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Abstract
Background Structural variants (SVs) are chromosomal segments that differ between genomes, such as deletions, 
duplications, insertions, inversions and translocations. The genomics revolution enabled the discovery of sub-
microscopic SVs via array and whole-genome sequencing (WGS) data, paving the way to unravel the functional 
impact of SVs. Recent human expression QTL mapping studies demonstrated that SVs play a disproportionally large 
role in altering gene expression, underlining the importance of including SVs in genetic analyses. Therefore, this study 
aimed to generate and explore a high-quality bovine SV catalogue exploiting a unique cattle family cohort data (total 
266 samples, forming 127 trios).

Results We curated 13,731 SVs segregating in the population, consisting of 12,201 deletions, 1,509 duplications, 
and 21 multi-allelic CNVs (> 50-bp). Of these, we validated a subset of copy number variants (CNVs) utilising a 
direct genotyping approach in an independent cohort, indicating that at least 62% of the CNVs are true variants, 
segregating in the population. Among gene-disrupting SVs, we prioritised two likely high impact duplications, 
encompassing ORM1 and POPDC3 genes, respectively. Liver expression QTL mapping results revealed that these 
duplications are likely causing altered gene expression, confirming the functional importance of SVs. Although most 
of the accurately genotyped CNVs are tagged by single nucleotide polymorphisms (SNPs) ascertained in WGS data, 
most CNVs were not captured by individual SNPs obtained from a 50K genotyping array.

Conclusion We generated a high-quality SV catalogue exploiting unique whole genome sequenced bovine 
family cohort data. Two high impact duplications upregulating the ORM1 and POPDC3 are putative candidates for 
postpartum feed intake and hoof health traits, thus warranting further investigation. Generally, CNVs were in low LD 
with SNPs on the 50K array. Hence, it remains crucial to incorporate CNVs via means other than tagging SNPs, such 
as investigation of tagging haplotypes, direct imputation of CNVs, or direct genotyping as done in the current study. 
The SV catalogue and the custom genotyping array generated in the current study will serve as valuable resources 
accelerating utilisation of full spectrum of genetic variants in bovine genomes.
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Background
Structural variants (SVs) are genomic segments (> 50-bp) 
for which the structure between genomes differs, and 
may include deletions, duplications, insertions, inver-
sions, and translocations [1]. SVs together affect more 
base pairs than small genetic variants (single nucleotide 
polymorphisms (SNPs) and small insertions and dele-
tions (indels)), thereby have been assumed to have large 
phenotypic impact [2–4]. Following this idea, expres-
sion QTL (eQTL) studies in humans showed that SVs 
have a disproportionately high contribution to altering 
gene expression compared to SNPs and indels [5–7] and 
many functional SVs associated with various traits have 
been identified in humans [8]. Likewise, identifying func-
tional SVs associated with economically important traits 
has been a prime interest for animal breeders. Until now, 
catalogue of functional SVs reported in farm animals 
contain many deletions that often are associated with dis-
ease traits. In contrast, duplications often are associated 
with distinguishable coat colours and morphologies (e.g. 
breed defining traits), with few exceptions [9, 10].

Discovery and genotyping of genetic variants provide 
a foundation for genetic analyses. In recent decades, the 
genomics revolution enabled accurate detection of mil-
lions of SNPs through whole-genome sequencing (WGS) 
technologies, and high throughput genotyping in a large 
number of individuals using SNP arrays. However, unlike 
SNPs, detection and genotyping methodologies for struc-
tural variants (SVs) have been lagging behind [11]. Array 
data is widely used for SNP genotyping in animal breed-
ing, and also has the potential to detect unbalanced SVs, 
such as copy number variants (CNVs, a subset of SVs 
including deletions and duplications). Still, low resolu-
tions and undefined breakpoints are considered major 
drawbacks of array-based methodologies to detect SVs 
[3]. Alternatively, short-read WGS data can be used to 
detect SVs, including CNVs and balanced SVs (e.g. inver-
sions) at a finer resolution [1]. Despite such advance-
ment, WGS data with low sequencing depth (e.g. <10X) 
suffers from low detection sensitivity, unresolved break-
points, and low genotyping accuracy [1, 3, 11]. These 
issues can be alleviated by (i) exploiting WGS data with 
higher sequencing depth (e.g. >30X), (ii) including family 
samples, and (iii) confirming the discovery results using 
orthogonal validation (e.g. long-read sequencing data) 
[11]. Furthermore, the choice of SV detection meth-
ods can affect the discovery results. Some SV detection 
tools scan WGS data for split reads (SR) and/or discor-
dant read pairs (DP) clusters. In contrast, other detec-
tion tools measure read-depth changes relative to the 

depth of genome-wide diploid regions to determine the 
copy number variable regions. Recent benchmark stud-
ies showed that combining these principles outperforms 
detection methods solely relying on a single principle 
(e.g. generating less false calls) [12].

