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Introduction
Soil salinization has become one of the major environ-
mental and socioeconomic issues globally, and climate 
change influences the dynamics of naturally occurring 
soil salinization [1]. Cultivating marginal lands or long-
term irrigation, which leads to the accumulation of salt, 
will expose crops to adverse conditions, thus reducing the 
yield of agriculturally and economically important plants 
[2]. New varieties of current crops or new crops are 
therefore needed to sustain agriculture in many regions 
of the world. In addition to regulating the expression of 
specific genes in plants, the transfer of one or more genes 
between species is also promising [3–5]. Identification 
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Abstract
Background Eutrema salsugineum (2n = 14), a halophyte in the family Brassicaceae, is an attractive model to study 
abiotic stress tolerance in plants. Two versions of E. salsugineum genomes that previously reported were based on 
relatively short reads; thus, the repetitive regions were difficult to characterize.

Results We report the sequencing and assembly of the E. salsugineum (Shandong accession) genome using long-
read sequencing and chromosome conformation capture data. We generated Oxford Nanopore long reads at 
high depth (> 60X) of genome coverage with additional short reads for error correction. The new assembly has a 
total size of 295.5 Mb with 52.8% repetitive sequences, and the karyotype of E. salsugineum is consistent with the 
ancestral translocation Proto-Calepineae Karyotype structure in both order and orientation. Compared with previous 
assemblies, this assembly has higher contiguity, especially in the centromere region. Based on this new assembly, we 
predicted 25,399 protein-coding genes and identified the positively selected genes associated with salt and drought 
stress responses.

Conclusion The new genome assembly will provide a valuable resource for future genomic studies and facilitate 
comparative genomic analysis with other plants.
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of genetic elements underlying adaptation to salinity in 
species that exhibit natural tolerance can provide crucial 
insights into mechanisms that confer high levels of salt 
tolerance.

Eutrema salsugineum, previously named Thellungi-
ella salsuginea [6], is an attractive model to study the 
mechanisms of abiotic stress tolerance in plants [7, 8]. As 
an extremophile plant, E. salsugineum can survive after 
exposure to extreme salinity (500  mm NaCl) or cold to 
− 15 °C and reproduce normally [9]. Being closely related 
to the model plant Arabidopsis thaliana, E. salsugineum 
shares many beneficial attributes, such as small size, self-
fertility, short life cycle, small genome size and genetic 
transformation [10, 11]. Previous studies have generated 
two versions of genome assemblies for the best-studied 
Shandong ecotype using Illumina and Sanger sequenc-
ing respectively [12, 13]. However, short-read sequencing 
technologies often yield incomplete and highly frag-
mented genome assemblies, especially for plant genomes 
that are featured by abundant genomic repeats and 
whole-genome duplications [14]. Although both assem-
blies assigned the assembled scaffold to seven pseu-
domolecules based on the chromosomal comparative 
painting (CCP)-derived karyotype [15], they are quite 
fragmented, especially in the centromere region. Thus, 
the de novo assembly of a new reference genome for E. 
salsugineum using long reads is imperative. Recently, 
commercialized long-read technologies (Pacific Biosci-
ences and Oxford Nanopore) can sequence long DNA 
fragments (> 15 kilobases on average) and hold great 
promise for producing high-quality genomes in terms 
of contiguity and completeness of repetitive regions [16, 
17]. Combining these methods with additional scaffold-
ing, such as optical mapping and chromosome confor-
mation capture (Hi-C), has been successful in achieving 
chromosome-level assemblies for several plant genomes 
[18–23].

In the present study, we report an improved, highly 
contiguous reference genome assembly of E. salsug-
ineum ecotype Shandong (hereafter EsaV3) by combining 
Oxford Nanopore long-read sequencing and Hi-C tech-
nology. We compared this new assembly with previous 
versions, analyzed expanded/contracted gene families 
and identified positively selected genes.

Results
Genome sequencing, de novo assembly, and annotation
We estimated the genome size to be 258  Mb by k-mer 
analysis (Supplementary Fig.  1). To assemble the E. sal-
sugineum (Shandong ecotype) genome, we employed 
a strategy that combined Oxford Nanopore long-read 
sequencing and Hi-C scaffolding, with high-coverage 
Illumina reads for error correction.

