includ-
ing 1,651 deletions, 126 duplications, 1,167 both events, 
with a total length of 4,661,581 bp and an average length 
of 1,583 bp, covering 0.18% of the genome. The length of 
CNVRs was found to be mainly distributed within 100–
500  bp, accounting for ~ 43.65% of the detected CNVR 
(Fig.  1b, Table S3). Moreover, with the increase in its 
length (> 500  bp), the number of CNVRs decreases. In 
addition, our results showed that CNVRs were not uni-
formly distributed across the genome, of which ~ 60.53% 
of CNVRs (1,782) were located in the intergenic region, 
only 0.71% in the exon region (Fig. 1d). Moreover, there 
were 11 CNVRs overlapped with the QTLs related to 
immunity, milk and production traits (Table S4).

Selection signature analysis for Simmental cattle based on 
autosomal SNPs
Three statistical methods (Pi, CLR, and iHS) (Table S5-
S7) were applied to explore the positive selection sig-
natures in Simmental cattle. For each method, regions 
showing outlier values (top 1%) were selected as the 
candidate genomic regions (Figure S2a). The positive 
selected genes (PSGs) were identified by at least two 
approaches, and a total of 235 PSGs were identified.

Totally, 53 PSGs were intersected with cattle QTLs 
(containing 476 QTLs) [21], which were associated with 
immunity, meat, milk, production, and reproduction 



Page 3 of 11Sun et al. BMC Genomics          (2023) 24:179 

(Table S8). For example, a region on chromosome 16 con-
taining RERE and its neighboring genes (LOC112441839 
and SLC45A1) was observed with markedly higher val-
ues, falling in 4 QTLs associated with reproduction 
(Figure S2 a&b, Table S8). In addition, another ~ 2.5 Mb 
region on chromosome 7 also showed markedly higher 
values, containing ten genes (ANKHD1, CDC23, CXXC5, 
CYSTM1, FAM13B, KDM3B, LOC101904825, NRG2, 
PSD2, PURA), overlapped with QTLs associated with 
immunity, milk and reproduction in cattle (Figure S2 
a&c, Table S8).

Moreover, KOBAS [22] was used to perform GO and 
KEGG pathway analysis based on the 235 PSGs (Table 
S9-S10). The KEGG pathways resulted in two significantly 
over-represented pathways: cytokine-cytokine recep-
tor interaction (corrected P-Value = 0.0159) and Oocyte 
meiosis (corrected P-Value = 0.0177). A total of 8 genes 
(TNFSF13, TNFSF12, LEPR, IFNAR2, EDAR, CX3CL1, 

GDF15, CCL22) were involved in the cytokine-cytokine 
receptor interaction pathway. Notably, two conserved 
nonsynonymous mutations (rs43347904, g.79,817,216: 
G > A, exon3, p.S6F; rs43347906, g.79,817,216: C > A, 
exon4, p.V35L) were detected within the LEPR gene 
(Fig.  2). LEPR was detected within a QTL related to 
reproduction in cattle [21]. We further investigated the 
frequency of these two mutations across the diverse cat-
tle breeds around the world using the Bovine Genome 
Variation Database and Selective Signatures (BGVD, 
http://animal.nwsuaf.edu.cn/code/index.php/BosVar) 
(Fig. 2c and d). The allele G of rs43347904 showed a high 
frequency in European (0.724) and Eurasian (0.789) cattle 
populations. In Simmental cattle populations, the allele G 
showed a higher frequency of 0.957. It was also observed 
in some Chinese and African cattle breeds with a low 
frequency. The rs43347906 showed a similar pattern, 
and alters the protein structure (Fig.  2e). In addition, 

Fig. 1  (a) Genomic distribution of CNVRs. Green: both, red: deletion, blue: duplication. (b) Frequency of different types of CNVR (c) CNVR length distribu-
tion. (d) Functional classification of the detected CNVRs
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by investigating published literatures, we found a set of 
genes associated with immunity (EGR1, MUC6), and 
muscle development (MEIS1, GDF15) (Table 1).