A high-quality catalogue of SVs with improved detec-
tion sensitivity, including a broad size range, base-pair 
resolved breakpoints, and accurate genotyping can 
benefit genetic studies and accelerate the discovery of 
functional SVs. Yet, until now, lack of suitable data sets 
hindered obtaining a high-quality SV catalogue in the 
Holstein Friesian (HF), a major dairy cattle breed [13]. 
Absence of a high-quality SV catalogue has left some 
questions unanswered. Firstly, the potential for SVs for 
animal breeding is unknown, because it remains to be 
investigated whether a widely used 50K SNP genotyping 
array captures genome-wide SVs. Secondly, current SV 
catalogues based on genotyping arrays consist of large, 
breakpoint unresolved CNVs [14], and hence, hinder 
assessments of functional and phenotypic impact of SVs.

This study aimed to generate and explore a high-
quality SV catalogue using WGS data obtained from a 
cattle family cohort (including 127 trios). We detected 
three different classes of SVs (deletions, duplications, 
multi-allelic copy number variants (mCNVs)) based on 
a methodology exploiting signals from both SR and DP 
evidence, with post hoc filtering based on the read-depth 
changes. Furthermore, a subset of SVs (210 deletions and 
22 duplications) was validated in an independent cohort 
of animals using a direct genotyping approach. Using a 
high-quality call set, we explored population genetics fea-
tures of SVs and finally, we performed in-depth charac-
terisation of putative high impact SVs.

Results
Initial discovery of structural variants
We discovered SVs using short-read WGS data from 
266 HF dairy cattle samples (mean coverage of 26X, 
min = 15X, max = 47X), using the bovine reference 
genome ARS-UCD1.2. The pipeline used (Smoove; 
https://github.com/brentp/smoove) [15] detects SVs in 
the individual samples based on SR and DP evidence. 
The number of discovered SVs per sample increased as 
the sequencing depth increases, suggesting the absence 
of spurious technical bias and high quality underlying 
WGS data (Figure S1). Aggregating the SVs discovered 
across all samples, we obtained 38,094 non-redundant 
SVs (17,826 deletions, 4,652 duplications, 1,811 inver-
sions, 13,805 breakends (non-canonical type of SVs)), for 
which the entire cohort was genotyped. Further analyses 
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were focused on 22,478 CNVs (17,826 deletions and 
4,652 duplications), and inversions and breakends were 
not considered.

Establishing a clean call set exploiting the post hoc 
filtering based on read-depth changes
To obtain a high-quality SV call set, we filtered out spuri-
ous SVs from the initial call set which contained 17,826 
deletions and 4,652 duplications. After removing (i) SVs 
smaller than 50-bp, (ii) non-polymorphic SVs, and (iii) 
putative assembly errors, we retained 21,737 SVs (17,096 
deletions and 4,641 duplications; see materials and 
methods). Afterwards, we refined our call set by utilis-
ing post hoc read-depth based filtering. CNVs can be 
genotyped by SR and DP evidence as done by our current 
pipeline [15], but also can be inferred from read-depth 
changes [16]. Hereafter the genotyping done based on 
SR and DP evidence is referred to as reads-based geno-
typing, as opposed to read-depth based genotyping. In 
our pipeline, the read-depth fold-coverage of each CNV 
was annotated [16]. For example, a heterozygous dele-
tion with read-depth of 15X, relative to the 30X cover-
age in non-SV region was assigned the fold-coverage of 
0.5. In contrast, a duplication where the affected region 
amounts to the mean coverage of 45X, opposed to the 
30X coverage in non-SV region was assigned the fold 
coverage of 1.5. To utilize the read-depth annotation for 
the site-level filtering, we (i) calculated mean read-depth 
fold-coverage depending on genotypes and (ii) generated 
a summary QC plot for all CNVs (see Fig. 1D for exam-
ples). By manually inspecting all CNVs on chromosome 
1, we set rules to filter out calls with spurious read-depth 
fold-coverage changes. For instance, for each deletion, 
mean read-depth fold-coverage in heterozygous dele-
tion carrier is expected to be smaller than that of wild 
type animals. If this relation was reverse, we filtered them 
out (see materials and methods for detailed explanation 
on filters). After excluding CNVs with spurious read-
depth fold-coverage, 12,201 deletions and 1,530 dupli-
cations were retained. While manually inspecting QC 
plots of all CNVs, 21 duplications were re-classified as 
mCNVs based on their multi-modal read-depth distribu-
tions. These loci had more than three read-depth peaks, 
which implied more than two alleles segregating (Figure 
S2). Hereafter, a total of 13,731 CNVs (12,201 deletions, 
1,509 duplications, and 21 mCNVs) that passed the pre-
liminary read-depth filters is referred to as a “clean call 
set” (Fig. 1B). Together, these CNVs were in a size range 
between 50-bp and 424-kb (Figure S3). Overall, a median 
number of 5,252 CNVs (4,865 deletions and 387 duplica-
tions) was discovered per genome.