We generated a total of 19.40 Gb of long-read sequenc-
ing data for E. salsugineum (Shandong ecotype) with four 
flow cells by Oxford Nanopore Technologies (ONT). 
After quality control, 17.57 Gb clean reads (~ 63× genome 
coverage) were retained and had an average length of 
19.69 kb, an N50 of 28.36 kb and the longest read being 
176.7  kb (Supplementary Table  1). Our initial assembly 
of the long read data by Canu [24] software resulted in 
297.1  Mb of sequences within 1,244 contigs that were 
longer than 1  kb (Supplementary Table  2). Of these, 16 
contigs showed extraordinarily high GC content (> 0.6) 
and were thus removed from further analysis (Supple-
mentary Fig.  2). To correct assembly errors induced by 
long-read sequencing data, we also generated Illumina 
short reads (18.06 Gb, ~ 65× coverage) for the same 
individual. After two rounds of Pilon [25] correction, 
the final contig assembly had an N50 of 3.1 Mb and the 
longest sequence being more than 17  Mb (Supplemen-
tary Table  2). Finally, we mapped the Hi-C data (39.51 
Gb, 141× coverage) onto the assembled contigs with the 
modified 3D-DNA [26] and Juicebox Assembly Tools 
(JBAT) [27] workflow, which split the input contigs into 
1,479 (sub)contigs and clustered 617 of them into seven 
chromosome-scale superscaffolds with a total length of 
265.7 Mb (Fig. 1a,b).

Additionally, we evaluated the quality of the genome 
assembly using high-quality short reads and near-uni-
versal single-copy orthologs. We found that 96.1% of 
the short reads could be reliably aligned to the genome 
assembly, with 88.6% being properly aligned to the 
genome with their mates. Benchmarking Universal Sin-
gle-Copy Orthologs (BUSCO) [28] analysis showed that 
99.1% of conserved BUSCO proteins were detected in 
the E. salsugineum assembly, including 0.2% of frag-
ment BUSCO proteins (Supplementary Table  4). We 
also used Merqury [29] software to evaluate the con-
sensus quality (QV) value and the completeness of the 
assembled genome. Higher QV indicates a more accurate 
consistency, where Q30 indicates 99.99% accuracy and 
Q40 indicates 99.99% accuracy. The assembly of E. sal-
sugineum has a QV score of 31.35 and completeness of 
97.3%, indicating the assembled genome has a high base 
accuracy.

Comparison of three versions of E. salsugineum genomes
Compared with previous assemblies based on Illumina 
(EsaV1) and Sanger (EsaV2) methods, our novel EsaV3 
captured more sequences and showed less fragmenta-
tion, as indicated by the number and N50 length of con-
tigs, improving sequence contiguity by 102- and 14-fold, 
respectively. Our assembly EsaV3 is larger than both pre-
vious genome versions (231.89 Mb and 243 Mb, respec-
tively; Table 1). The contig N50 value of the new assembly, 
obtained by combining Nanopore long reads and Hi-C 
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data, is 3.05 Mb, which is ~ 102-fold and ~ 14-fold greater 
than the corresponding values for EsaV1 and EsaV2 
(0.03  kb and 0.22  kb, respectively; Table  1). Moreover, 
the scaffold N50 value of our EsaV3 is 36.82 Mb, which 
is better than those of previous assemblies (0.40 Mb and 
13.44  Mb, respectively; Table  1). Compared with EsaV1 
and EsaV2, the integrity and continuity of the novel 
assembled genome are significantly improved, and the 
annotated gene structure is more complete.

We performed whole-genome alignment of three 
genome assemblies of E. salsugineum using LAST [30] 
alignment software. The dot plot reveals that the EsaV1 
genome has a one-to-one correspondence with the pseu-
dochromosomes of our EsaV3 assembly, thus confirm-
ing the results from comparative chromosome painting 
(Fig. 2a). Furthermore, the centromere regions are more 
complete in EsaV3 than in EsaV1, which explains why 
the assembled genome size of EsaV3 is larger than that of 
EsaV1. Although the genome of EsaV2 is fragmented, we 

recovered corresponding relationships between scaffolds 
and chromosomes in EsaV3 (Fig. 2b,c).

We performed whole-genome synteny alignment of 
gene pairs for the protein sequences of the current refer-
ence genome of E. salsugineum (EsaV2) and our assembly 
(Supplementary Fig. 4). Although the genes annotated in 
EsaV2 have good correspondence in our EsaV3 assem-
bly, gaps near the centromere region exist in the EsaV2 
assembly compared with EsaV3. In addition, we found 
that the gene structure annotated in our EsaV3 was more 
complete than that in EsaV2 (Supplementary Figs. 5 and 
6).