Identification of candidate genes/CNVRs associated with 
fertility
Sperm motility is one of the major determinants of male 
fertility. According to the sperm motility, the 30 Sim-
mental bulls were divided into two groups: the HSM 
(n = 14) and the PSM group (n = 16). For HSM group, the 
sperm motility of fresh semen and frozen-thawed semen 
were 0.68 ± 0.04, and 0.36 ± 0.02, respectively, while were 
0.32 ± 0.11 and 0.15 ± 0.05 for PSM group, respectively. 
To investigate the group-specific selection between HSM 

Table 1  Summary of Partial Traits Associated with Positively 
Selected Genes
Gene Trait Reference
GDF15 skeletal muscle growth; body 

weight
[47, 48]

LEPR Reproductive Traits [51, 52, 55, 
81, 82]

MUC6 immunity [83, 84]

MEIS1 muscle [85]

EGR1 immunity [86]

Fig. 2  Selection and conservative analysis of LEPR. (a) Selective sweep detected by Tajima’s D and Pi test. (b) conservative analysis of two loci. (c & d) 
Geographical distribution of the two variants (http://animal.nwsuaf.edu.cn/code/index.php/BosVar) (e) 3D protein structure prediction of LEPR
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and PSM groups, we scan for genomic regions from 
genome-wide SNP and CNV datasets, respectively.

Firstly, we used the FST to scan genomic regions with 
extreme allele frequency differentiation between HSM 
and PSM groups using the SNP dataset. Using the top 
1% of FST values, we identified 564 candidate selective 
regions covering 599 genes. To obtain a broad overview 
of the molecular functions of these candidate genes, we 
performed GO and KEGG enrichment analysis using 
KOBAS [22]. We detected three significantly over-rep-
resented (corrected P-value < 0.05) KEGG pathways 
related to the male fertility (insulin secretion (corrected 
P-value = 0.01537), oxytocin signaling pathway (corrected 
P-value = 0.016431), calcium signaling pathway (cor-
rected P-value = 0.02558)) (Table S11). Besides, we iden-
tified 13 significantly over-represented GO terms (Table 
S12), such as potassium ion transmembrane transport, 
stabilization of membrane potential, potassium ion leak 
channel activity, calcium ion binding, etc.

In addition, a comparison of these detected candidate 
regions and known QTLs revealed that these detected 
candidate genes are overlapped with cattle QTLs asso-
ciated with reproduction, production, and health (Table 
S13). Totally, our results showed that there were 290 can-
didate genes were observed to overlap with 2,611 cattle 
QTLs (Table S13). Among these 2,611 cattle QTLs, 284 
QTLs covering 101 genes (such as SERPINE2, AGBL4, 
SORCS1, TMEM181, SPAG16) were associated with 
reproduction traits, such as sperm motility (AGBL4, 
SORCS1, SPAG16), sperm concentration (TMEM181), 
and fertilization rate (SERPINE2).

Moreover, we identified 58 highly differentiated 
CNVRs (top 2% of VST value) between the two groups 
(Fig.  3a) by calculating VST based on the confiden-
tial CNV dataset constructed in this study. Our results 
showed that 26 CNVRs were found to be located in the 
intergenic region, while 21 lay in the intronic region, 
overlapping with 31 genes. Some of these genes (such as 
ARID4A, ALDH8A1, and SPAG16) were involved in the 
male fertility. We detected a significantly differential dele-
tion (chr2:101427468–101,429,883) covering the intronic 
region of SPAG16 gene (Fig.  3b). We used the PCR to 
check the existence of this CNV segment in 30 Simmental 
cattle (Figure S3). The results showed that this region was 
a complete deletion in all the PSM bulls and half of the 
HSM bulls based on the genotyping information, which 
confirmed our observation in the genome sequencing 
analysis. In addition, the SPAG16 was also identified as a 
candidate gene in the FST. Moreover, the expression level 
of SPAG16 in cattle was significantly higher in testis than 
in other tissues (http://animal.nwsuaf.edu.cn/code/index.
php/RGD/loadByGet?address[]=RGD/Items/ExprCattle), 
indicating that SPAG16 may play an important role in the 
male fertility of Simmental cattle (Fig. 3c).

Discussion
As one of the most important and widely distributed 
cattle breeds, Simmental cattle are mainly used for milk 
and beef purposes. In the current study, we detected 
15,154,539 autosomal SNPs in Simmental cattle. Besides, 
we firstly constructed a confidential CNV data set for 
Simmental cattle using different sequencing platforms 
(NGS and long-reads), multi-strategies, and the newly 
reported high-quality genome (ARS-UCD1.2) [20], which 
ensure us to obtain a highly confidential CNV dataset. 
Totally, we detected a total of 2,944 CNVRs for 30 Sim-
mental cattle, which showed a similar level to other the 
cattle breeds [23]. Compared with cattle QTL database, 
there were 11 CNVRs overlapped with QTLs related to 
immunity, milk and production traits [21], indicating that 
CNV may be a critical type of genetic variation, may have 
an important effect on cattle fertility, health, and eco-
nomic traits.