Differentiating the clean call set into stringent and lenient 
calls
The 13,731 CNVs belonging to the clean call set were 
further scrutinized (Fig.  1). If all samples are accurately 
genotyped and the read-depth fold-coverage reflect the 
true underlying genotypes, we expect to see a mixture of 
two or three non-overlapping read-depth distributions 
matching genotypes. Alternatively, a variable distribution 
of read-depth within a genotype might indicate inaccu-
rate genotyping (Fig.  1D). Hence, we divided the clean 
CNV call set into a “stringent” call set, with CNVs of 
which their read-depth fold-coverage corresponds unam-
biguously to the reads-based genotypes, and a “lenient” 
call set with CNVs of which their read-depth fold-cov-
erage does not always match with the reads-based geno-
types. The stringent call set consisted of 3,828 deletions 
and 185 duplications which contained accurately geno-
typed biallelic CNVs, mostly larger than 500-bp (Fig. 2A). 
On the contrary, CNVs in the lenient call set consisted 
of 8,373 deletions and 1,324 duplications and were often 
(i) small (< 500-bp), relying only on evidence from soft-
clipped reads, hence did not manifest clear read-depth 
fold-coverage changes depending on genotype, (ii) incor-
rectly genotyped due to a complex local genomic context 
(e.g., discordant read pairs in repeat-rich regions lead to 
low mapping quality, thus were not taken into account in 
genotyping). Additionally, the genomic neighbourhoods 
(10-Kb flanking regions) of the stringent and lenient call 
sets showed different features. A fewer number of genes 
and repeats were present in the flanking regions of the 
stringent CNVs (0.7 gene and 44.7 repeats per stringent 
CNV), compared to lenient CNVs (1.1 genes and 64 
repeats per lenient CNV).

Moreover, some duplications showed evidence of mul-
tiplication events. Multiplication loci harbour structural 
alleles containing copies numbers (CN) higher than two 
and are not necessarily biallelic, meaning that more than 
two structural alleles are segregating for a given locus. 
A recent study reported such multi-allelic CNV (likely 
resulting from multiplication events) associated with 
clinical mastitis in HF population [17], which harbours 
alleles with CN 1, 4, 5 and 6. Animals heterozygous for 
this locus (e.g. CN1/CN4) were genotyped as homo-
zygous alternative for a duplication by SVtyper which 
assumes biallelic loci by default (Figure S4). After the fil-
tering steps, the numbers of SVs in the clean call set, the 
stringent call set, and the lenient call set were no longer 
strongly determined by the sequencing coverage of the 
samples. This finding suggests that the large number of 
variants discovered in the high sequencing depth samples 
may be due to many false calls, which are now excluded 
after rigorous site-level quality control (QC) (Figure S5).

Subsequently, the quality of each CNV call set was 
evaluated using the family structure present in the data 
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set (127 trios). A quality metric was coined expressing 
a fraction of trios having Mendelian errors at each site 
(e.g., with 15 out of 127 trios manifesting Mendelian 
errors, the fraction corresponds to 0.12). As expected, the 
stringent call set showed lower Mendelian errors overall 
than the lenient call set (Fig.  2B). Notably, duplications 
showed higher error rates than deletions in both call sets, 
suggesting that duplications are prone to having more 
genotyping errors even when strict filters are applied. 
One caveat of the Mendelian error fraction quality metric 
is that it might be confounded with the allele frequency. 
That is, a rare SV may seem to have low Mendelian 

errors, due to low number of occurrences of the SV itself. 
However, Mendelian error fraction did not increase along 
with the allele frequency for both stringent and lenient 
deletions, confirming that the current quality metric 
is not affected by the allele frequency (Figure S6). We 
inspected the site frequency spectra limiting to the strin-
gent call set, which was considered to contain accurately 
genotyped CNVs that were relatively skewed towards 
large events (Fig.  2A). Both deletions and duplications 
showed similar allele frequency spectra in a sense that 
they showed many rare variants. Notably, the majority of 
the stringent duplications were rare, where a handful of 