LTR insertion
Repetitive regions spanning ~ 156.1  Mb (52.83% of 
the assembly size) in our EsaV3 genome were identi-
fied using a combination of homology-based and de 
novo approaches (Supplementary Table  5). Long termi-
nal repeat (LTR) retrotransposons are the most abun-
dant repetitive elements in our novel assembly, which 

Fig. 1 Hi-C assisted assembly of EsaV3 pseudochromosomes. a. Hi-C chromatin interaction heatmap for the 7 pseudochromosomes of the E. salsug-
ineum genome at a resolution of 200 kb. (b) Genome structure of E. salsugineum. The 22 ancestral genomic blocks are indicated by capital letters (A-X) 
and are colored based on their position in the eight chromosomes of the Ancestral Crucifer Karyotype (ACK). (c) The landscape of the genome assembly 
and annotation of EsaV3. Tracks from inside to the outside correspond to a, GC content; b, Copia density; c, Gypsy density; d, gene density; and e, seven 
pseudochromosomes
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is mainly composed of Gypsy-LTRs and Copia-LTRs, 
accounting for 14.20% and 5.82% of the genome, respec-
tively (Supplementary Table 6). We also used the Circos 
[31] tool (http://www.circos.ca) to visualize the GC con-
tent, Copia density, Gypsy density and gene density of 
each chromosome. The density of Copia was high in the 
centromeric region of the genome (Fig. 1c).

To further analyze the evolutionary dynamic history 
of LTR retrotransposons in the genome, we estimated 
the insertion time of the intact LTR-RTs in three closely 
related species of the family Brassicaceae (A. thaliana 
[32], Eutrema heterophyllum [33] and E. salsugineum) 
((Fig. 3d and Supplementary Table 6). We also estimated 
the time of insertion for LTR/Gypsy, LTR/Copia, and 
unknown LTR-RTs (Supplemental Fig.  9). As both E. 
heterophyllum and E. salsugineum experienced a recent 
burst of LTR retrotransposon amplification, we con-
structed the phylogenetic trees of LTR/Copia and LTR/
Gypsy based on the RT domains of LTR-RTs between 
E. heterophyllum and E. salsugineum to compare the 

species-specific LTR-RTs by Tesorter [34] (Fig.  3d and 
Supplementary Fig.  8). The results showed that most 
clades of LTR/Gypsy and LTR/Copia have more mem-
bers in E. salsugineum than in E. heterophyllum (Supple-
mental Table  7). Furthermore, the Galaderiel family of 
LTR/Gypsy and the Angela family of LTR/Copia are only 
found in E. salsugineum. Comparison of specific and 
non-specific LTR-RTs between E. salsugineum and E. het-
erophyllum revealed that both specific and non-specific 
LTR-RTs have expanded in the E. salsugineum genome, 
especially species-specific LTR-RTs (Supplemental 
Table  8). These results suggest that the dramatic LTR 
insertion is responsible for the relatively large genome of 
E. salsugineum (295 Mb) [35].

Previous studies have also shown that transposons may 
play a role in adaptive evolution [36]. We searched for 
genes near the location of the recent LTR insertion in E. 
salsugineum and performed GO enrichment analysis of 
these genes. The results show that they are significantly 
enriched in DNA integration and enzyme activities (Sup-
plementary Tables 11 and 12; Supplementary Fig. 10).

Gene prediction and annotation
Using a combination of homologous protein align-
ment, de novo prediction, and transcript mapping, we 
predicted 25,399 protein-encoding genes in the EsaV3 
genome, with an average sequence length of 2,559  bp. 
The average gene length of EsaV3 (2,559  bp) is greater 
than that of EsaV1 (2,041 bp) and EsaV2 (2,209 bp). The 
protein-encoding genes have 5.37 exons, and each exon 
is 295 bp long on average (Supplementary Table 10). The 
gene length distribution was similar between the three 
genome assemblies (Supplementary Fig.  7). Moreover, 
through cluster analysis of three versions of E. salsug-
ineum genomes, a total of 1,153 newly annotated genes, 
including ARF1 [37], RPP2D [38], ARA12 [39] and RLP12 
[40], were identified in our E. salsugineum genome, 
which was mainly related to transmembrane transport or 
salt stress. The newly annotated genes have a high den-
sity in the distal end of the chromosomes (Supplemen-
tary Fig. 11). The GO enrichment results show that these 
genes are mainly related to toxin catabolic processes and 
DNA integration (Supplementary Tables 11 and Supple-
mentary Fig. 13).

We annotated genes based on homology for 74.11% and 
96.04% of the genes in the Swiss-Prot [41] and TrEMBL 
[42] databases, respectively. In addition, approximately 
78.89%, 70.72%, and 40.10% of the protein-encoding 
genes were successfully annotated by using the InterPro 
[43], Gene Ontology (GO) [44] and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) [45] pathway databases, 
respectively. Overall, 24,448 of the 25,399 protein-coding 
genes (96.26%) were assigned functional annotations in 
the EsaV3 genome (Supplementary Table 14).