Over the last few decades, strong human driven 
selection contributed immensely to productive traits 
enhancement within the Simmental cattle genome. It 
is worthwhile to identify the candidate gene during the 
domestication, which will accelerate the improvement 
of important traits of cattle in the future. In this study, 
we used three methods (Pi, CLR, and iHS) to improve 
the power of detecting selection signatures [24], and a 
total of 235 PSGs were identified for Simmental cattle. 
To further explore the hereditary effects, the detected 
PSGs were compared with cattle QTLs [21]. A total of 
53 PSGs overlapped with 469 QTLs related to immunity, 
meat, milk, production, and reproduction [21] (Table 
S1, Table S2). Notably, a ~ 2.5  Mb region on chromo-
some 7 containing several genes (ANKHD1, CDC23, 
CXXC5, CYSTM1, FAM13B, KDM3B, LOC101904825, 
NRG2, PSD2, PURA) and another region on chromo-
some 16 containing RERE gene and its neighboring genes 
(LOC112441839 and SLC45A1) showing high values, was 
overlapped with QTLs associated with milk and repro-
duction traits in cattle [21]. Studies showed that CYSTM1 
and NRG2 are significantly related to the gestation length 
[25, 26]. KDM3B, a histone H3 demethylase, plays a 
crucial role in spermatogenesis and normal male sexual 
behavior, which is also identified as a fertility-related 
candidate gene for sheep [27]. CXXC5 and PSD2 were 
involved in the function of fat deposition [28, 29]. The 
RERE has been identified as a candidate gene associated 
with reproductive development [30–32]. The functional 
analysis (KEGG pathway and GO) performed based on 
the 235 PSGs showed that cytokine-cytokine recep-
tor interaction (corrected P-Value = 0.0159) and oocyte 
meiosis (corrected P-Value = 0.0177) were significantly 
over-represented. The oocyte meiosis pathway has been 
reported to be important in reproduction [33, 34]. The 
cytokine-cytokine receptor interaction pathway plays a 
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central role in immunity, which is also related to backfat 
thickness [35], reproduction [34], growth of the animal 
[36], feed conversion ratio in beef cattle [37], beef qual-
ity [38], and meat production [39]. Moreover, previous 
studies indicated that this pathway plays an important 
role in the natural and artificial selection in the process 
of sheep domestication [40, 41]. There are several genes 
(TNFSF12, TNFSF13, IFNAR2, EDAR, CX3CL1, GDF15, 
CCL22, LEPR) involved in cytokine-cytokine receptor 
interaction pathway. TNFSF12 and TNFSF13, belonging 
to the tumor necrosis factor (TNF) ligand superfamily, 
involved in many cellular activities, play an important 
role in the immunological responses in animals [42, 43]. 
CX3CL1, a member of chemokine repertoire, is related 
to immune-related inflammatory diseases in humans [44, 
45]. CCL22 is a cytokine gene, which plays an important 

role in immunity [46]. Tsai et al. showed that GDF15 can 
regulate the appetite and body weight [47], while Gurgul 
et al. identified GDF15 as a candidate gene related to the 
skeletal muscle growth in cattle [48]. LEPR, a member 
of class I cytokine receptor superfamily, encodes leptin 
receptor. Studies have been revealed that leptin acts via 
leptin receptor, regulating the satiety and fat deposition 
[49, 50]. To date, LEPR has been widely reported to be 
related to meat, milk, reproduction, and growth traits in 
cattle [51–55]. We detected two non-synonymous muta-
tions (rs43347904, g.79,817,216: G > A, exon3, p.S6F; 
rs43347906, g.79,817,216: C > A, exon4, p.V35L) within 
the LEPR gene. The two mutations (G of rs43347904, C of 
rs43347906) exhibited a high frequency in European and 
Eurasian cattle population (especially in the Simmental 
breed), while almost absent in African taurine, Indian 

Fig. 3  (a) Manhattan plot for VST (top 2%). (b) Boxplot of normalized copy number of SPAG16. (c) Gene expression of SPAG16 in different cattle tissues 
(http://animal.nwsuaf.edu.cn/code/index.php/RGD)
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and Chinese indicine. In addition, both of these variants 
were also present in some Chinese and African indicine 
breeds with a low frequency, which might be due to the 
hybridization of Bos taurus and Bos indicus. Interestingly, 
our results suggested that these two variants showed sig-
nificantly high frequency in the cattle breed (such as Hol-
stein cattle, Angus cattle, Hanwoo cattle, Mishima cattle, 
etc.) with good economic traits. The G for rs43347904 
and C for rs43347906 were conserved across other mam-
mal sequences (Fig. 2b). Combining the conservation and 
allele distribution pattern of these two variants, we spec-
ulated that these (C of rs43347906 and G of rs43347904) 
alleles originated from Bos taurus and may be related to 
the artificial breeding to improve the economic traits.