Fig. 1 Discovery and quality control on SVs in the bovine genomes
(A) An example of population-side SV detection results. Animals are genotyped for each site, and for CNVs, the fold-coverage change in read-depth is an-
notated. Marked with yellow is a spurious call where read-depth do not change according to genotypes. (B) An overview on filtering steps and number 
of calls in different call sets. (C) The overall CNV calls were divided into stringent and lenient call sets, exploiting the post hoc filter based on read-depth. 
The former is considered to be the set of accurately genotyped biallelic sites. (D) Quality control (QC) plots were generated for all CNVs exploiting the 
genotype and read-depth information. The panel on the left side shows an example of a stringent site where animals’ genotypes and read-depth are 
unambiguously assigned. Each blue dot represents a sample. The black dots and vertical bars in the violin plot represent the mean and one standard 
deviation. The right panel represents the read-depth distribution for each GT group. The QC plot for a lenient site is shown on the right side. In such a case, 
read-depth distribution of animals genotyped as 0/0 and 0/1 are overlapping (marked with a red dotted circle), indicating inaccurate genotyping results
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them reached allele frequency of ~ 0.25 (Fig. 2C). Finally, 
we inspected the breakpoints of CNVs. In total, 68% of 
CNVs had single base resolved breakpoints, both in the 
stringent and the lenient call set. The high number of sin-
gle base resolved breakpoints in the lenient call set gives 
confidence that the CNV are correctly called, despite the 
low genotyping accuracy.

Validating the SV discovery results using direct genotyping 
approach
SVs discovered in the WGS data set, if validated in ani-
mals in the same population other than the animals of 
the discovery cohort, would confirm that the variant of 
interest is segregating in the population. To this end, we 
aimed at validating a subset of the WGS CNVs by directly 
genotyping the breakpoints of CNVs in animals not over-
lapping with the WGS cohort. Among the CNVs in the 
catalogue, breakpoints of 9,642 CNVs had a single-base 
resolution; thus, genotyping probes could be designed 
(Fig.  3A, see methods). Of these, we designed probes 
for 371 CNVs (342 deletions and 29 duplications) which 
appeared in non-repetitive regions and added them to 
the custom part of the EuroGenomics custom genotyping 
array [18], which include ~ 50K SNPs (hereafter referred 
to as 50K SNP array for brevity). Genotyping was done in 
815 HF animals, not overlapping with the WGS animals. 
Of the 284 CNVs (262 deletions and 22 duplications) that 
passed the QC criteria (call rate per sample > 0.99 and 
call rate per variant > 0.99), 211 deletions and 19 dupli-
cations were segregating in the genotyped population 
(allele count ≥ 1). The remaining 54 probes did not seg-
regate in the population (allele count = 0), despite pass-
ing the QC criteria, indicating that either (i) the targeted 
CNVs were not present among the 815 HF animals, or (ii) 
the CNV-targeting probes did not work. The allele fre-
quency of CNVs was skewed towards rare alleles, com-
pared to that of the 50K SNPs obtained from the same 
array (Fig. 3B), yet were similar to what is observed in the 

Fig. 3 Direct genotyping approach and results
(A) A schematic overview on primer design. To genotype a deletion, a forward assay can target A (marked with red) in the reference, whereas T will be 
targeted in deletion carriers. A reverse assay can target G (marked with blue), whereas C will be targeted in deletion carriers. (B) Site frequency spectra of 
CNVs and SNPs obtained from the validation data (50 K SNP genotyping array)

 

Fig. 2 Summary of CNV call sets and quality indicator metrics
(A) Length distribution of the stringent and lenient call sets. (B) Mendelian 
error fractions obtained for each CNV site are shown for stringent and le-
nient call sets. (C) Site frequency spectra of stringent CNVs
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discovery data set (Figure S7). In short, the CNV geno-
typing results independently validated at least 62% of the 
CNVs selected from the WGS CNV catalogue (229/371). 
The 229 validated CNVs confirm that these are variants 
segregating in the population, which may be exploited in 
selection.

Comparison with other call sets
We compared the current WGS-based SV catalogue 
with a bovine pangenome SV call set established from 57 
breeds (consisting of 898 animals; 148,371 deletions and 
7,468 duplications) [19]. The overlap between the two call 
sets was limited: 2,965 deletions (corresponds to 24.3% 
of deletions in the current call set; 2,965/12,201) and 707 
duplications (corresponds to 46.9% of duplications in the 
current call set; 707/1,509) overlapped based on a mini-
mum of 95% reciprocal overlap. Such limited overlap jus-
tifies a deep characterization of SV focusing on a single 
breed. Subsequently, the current call set was compared 
with an array-based catalogue generated from 315 ani-
mals from the same HF population [14]. The concordant 

CNVs between the WGS- and array- catalogues were 
mostly large CNVs (231 concordant CNVs, mean size of 
33-Kb, min size = 1.2-kb, max. size = 402-Kb). Given that 
the size of WGS-based CNVs were discovered mostly 
around or smaller than 1-kb size (Fig.  2A), the WGS-
based catalogue seems to contain a large number of finer 
scale variants undiscovered based on the array data, likely 
because of low resolution.