Table 1  A comparison of the three E. salsugineum genome 
assemblies
Assembly 
feature

EsaV1
(NCBI_TsV2-8)

EsaV2
(Phytozome_173_v1)

EsaV3
(This 
study)

Assembly 
length

231.9 Mb 243.1 Mb 295.5 Mb

Total 
ungapped 
length

208.9 Mb 238.4 Mb 295.1 Mb

Percentage 
of gaps

9.92% 1.93% 0.14%

BUSCO 
score for 
assembly

97.4% 99.2% 99.1%

Number of 
scaffolds

2663 638 655

Scaffold N50 0.40 Mb 13.44 Mb 36.82 Mb

Scaffold L50 117 8 4

Number of 
contigs

28,682 3,658 1,479

Contig N50 0.03 Mb 0.22 Mb 3.05 Mb

Contig L50 1,496 311 29

Predicted 
gene 
models

28,457 26,351 25,399

BUSCO 
score for
predicted 
gene 
models

95.8% 99.1% 97.2%

Total exon 149,079 137,652 136,411

Exons per 
gene

5.23 5.22 5.37

Mean gene 
length

2,041 bp 2,209 bp 2,559 bp

http://www.circos.ca
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Phylogenetic relationships and WGD analyses
We clustered the annotated E. salsugineum genes into 
gene families with those of A. thaliana [32], Aethionema 
arabicum [46], Capsella rubella [47], Brassica rapa 
[48], Schrenkiella parvula [49], Isatis indigotica [50], 
Raphanus raphanistrum [51], E. heterophyllum [33], and 
Eutrema yunnanense [33] by OrthoFinder [52] with A. 
arabicum [46] as the outgroup. The most recent common 
ancestor (MRCA) of the 10 species contained 25,500 
gene families and 2,355 single-copy orthologous genes 
(Fig. 3c). These single-copy orthologous genes among ten 
species were selected to build a phylogenetic tree using 
the maximum likelihood method. We used MCMCTree 
[53] with fossil calibration to estimate species divergence 
times. Phylogenetic analysis indicates that E. salsugineum 
is most closely related to E. heterophyllum-E. yunna-
nense branch and belongs to tribe Eutremeae in Lineage 

II [54, 55]of Brassicaceae. The estimated divergence time 
between E. salsugineum and E. heterophyllum-E. yunna-
nense branch is estimated to have occurred 12.33 million 
years ago (Mya) (Fig. 3a).

The occurrence of whole-genome duplication (WGD) 
or polyploidization provides the original genetic material 
for biological evolution and promotes biological evolu-
tion to a large extent [56]. We used synonymous substitu-
tion rates (Ks) between paralogous gene pairs to identify 
potential WGD events. The distribution of Ks between 
syntenic blocks suggested that E. salsugineum experi-
enced a recent WGD event with a peak value between 0.7 
and 0.9, corresponding to the At-α WGD event shared 
by all Brassicaceae species [57]. An independent WGD 
event was identified for B. rapa with a peak value of 
approximately 0.3, previously reported [58–60] as a Bras-
siceae-specific triplication (Br-α-WGD) (Supplementary 

Fig. 2 Synteny comparative analysis in threeE. salsugineumgenome assemblies. a Genome-wide dot plot for EsaV1 and EsaV3. b Genome-wide 
dot plot for EsaV2 and EsaV3. c An example of a region comparison in three E. salsugineum genome assemblies. Two of the newly annotated genes in our 
EsaV3 assembly compared with EsaV1 and EsaV2.
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Fig.  14). Therefore, E. salsugineum did not experience 
an independent WGD event after it diverged from other 
species, and the collinearity within the E. salsugineum 
genome corresponded to the At-α WGD event (Fig. 1b).

Gene family and positively selected gene analyses
Furthermore, we identified the expanded and contracted 
gene families in our newly assembled E. salsugineum 
using CAFÉ [61] (Supplementary Tables 15 and Fig. 3b). 
We performed GO enrichment analysis of the expanded 
gene families, and the results showed that they were sig-
nificantly enriched in toxin catabolic process, salt stress 
response, drought stress response, and signaling path-
ways involved in salicylic acid and gibberellin-mediated 
signaling (p < 0.05) (Fig.  3e; Supplementary Table  16). 
These gene families may be related to the environmental 
adaptation of E. salsugineum. We also identified 13 posi-
tively selected genes from the E. salsugineum genome 
(Supplementary Table 17). These genes are mainly related 
to ubiquitination cell growth or the salt stress path-
way (Supplementary Tables  18 and 19; Supplementary 

Fig.  15). For example, TOR1L5 is mainly involved in 
microtubule binding, PUB3 acts as an E3 ubiquitin ligase, 
and the VIP3 gene is involved in histone modification 
and flowering time regulation (Supplementary Table 17).