Furthermore, we divided the 30 Simmental cattle into 
HSM and PSM groups for selective sweep analysis to 
identify candidate genes/CNVR associated with sperm 
motility using the genome-wide SNP and CNV dataset, 
respectively. The FST was calculated to scan for genomic 
regions with extreme allele frequency differentiation 
between HSM and PSM cattle using the SNP dataset. 
Totally, we identified 599 candidate genes, and the further 
enrichment analysis for these genes showed that insu-
lin secretion, oxytocin signaling pathway, and calcium 
signaling pathway were significantly over-represented. 
Studies showed that insulin plays an important role in 
sperm capacitation and spermatogenesis. Oxytocin can 
stimulate contractions of the reproductive tract to help 
sperm release [56]. In addition, our results showed that 
101 genes (e.g., SERPINE2, AGBL4, SORCS1, TMEM181, 
SPAG16) overlapped with 284 QTLs associated with 
reproduction traits, further demonstrating the impor-
tance of these genes for male fertility. Studies showed 
that SERPINE2 can modulate murine sperm capacitation 
[57, 58]. AGBL4 and SORCS1 were related to the sperm 
motility in Holstein-Friesian bulls [59]. SPAG16 plays an 
important role in spermatogenesis [60, 61]. In addition, 
by calculating the VST, 58 CNVRs overlapping 31 dif-
ferent genes were observed, which were differentiated 
in HSM and PSM groups. Among those genes, some of 
them were related to the male fertility, such as ARID4A, 
ALDH8A1, SPAG16 and ARID4A, a member of ARID 
gene family, act as a transcriptional coactivator for andro-
gen receptor and retinoblastoma, can regulate the male 
fertility and function of sertoli cell [62]. A study reported 
that ARID4A was associated with the semen quality of 
bulls [63]. ALDH8A1 can synthesize retinoic acid which 
plays an important role during spermatogenesis [64, 65]. 
SPAG16, plays an important role in spermatogenesis [60, 
61]. In addition, the expression level of SPAG16 was sig-
nificantly higher in the cattle testis, compared to other 
organs (http://animal.nwsuaf.edu.cn/code/index.php/
RGD). Notably, a differential deletion (chr2:101427468–
101,429,883) was detected following the intronic region 

of SPAG16 gene, which was mainly observed in bulls of 
the PSM group. Meantime, half of the HSM bulls showed 
a loss of heterozygosity. Moreover, the SPAG16 was also 
identified as a candidate gene associated with reproduc-
tion by FST. Therefore, we speculated that SPAG16 plays a 
crucial role in the male fertility.

Conclusions
In the current study, we performed a comprehensive 
analysis to explore the genetic variations (SNPs and 
CNVs) in Simmental cattle. We identified a set of can-
didate genes associated with reproduction, immunity, 
milk, and muscle development. In addition, we obtained 
a confidential CNV dataset and sperm-motility-related 
CNVRs genes for Simmental cattle using the high-
coverage next-generation re-sequencing and long read 
sequencing. We admitted that this CNV dataset we 
constructed is not fully complete due to the strict filter-
ing standards, and limited sample. In future research, 
combining various sequencing platforms and improved 
detection methods, we may obtain an infinitely close to 
complete dataset.

Methods
Sample collection and genomic sequencing
The frozen semen of 30 Simmental cattle were obtained 
from Gansu Livestock Breeding Center (Gansu Province, 
China), which can be divided into high sperm motility 
(HSM) (n = 14) and poor sperm motility (PSM) (n = 16) 
based on sperm motility. The sperm motility of fresh 
semen and frozen-thawed semen were calculated using 
Minitube Sperm Vision for each individual with at least 
five ejaculations (CASA SpermVision®, Minitube, Ger-
many). The genomic DNA was extracted using a standard 
phenol-chloroform protocol [66]. High-quality DNA was 
processed to construct the short-insert (500 bp) genomic 
libraries on BGISEQ-500 for genome sequencing (BGI 
Biotech Co. Ltd, Beijing, China). In addition, one out of 
30 bulls was randomly selected for single-molecule long-
read sequencing by Nanopore PromethION Platform 
(Nextomics Biosciences Co., Ltd, Wuhan, China).