All things considered, the current SV call set repre-
sents major advancements. Firstly, SV detection in WGS 
data resulted in improved resolution thereby discovering 
many small SVs which was not discovered in the array-
based SV catalogues. Secondly, 68% of SVs were defined 
with single base resolved breakpoints, which can be ben-
eficial in investigating functional impact of SVs. Thirdly, 
our catalogue contains two subsets (stringent and 
lenient) which represent different levels of confidence in 
quality and genotyping accuracy. Thus, this high-quality 
call set stands for a powerful resource for population and 
functional analyses.

CNV-SNP linkage disequilibrium in the WGS data set
Although a handful of CNVs associated with complex 
traits have been delineated at a molecular level [20, 21], 
large scale genomic analyses are often centred around 
utilising SNPs, leaving CNVs unexplored. In theory, if a 
CNV is in high linkage disequilibrium (LD; e.g. r2 > 0.8) 
with SNPs, those SNPs should capture the CNV, serving 
as a tagging marker. Hence, we calculated pairwise LD 
(r2) between CNVs and SNPs obtained from WGS data 
to evaluate whether SNPs tag CNVs. First, we focused on 
the stringent CNV call set, as it contains accurately geno-
typed biallelic CNVs. In this call set, 97% and 93% of the 
deletions and duplications, respectively, were captured 
by sequence level SNPs, and the CNV-SNP LD broke 
down as the inter-marker distance increases (Fig.  4A 
and B). Our results showed that even rare CNVs (minor 
allele frequency (MAF) < 0.05) were well tagged by SNPs, 
likely due to rare SNPs and CNVs occurring on the same 
haplotype that is private to particular families. Next, we 
investigated the LD in the lenient CNV call set, and the 
fraction of tagged CNVs reduced to 83% and 61% for 
deletions and duplications, respectively (Figure S8). Of 
note, the mean SNP-CNV distance in the stringent and 
lenient call sets were 25.9-Kb and 27.8-Kb, respectively. 
The discrepancy in LD between stringent and lenient call 
sets suggests that the lower degree of LD in the lenient 
call set arises from inaccurately genotyped CNVs, instead 
of actual lack of tagging SNPs. Additionally, we calculated 
LD between CNVs and SNPs called from WGS data, but 
when the SNP density was reduced to that of a 50 Karray 
(see below). The 50K SNP set captured 13.4% and 3.3% of 
the deletions (1,631/12,201) and duplications (50/1,509), 
respectively. Finally, we expected that the mCNV-SNP 

Fig. 4 Linkage disequilibrium between SNPs and CNVs
(A) Mean r2 obtained from deletion-SNP pairs discovered in WGS data is 
displayed as a function of inter-marker distances. SNPs paired with com-
mon deletions (MAF ≥ 0.05) are marked with a solid line, whereas SNPs 
paired with rare deletions (MAF < 0.05) are marked with a dotted line. (B) 
Mean r2 obtained from duplication-SNP pairs discovered in WGS data is 
shown. The legend is the same as panel (A). (C) Mean r2 obtained from 50 K 
SNP genotyping array is displayed for common variants only (MAF ≥ 0.05). 
The SNP-SNP pairs are marked with a solid magenta line, and DEL-SNP 
pairs are marked with a solid grey line. The SNP-SNP pairs outnumbered 
the DEL-SNP pairs. To keep the comparison not influenced by the differ-
ence in the number of pairs, a subset of SNP-SNP pairs, equivalent to the 
number of DEL-SNP pairs, was made 1,000 times, and the mean and the 
standard deviation are displayed in the figure. (D) Mean r2 obtained from 
50 K SNP genotyping array is displayed for rare variants only (MAF < 0.05). 
Legends are identical to the panel (C)
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LD would be generally low given (i) that biallelic SNPs 
would be in partial LD with a multi-allelic variant and 
(ii) high genotyping error arising from our pipeline that 
will blindly assign biallelic genotypes to multi-allelic 
loci. Indeed, of 21 mCNVs, only 40% were in LD with 
SNPs (r2 > 0.8) based on the biallelic genotypes assigned 
by SVtyper. Interestingly, these 21 mCNVs included a 
12-kb mCNV associated with clinical mastitis, partially 
overlapping with the group-specific component (GC) 
gene (hereafter referred to as GC CNV) [17]. A previous 
study of the GC CNV reported presence of tagging SNPs 
(both within and outside the CNV) when the four struc-
tural alleles segregating at this locus are grouped into 
two (wildtype or multiplicated alleles). However,  we did 
not detect tagging SNPs for the GC CNV in the current 
analyses, likely because the standard biallelic genotyp-
ing could not take into account the underlying structural 
alleles of the GC CNV, leading to false genotyping (Men-
delian error fraction = 0.33).