Karyotype analysis
Karyotypes can be used to understand the relationship 
between chromosome changes and plant phylogeny. 
Schranz et al. used comparative chromosome paint-
ing (CCP) techniques to construct the ancestral karyo-
type (AK) model based on the A. thaliana genome [62, 
63]. Most Brassicaceae species evolved from the ances-
tral Crucifer karyotype (ACK) [64] structure based on 
the improvement of the AK model, which consists of 8 
chromosomes and 24 conserved genomic blocks (GBs, 
marked from A to X). These GBs were further updated 
to 22 GBs by merging K and L into K-L and M and N into 
M-N based on the A. thaliana genome [65] (Supplemen-
tary Table 20).

However, among six tribes (Calepineae, Coluteo-
carpeae, Conringieae, Eutremeae, Isatideae, and 

Fig. 3 Evolutionary and comparative genomic analyses of the newly assembledE. salsugineumgenome. a Phylogenetic relationships and diver-
gence times of E. salsugineum and nine other Brassicaceae species with A. arabicum as the outgroup. The blue pentagram represents the At-α WGD event 
shared by all Brassicaceae species, and the yellow circle represents a Brassicae-specific triplication. The estimated divergence times (million years ago, 
Mya) are indicated at each node of the phylogenetic tree. b Expansions and contractions of gene families. The colors in light pink and dark blue indicate 
the expanded and contracted gene families, respectively. c Clusters of orthologous and paralogous gene families in E. salsugineum and nine more fully 
sequenced plant genomes. Gene families were identified using the OrthoFinder package with the default parameters. d Estimated insertion times of 
LTR retrotransposons within A. thaliana, E. heterophyllum, and E. salsugineum. e GO enrichment analysis bubble plot of significantly expanded genes in E. 
salsugineum
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Sisymbrieae; n = 7) of expanded Lineage II of the fam-
ily Brassicaceae, there are new GBs connections and 
chromosomal translocations on two AK chromosomes 
(Proto-Calepineae Karyotype, PCK; n = 7) [15, 62, 65–67]. 
Although three tribes (Calepineae, Coluteocarpeae and 
Conringieae) retain the PCK structure, there is an addi-
tional whole-arm translocation in the genomic struc-
ture of Eutremeae, Isatideae and Sisymbrieae, which is 
called ancestral translocation Proto-Calepineae Karyo-
type (tPCK; n = 7) [15, 65, 67]. At present, three ancestral 
karyotypes of Brassicaceae (ACK, PCK and tPCK) have 
been determined and used for chromosome structure 
analysis through a series of experiments and studies. 
ACK was considered to be the oldest among the three 
karyotypes, and PCK and tPCK may have evolved from 
ACK (Supplementary Fig. 16).

Because E. salsugineum belongs to the tribe Eutremeae, 
we chose tPCK as a reference structure in karyotype 
analysis. Using LAST [30] and MCScanX [68] software, 
we constructed a genome-wide dot plot between E. 
salsugineum and A. thaliana and compared the seven 
pseudochromosomes of E. salsugineum with the A. thali-
ana genome to identify syntenic relationships (Supple-
mentary Fig.  17). Then, we constructed and visualized 
the order and orientation of the updated 22 GBs along 
the seven pseudochromosomes of the E. salsugineum 
genome (Fig. 1b). We found that the genome of E. salsug-
ineum has good collinearity in each GB compared with 
the A. thaliana genome and is consistent with the tPCK 
structure in both order and orientation (Supplementary 
Fig. 14). Therefore, the E. salsugineum karyotype is very 
conservative.

Discussion
The availability of high-quality reference genome 
sequences has been essential in evolutionary biology, 
genetics, and biodiversity conservation. Combining data 
from the Hi-C, Nanopore, and Illumina platforms to 
guide genome sequence assemblies has proven to be an 
effective method to improve assembly quality. Recently, 
several high-quality assemblies of reference genomes 
were generated through the integration of long reads and 
Hi-C data [21, 22, 69]. The long reads lead to low frag-
mentation in the repeat-rich region. Therefore, this inte-
grated genome assembly method yielded a significantly 
improved E. salsugineum reference genome in the form 
of a smaller subset of molecules ordered and oriented 
into seven chromosome-scale pseudomolecules.