Alignments and variant identification
The cleaned reads of 30 bulls were aligned to the latest 
high quality reference genome (ARS-UCD1.2) [20] using 
BWA-MEM with default settings [67]. Duplicate reads 
were filtered using Picard (v2.5.0). The single nucleotide 
polymorphisms (SNPs) were detected with the Genome 
Analysis Toolkit (GATK, version 3.8) [68]. All SNPs were 
filtered using the “VariantFiltration” implemented in 
GATK with the standards used in the previous studies 
[69]. In addition, the Nanopore long reads were mapped 
to the cattle genome (ARS-UCD1.2) using minimap2 
with default settings [70].

http://animal.nwsuaf.edu.cn/code/index.php/RGD
http://animal.nwsuaf.edu.cn/code/index.php/RGD
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Genome-wide selective sweep tests
The positive genomic regions in Simmental bulls were 
estimated using three statistical methods, including 
nucleotide diversity (Pi), integrated Haplotype Score 
(iHS) and composite likelihood ratio (CLR). The Pi was 
calculated with 50  kb sliding windows and 20  kb steps 
along the autosomes using the vcftools. The iHS based on 
the phased genotype data was performed using selscan 
v1.1, and score was normalized with the norm module 
with 50 kb windows and 20 kb increments [71]. The CLR 
was calculated by SweepFinder2 with each 50-kb window 
across each chromosome [72]. The KOBAS (http://kobas.
cbi.pku.edu.cn/) [22] was used to gain a better under-
standing of the biological functions and involved path-
ways. The 3D structures of LEPR was predicted using 
I-TASSER (https://zhanglab.ccmb.med.umich.edu/I-
TASSER/)[73], which were visualized using UCSF Chi-
mera [74].

CNV identification
Sniffles (Version: 1.0.10) was used to detect structure 
variation (SV) based on the Nanopore long reads with 
default parameter [75]. SV analysis outputs were filtered 
with the following three steps: (1) ambiguous breakpoints 
(flag: IMPRECISE) and low-quality SV were removed; 
(2) SVs shorter than 50  bp were removed; (3) SVs with 
less than four supporting reads were removed. Lumpy (v 
0.2.13) was performed for each sample to detect the read-
pair and split-read profile CNV call set using the lumpy-
express module with default parameters [76]. CNVnator 
was used to annotate the copy number [77]. The CNVs 
were identified as the same type by the three methods to 
ensure confidence. After considering the intersections 
between the results of Sniffles, LUMPY and CNVnator, 
only CNVRs supported by at least two animals were kept 
(Table S1).

Detection of candidate genes/CNVRs associated with 
fertility
The FST was used to scan genomic regions with extreme 
allele frequency differentiation between HSM and PSM 
groups using the SNP dataset with 50 kb sliding windows 
and 20 kb steps along the autosomes by vcftools (0.1.16) 
[78]. A custom script was used to calculate the VST using 
the identified CNVR data set [79]. The formula is VST = 
(VT - VS)/VT, where VT represents the variance appar-
ent among all unrelated individuals, and VS represents 
the average variance within each population, weighted 
for population size. The top 2% VST were considered to 
have a significant difference in copy number between the 
fertile group and sub-fertile group.

Validation of a deletion within SPAG16 by PCR
The deletion at SPAG16 (chr2:101,427,468 − 101,429,88
3) was verified with primers F: 5’-CATGAGGATCAGT-
GCTGCTG-3’ and R: 5’-GGCACTTCCTTGATC-
CACACA − 3’. The polymerase chain reaction (PCR) 
system contained 12.5 µL of 2× EasyTaq PCR SuperMix 
Polymerase (TransGen Biotech, Beijing, China), 50 ng of 
genomic DNA, 1 µL of each primer (0.1 µmol/µL), and 
then adding distilled water to a total volume of 25 µL. 
The amplification conditions were pre-denaturation at 
94 °C for 5 min, followed by 34 cycles of denaturation at 
94 °C for 30 s, annealing for 30 s, 72 °C extension for 30 s, 
and a final extension at 72 °C for 5 min. The PCR prod-
ucts were detected by gel electrophoresis and visualized 
under UV illumination (Ge1Doc-It TS Imaging System, 
Upland, CA, USA).

Functional annotation
In order to explore the biological function and pathway 
of the identified positive selected genes and CNVR genes, 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway and Gene Ontology (GO) were performed 
using KOBAS with a significant threshold for corrected 
P-value < 0.05 [22]. The cattle quantitative trait loci 
(QTLs) data were obtained from Animal QTLdb [21]. All 
QTL data were filtered with P ≤ 0.05. To further explore 
the hereditary effects, the positive selected genes and 
CNVRs were compared with cattle QTLs using Bedtools 
with the parameters: -a -b -r -wa -wb [80].
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