CNV-SNP LD in the array data set
Our results from the stringent call set showed that 
sequence level SNPs could capture most of the biallelic 
CNVs as long as the biallelic CNVs are accurately geno-
typed. However, in animal breeding, large-scale genomic 
analyses (e.g. genomic selection) rely on 50K, or lower 
density SNP data. To assess whether array level SNPs 
capture CNVs, we investigated DEL-SNP LD based 
on genotypes of 50K SNPs and 211 deletions directly 
obtained from our custom 50K SNP array, explained 
above. In the 50K genotyping array data set, both DEL-
SNP and SNP-SNP pairs showed LD decay where the 
degree of LD declines as a function of inter-marker dis-
tance. Intriguingly, DEL-SNP pairs showed lower mean 
LD than SNP-SNP pairs, regardless of the allele fre-
quency (Fig.  4C and D). Finally, we checked the frac-
tion of variants that has tagging SNPs (r2 > 0.8): 14.1% of 
studied SNPs (6,068/42,973) and 19.4% of the deletions 
(41/211) had tagging SNPs. None of the 19 duplications 
had tagging SNPs.

Predicted functional impact of SVs
The functional consequence of SVs varies depending on 
many factors, including SV types, event sizes, the over-
lap with coding sequences (CDS). In the case of dele-
tions, they may overlap or occur within CDS of a gene, 
thus leading to loss-of-function of the gene. In contrast, 
duplications may have different consequences depend-
ing on overlap with CDS. For instance, a duplication 
partially overlapping with a coding gene (e.g., overlap-
ping with a subset of exons), may alter transcript(s), 
whereas a duplication encompassing an entire gene may 
end up increasing gene expression in theory. Therefore, 
following previous literature [21], we categorised CDS 

overlapping SVs into three classes: (i) predicted loss-of-
function (pLoF) for CDS disrupting deletions, (ii) intra-
genic exonic duplication for duplications with partial 
genic overlap, and (iii) copy gain for duplication encom-
passing entire gene(s) (Fig. 5A).

Our SV catalogue overlapped with the CDS of 426 
genes (342 pLoFs, 41 copy gains, 50 intragenic exonic 
duplications; some genes were affected by more than 
one SVs), and each individual had on average 88 pre-
dicted loss-of-function, 7.8 copy gain, and 8.1 intragenic 
exonic duplication events. The list of CDS disrupting 
SVs contained three high impact SVs: (i) a predicted 
loss-of-function event by a 3.3-Kb deletion ablating 
FANCI gene, causing foetal death and brachyspina [23], 
(ii) a predicted loss-of-function event by a 138-Kb dele-
tion ablating TFB1M gene, which was associated with a 
lethal haplotype mapped in HF population [24], and (iii) 
an intragenic exonic duplication event by a 12-Kb mCNV 
overlapping with the last exon of GC gene, associated 
with mastitis resistance [17]. As expected, common CDS 
disrupting SVs (MAF > 0.05) were often affecting genes 
belonging to large gene families (e.g., olfactory recep-
tors), whereas rare SVs often disrupted essential genes 
without paralogues. For example, we discovered a single-
ton 50-kb deletion ablating Centromere Protein C gene 
(CENPC), which was shown to be recessive lethal in a 
mouse knock-out study [25]. Moreover, we identified a 
16-kb intragenic exonic duplication event in the BTA5 
27.4 Mb region that harbours a large repertoire of keratin 
genes (Fig. 5B). This intragenic exonic duplication event 
was classified as mCNV based on the multi-modal read-
depth distribution, which indicated diploid CNs between 
2 and 6 (Fig. 5C). Furthermore, the QC plot implied inac-
curate genotyping (e.g., mCNV carriers with high read-
depth were genotyped as 0/0). Close inspection of carrier 
animals supported the presence of the mCNV (elevated 
sequencing coverage; Fig.  5D), however the reads span-
ning over breakpoints had low mapping quality leading to 
inaccurate genotyping (Figure S9). This 16-kb mCNV dis-
rupts two keratin genes that are in the same orientation 
(KRT6B and KRT6C), and thus can give rise to a novel 
fusion gene (Fig. 5E). In such case, a diploid CN6 animal 
is expected to have intact KRT6B and KRT6C genes and 4 
copies of KRT6B-KRT6C fusion genes.