In recent years, revolutionary advances in DNA 
sequencing technologies have dramatically accelerated 
plant genome research [23, 70–73]. However, genome 
assemblies obtained solely from assembling short reads 
obtained by shotgun sequencing remain in a ‘draft’ 
stage characterized by unordered contigs or scaffolds of 

variable and often poor quality in repeat-rich regions. A 
reference-quality genome sequence is essential for vari-
ant identification [74] and facilitates revealing plant-
specific traits [69, 75]. Assisted by the Nanopore long 
read and the Hi-C data, the quality of the previously 
sequenced E. salsugineum genome [12, 13] was greatly 
improved, especially in the repeat-rich regions. Although 
the pseudomolecules consist of a small number of large 
scaffolds, they represent the majority of the genome data 
and cover 97.5% of all annotated genes. Pseudomolecules 
provide information on the distribution of DNA elements 
along genomic regions, such as transposable elements, 
tandem repeats, and functional genes. Furthermore, 
karyotype analysis of E. salsugineum not only suggested 
that the chromosome structure of this species was very 
conservative and consistent with the tPCK structure with 
respect to both order and orientation but also confirmed 
that there was no independent whole-genome duplica-
tion event for E. salsugineum after its split from other 
species.

Compared with two previous genome assemblies, this 
new assembly has great improvements in genome size 
(295.5 Mb), contig N50 size (3.05 Mb) and scaffold N50 
size (36.82  Mb). Our EsaV3 assembly captured more 
sequences and showed less fragmentation than both 
previous genome versions. This genome contains more 
transposable elements (156.1 Mb; 52.83% vs. 51.78% and 
51.40%), and the LTR is the major contributor, compris-
ing 22.08% of the total genome size. We further found 
that there was an obvious LTR insertion recently occur-
ring in the E. salsugineum genome, and the genes near 
the location of recent LTR insertion were significantly 
enriched in DNA integration and enzyme activities. The 
number of annotated gene models in our assembly were 
comparable to two previous versions, and the differences 
between them might be due to the lower fragmented 
genes with higher mean gene length and exons per gene 
in our assembly (Table  1) [76]. The improved assem-
bly also enable us to discover features such as improved 
gene prediction, complete catalog of repeats, improved 
reconstruction of karyotype, and better understanding of 
genome evolution and structure.

Conclusions
We assembled a new high-quality genome for E. salsug-
ineum based on Nanopore long reads and chromosome 
conformation capture data. This new assembly is more 
contiguous in complex regions, providing a valuable 
foundation for comparative genomic studies and serving 
as a new reference for the functional analysis of plant abi-
otic stress tolerance in plants.
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Materials and methods
Plant materials, DNA extraction and genome sequencing
Seeds of E. salsugineum were collected in the Yellow 
River Delta area, Shandong province, China (37°26′ N, 
118°04′ E) and germinated in the greenhouse. It is permit-
ted to collect some plant samples for scientifc researches 
based on Regulations on the Protection of Wild Plants of 
the People’s Re- public of China. E. salsugineum used in 
our study was identified by Prof. Ihsan A. Al-Shehbaz and 
Guoqian Hao according to the morphological character-
istics and the voucher specimen was deposited in Her-
barium of Sichuan University (Ljq-hao14-E07_SZ) [77].

We extracted high-quality genomic DNA from fresh 
young leaves of a 4-week-old soil-grown E. salsugineum 
(Shandong ecotype) plant cultivated in the greenhouse 
using the cetyltrimethylammonium bromide (CTAB) 
method [78].

For Oxford Nanopore long-read sequencing, we con-
structed DNA libraries and sequenced the reads using 
a Nanopore GridION X5 sequencer. Then, we removed 
sequencing adapters and filtered reads with low quality 
and short lengths. This yielded a total of 19.40 Gb of data 
and 17.57 Gb of clean sequencing data with an N50 of 
28.4 kb (Supplementary Table 2). For Illumina sequenc-
ing, we prepared a paired-end library with insert sizes 
of 500  bp and subsequently sequenced the reads on an 
Illumina HiSeqX-Ten platform for error correction and 
K-mer analysis. This generated 18.06 Gb of clean Illu-
mina data (Supplementary Table 2).

Genome assembly and pseudochromosome construction
For genome assembly, we first used Canu [24] to inde-
pendently assemble the high-quality Nanopore subreads 
and yielded 297.1 Mb assemblies, with contig N50 values 
of 3.1 Mb and a contig number of 1,244. Then, we found 
that 16 contigs showed extraordinarily high GC content 
(> 0.6) (Supplementary Fig. 2). We removed the polluted 
area and corrected the assembled contigs in the Nano-
pore reads by using paired-end Illumina short reads by 
Pilon v.1.13 [25]. Finally, we obtained a 295.1 Mb genome 
assembly with a contig N50 of 3.1 Mb. The genome con-
tained 1,228 contigs, and the longest contig was 17.44 Mb 
with 37.56% GC content. These contigs were further 
anchored to chromosomes by the Hi-C technique.

We ground ~ 3  g of fresh young leaves of the same E. 
salsugineum accession into powder in liquid nitrogen for 
Hi-C experiments and constructed a Hi-C library fol-
lowing Louwers et al [79]. We first fixed the leaves with 
formaldehyde and digested the cross-linked DNAs with 
Dpn II. After DNA ligation, purification, and fragmen-
tation, the raw reads were generated by the Illumina 
HiSeqX Ten platform. After quality control using fastp 
v0.12.648, we obtained a total of 39.51 Gb of clean reads 
for Hi-C analyses.

We first performed a preassembly by splitting contigs 
into segments of 150  kb on average and mapping the 
Hi-C data to the contigs using bowtie2 v.2.3.2 [80] with 
the parameters “--very -sensitive -L 30” to correct contig 
errors. Scaffolding of the draft assembly with Hi-C data 
was performed with the 3D-DNA pipeline [26]. Briefly, 
clean Hi-C reads were mapped to the assembly and then 
a candidate chromosome-length assembly was generated 
by the pipeline after correcting for misjoins, ordering, 
orienting, and anchoring contigs from the draft assembly. 
The 3D-DNA pipeline was run with the following param-
eters: --editor-repeat-coverage 10. Then, we clustered 
and reordered the corrected scaffolds into pseudochro-
mosomes. We finally adjusted the order and direction of 
the scaffolds on the pseudochromosomes by visualizing 
their interactions in the Hi-C heatmap with a resolu-
tion set at 200 kb in the Juicebox Assembly Tools (JBAT) 
[27]. To evaluate the completeness and quality of the final 
assembled genome, we applied a BUSCO v.5.2.2 [28] test 
using gene content from the Embryophyta_odb10 data-
base. To further evaluate the consensus quality value 
and the completeness of the assembled genome, we used 
Merqury [29] software by preparing meryl dbs and con-
ducting overall assembly evaluation.

Repeat annotation
We employed a strategy that combined homology align-
ment and de novo searches to identify repetitive ele-
ments. The RepeatModeler v.1.0.11 [81] with RECON 
and RepeatScout were used to predict de novo transpos-
able elements (TEs). Following this, the RepeatMasker 
v.4.0.7 [82] was then used to annotate repeats with the 
ab initio repeat database and Repbase (20.05). Finally, We 
combined the identified repeats as the final annotated 
results.

We used LTRharvest v1.5.10 [83] (parameters: -similar 
90 -vic 10 -seed 20 -seqids yes -minlenltr 100 -maxlenltr 
7000 -mintsd 4 -maxtsd 6 -motif TGCA -motifmis 1) and 
LTR_Finder v1.06 [84] (parameters: -D 15,000 -d 1000 -L 
7000 -l 100 -p 20 -C -M 0.9) to identify candidate LTR-
RTs. We used LTR_retriever v1.9 [85] software to inte-
grate previous results of LTR_Finder and LTRharvest and 
filter out the false positive LTR-RTs. Then, we estimated 
the insertion times of LTR-RTs in three related Brassica-
ceae species (A. thaliana, E. heterophyllum and E. salsug-
ineum) based on T = K/2r (K: divergence rate; r: neutral 
mutation rate, 7 × 10–9/site/year).

Gene prediction and functional annotation
To improve the accuracy of annotation as much as 
possible, we combined transcriptome-based, homol-
ogy-based, and de novo predictions to predict the pro-
tein-coding genes of the E. salsugineum genome. During 
the transcriptome-based prediction, we downloaded the 
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previously published RNA-Seq data of this species (Bio-
Project: PRJNA483528) from the NCBI SRA database 
[86] and further assembled the reads into transcripts 
using Trinity v2.6.6 [87] in ab initio and genome-guide 
mode. We then run the Assemble Spliced Alignment 
(PASA) v.2.1.0 [88] analysis process to align the tran-
scripts to the E. salsugineum genome to carry out open 
reading frame (ORF) and protein coding gene prediction. 
For de novo prediction, we used Augustus v3.3.1 [89] with 
parameters trained using PASA self-trained gene models 
and GlimmerHMM v3.0.4 [90] to annotate the genome 
sequence of E. salsugineum. For homology-based predic-
tion, we downloaded seven sequenced protein sequences 
of A. thaliana [32], C. rubella [47], B. rapa [48], S. par-
vula [49], Raphanus raphanistrum [51], E. heterophyllum 
[33] and E. yunnanense [33] and aligned them against 
the E. salsugineum genome using TBLASTN v.2.6.0 [91] 
(e-value cutoff 1e − 5). After filtering low-quality results, 
we used Exonerate v2.2.0 to predict the gene structure. 
We used EVidenceModeler (EVM) v1.1.1 [92] software to 
integrate the results of the above three annotation meth-
ods and obtained the final protein-coding gene set.