Molecular characterisation of SV-eQTL
A recent human SV catalogue showed that most SVs are 
under purifying selection, thus segregating at low allele 
frequency, except duplications encompassing entire 
gene(s) [22]. Therefore, we focused on the 41 copy gain 
events aiming at identifying functional duplications. The 
underlying assumption of functional copy gain events is 
that an extra copy of a gene can increase gene expres-
sion. Thus, mapping SV expression QTL (SV-eQTL) for 
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copy gain events seemed a plausible approach to eluci-
date molecular contribution of SVs. Before SV-eQTL 
mapping, we prioritised copy gain events harbouring 
genes that previous studies reported associations with 
economically important traits in cattle. Based on the 
literature, we found two promising duplications. The 
first is an 85-kb duplication harbouring Orosomucoid 
1 gene (ORM1; chr8:103,486,032–103,571,582) (Fig-
ure S10A-D). ORM1 is predominantly expressed in liver 
and encodes acute-phase plasma protein, and has been 
shown to be upregulated in response to acute inflamma-
tion [26]. In dairy cattle, an increased ORM1 expression 
in postpartum cows was associated with decreased feed 
intake [27, 28]. The second is a 150-kb duplication har-
bouring Popeye Domain Containing 3 gene (POPDC3; 
chr9:44,725,475 − 44,875,600; Figure S10E-H). POPDC3 
is involved in skeletal muscle tissue development and 
is broadly expressed in multiple tissues [29]. This 150-
kb duplication was associated with hoof health traits in 
Canadian HF population; however the effect direction 
was not reported [30].

We proceeded with SV-eQTL mapping exploiting 
BovineHD genotype and liver RNA-seq data obtained 
from postpartum day 14 dairy cows (n = 175). To associ-
ate the gene expression with the SVs detected from the 
WGS data, we generated an imputation panel consist-
ing of SNPs and SVs discovered in 266 WGS animals 
(see method; Figure S10I). The BovineHD genotype was 
imputed to sequence level SNPs and SVs, and then the 
imputed genotypes were associated with gene expression. 
The ORM1 duplication was well imputed and ranked 
as the top variant for ORM1 eQTL (Fig. 6A and B). The 
same procedure was applied to POPDC3 duplication and 
likewise, the imputed POPDC3 duplication was among 
the top eQTL variants for POPDC3 (Fig. 6C and D and 
Figure S10J). Furthermore, bovine liver ChIP-seq data 
(H3K27ac and H3K4me3 [31]) confirmed the presence 
of promoters for these genes, providing a mechanistic 
explanation on these liver SV-eQTL (Figure S10 C, G). 
Thus, it is plausible that these duplications lead to a true 
copy gain event of the cognate genes, ultimately lead-
ing to an increased gene expression (Fig. 6). Extrapolat-
ing the literature, we could hypothesise that the ORM1 

Fig. 5 CDS disrupting SVs
(A) Three different categories of CDS disrupting SVs. CDS disrupting deletions and insertions can lead to loss-of-function variants. If affecting an entire 
gene, duplications are equivalent to obtaining an extra copy of a gene (copy gain). However, partial duplication of a gene may have different conse-
quences depending on the context. Figure adapted from [22]. (B) A 16-kb mCNV was found in the Keratin gene-rich region, harbouring more than 20 
keratin genes, in the chr5:27 Mb region (marked with green). This mCNV affects two keratin genes, KRT6B and KRT6C. (C) The QC plot of the 16-Kb implied 
that diploid CNs range between 2 and 6, yet reads-based genotype indicated inaccurate genotyping. (D) WGS data of one of the mCNV carriers was 
inspected (diploid CN 5). Increased sequencing coverage supports the presence of multiple copies of the 16-kb segment. (E) The Tandem arrangement 
of the 16-kb segment can give rise to a novel fusion gene made of part of KRT6B and KRT6C (marked with an asterisk; shown in blue and red). In this panel, 
we depicted a putative tandem arrangement of the haploid CN3 allele
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duplication allele, which leads to high ORM1 expression, 
will decrease the feed intake in postpartum cows [27, 28]. 
In mice, administration of exogenous ORM supressed 
food intake, via binding leptin receptors, which induce 
activation of signal transducer and activator of transcrip-
tion 3 (STAT3) signalling [26]. A recent dairy cattle study 
showed that high ORM expression suppressed postpar-
tum feed intake, yet without triggering STAT3 signalling, 
leaving the underlying appetite suppression mechanism 
elusive [28]. It is worth noting that this variant is highly 
frequent (MAF = 0.49), despite its association with the 
reduced feed intake, which is considered detrimental for 
postpartum cows. One possible explanation could be that 
this variant is under balancing selection. In an attempt to 
identify target trait(s) under selection, the animal QTL 
database was screened [32], however, there was no QTL 
reported in the region of interest.