We annotated the functions of the predicted genes 
using BLASTP v.2.6.0 [91] (E-value cutoff 1e − 5) based 
on entries in the Swiss-Prot and TrEMBL databases. 
Protein motifs and domains were identified by search-
ing against InterPro. The functions and pathways of the 
genes were determined according to the GO and KEGG 
databases by using Blast2GO [93]. Finally, a total of 
24,448 protein-coding genes (96.26%) were successfully 
annotated through reference to one or more databases.

Whole-genome alignment of E. salsugineum genomes
We aligned our EsaV3 genome to the two previously 
reported genome sequences of E. salsugineum by LAST 
[30], following a five-step procedure (https://github.com/
mcfrith/last-genome-alignments) and then verified the 
alignment results using in-house Perl scripts.

Phylogenetic and gene family analyses
We used protein-coding genes of E. salsugineum and nine 
other Brassicaceae species (A. thaliana [32], C. rubella 
[47], B. rapa [48], S. parvula [49], Isatis indigotica [50], 
R. raphanistrum [51], E. heterophyllum [33] and E. yun-
nanense [33]) with A. arabicum [46] as an outgroup for 
gene family clustering analysis. To remove the interfer-
ence caused by alternative splicing, the longest transcript 
was selected as a reference for downstream analyses. Sin-
gle-copy orthologous genes were identified across E. sal-
sugineum and the other nine species using OrthoFinder 
v2.3.12 [52] and aligned using MAFFT v.7.313 [94]. Then, 
we used the PROTGAMMALGX model of RAxML 
v8.0.0 [95] software to construct a phylogenetic tree with 
the tandem protein sequences as input. We estimated the 

divergence time of each branch using the MCMCTREE 
program of PAML v.4.9 [53] with the ‘correlated molec-
ular clock’ model. We used the estimated divergence 
time in the TimeTree database (http://www.timetree.
org/) for (1) A. thaliana-C. rubella (7.4–12.8 Mya), (2) R. 
raphanistrum-B. rapa (2.2–9.8 Mya) and (3) A. thaliana-
A. arabicum (32–43 Mya) to calibrate the constructed 
phylogenetic tree.

Gene families that had undergone expansion or con-
traction were identified in the ten sequenced species 
using CAFÉ and the previously constructed phyloge-
netic tree. We extracted the significantly expanded gene 
families (P < 0.05) and performed enrichment analysis for 
these genes using Blast2GO based on the results of func-
tional annotations.

Synteny and whole-genome duplication
We identified syntenic blocks within the genomes of E. 
salsugineum, A. thaliana [32], B. rapa [48] and I. indi-
gotica [50] by applying MCScanX software with default 
parameters. Then, we used the in-house Perl script “add_
ka_and_ks_to_collinearity.pl” in the MCScanX pack-
age to calculate the synonymous substitution rates (Ks) 
values between collinear gene pairs among these four 
genomes to identify WGD events. We also converted 
the Ks values into divergence times based on the formula 
T = Ks/2r (T: divergence time; r: neutral substitution rate, 
7 × 10–9/site/year).

Identification of positively selected genes
We detected positively selected genes in the single-
copy orthologous gene families among the genomes 
of ten Brassicaceae species (A. thaliana [32], A. arabi-
cum [46], C. rubella [47], B. rapa [48], S. parvula [49], I. 
indigotica [50], R. raphanistrum [51], E. salsugineum, E. 
heterophyllum [33] and E. yunnanense [33]) using Pro-
teinortho v6.0.2 [96] with the protein coding genes of 
these ten genomes as input files. PosiGene v0.1 [97] was 
used to perform whole-genome detection of the posi-
tively selected genes (PSGs) with E. salsugineum as the 
foreground branch. Based on the P value cutoff of 0.05 
after false discovery rate (FDR) correction, we identified 
the PSGs in E. salsugineum and performed functional 
enrichment analysis for PSGs.
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