Discussion
In this study, we used 266 sequenced Dutch dairy cattle 
genomes to discover SVs. SV discovery and our under-
standing of SVs have been hindered by low detection 
sensitivity and inaccurate genotyping issues often aris-
ing in low sequencing depth samples [11]. In our study 
we focused on deletions and duplications, as these can 
be called most accurately with the type of sequence data 
we had (Illumina short read sequencing with a fragment 
length of 550-bp and a read length of 100-bp). Inser-
tions were ignored because comparison of insertion 
callers showed that at least 60X coverage was needed 
to reach the maximal sensitivity for insertion detection 
[12]. Structural variant detection tools relying solely on 
a single detection principle were shown to generate many 
false positive calls compared to ensemble callers [12, 33], 
resulting in a low-quality call set. To address these issues, 
we discovered SVs in a large-scale healthy bovine family 
cohort WGS data. It is worth noting the unique pedigree 

Fig. 6 SV eQTL mapping results
(A) eQTL mapping result for ORM1. The ORM1 duplication is marked with purple diamond. The colour scale indicates the degree of pairwise LD (r2) be-
tween the ORM1 duplication and other SNPs. Green translucent box marks the duplication. (B) The box plot shows altered ORM1 expression depending 
on the ORM1 duplication genotypes. (C) eQTL mapping result for ORM1. Legend is same as panel (A). (D) The box plot shows altered POPDC3 expression 
depending on the POPDC3 duplication genotypes
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structure in the data set (127 trios) provided an inde-
pendent measure of quality evaluation (i.e. Mendelian 
errors), but also the sequencing was done at a relatively 
high depth (mean sequencing depth = 26X), compared 
to other studies that investigated SVs in livestock species 
[34–37]. Detection of SVs can benefit from high coverage 
sequencing data in two ways. First and foremost, it will 
inevitably improve detection sensitivity. There are more 
split reads and discordant read pairs evidence support-
ing SVs for a given locus, leading to an increased number 
of discovered variants. Secondly, the read-depth can be 
measured accurately, hence can be exploited to filter out 
spurious false positive calls (e.g., heterozygous deletion 
without reduction of read-depth can be filtered out). Of 
these, we exploited read-depth fold-coverage annotation 
to distinguish the clean CNV calls into stringent calls 
with high genotyping accuracy. Thus, if future studies 
aim to investigate SVs using allele frequency-based ana-
lytical tools (e.g., Fst), the stringent call set may be a good 
starting point as it contains accurately genotyped CNVs. 
It is worth noting that duplications had overall higher 
Mendelian errors than deletions. If a deletion is present 
in one’s genome, it can either be a heterozygous deletion 
(diploid CN1) or homozygous deletion (diploid CN0). 
Contrary to this, duplications can be biallelic or multi-
allelic. Also, multiplication events are often detected 
as duplications. In these cases, diploid CNs may not 
ascend sequentially, as explained earlier (Figure S4). For 
a multiplication locus harbouring structural alleles with 
CNs 1 and 4, heterozygous animals (e.g., CN1/CN4) are 
genotyped as homozygous for duplication, due to over-
whelmingly large number of discordant reads – resulting 
in a Mendelian error. Thus, exploiting duplications may 
require more effort to characterise the true underlying 
CN states, requiring high sequencing depth to identify 
read-depth differences. High number of false positives 
and negatives in SV discovery makes it crucial to perform 
post-discovery evaluation [11]. Commonly used orthogo-
nal validation methods include long-read WGS and PCR 
amplicons [22, 38–40]. However, often these validations 
can be costly and time-consuming, and above all, the 
availability of DNA material can be a bottleneck. Instead, 
to some extent, we bypassed these issues by incorporat-
ing CNV targeting probes into the 50K SNP array that is 
routinely used in livestock breeding programmes. This 
approach allowed us to obtain accurate genotypes of 
CNVs and SNPs simultaneously. Future use of the 50K 
array presented in this study, for a massive genotyping 
of ~ thousands of animals will lead to opportunities (i) to 
evaluate a functional impact of individual CNV or (ii) to 
evaluate an overall genetic contribution of CNVs, rela-
tive to 50K SNPs. For example, our results showed that 
~ 62% validated CNVs confirmed that these are popula-
tion variants, suitable to be used for selection. Yet, the 

remaining ~ 38% of CNVs were not validated in the cur-
rent cohort of 815 HF animals. Without precluding 
genetic drift or technical issues (e.g., suboptimal design 
of probes) as potential causes of the 38% of the CNVs 
that were not detected in the validation cohort, we con-
sider rare CNVs private to some families in the discovery 
cohort might also explain the non-validated CNVs. If the 
latter counts for the majority of the non-validated CNVs 
in the current data, it is likely that the 62% validation 
rate is a lower-bound, and a larger validation cohort may 
increase the validation rate.

Our and others’ work demonstrated a large repertoire 
of functional SVs, many of which are of interest for live-
stock breeding [9, 10]. In livestock breeding, the genetic 
merit of animals is estimated based on the genomic pre-
diction that exploits 50K SNPs. Thus, whether the 50K 
SNPs fully capture the variation from CNVs is a prime 
question. The CNV-SNP LD shown in our WGS data set 
revealed that most CNVs in the stringent call set have 
tagging SNPs (97% deletions and 93% duplications; Fig. 3 
and Figure S8), higher than recent reports in human SV 
studies comprising of > 10,000 genomes of diverse ethnic 
backgrounds [22, 40]. Unlike human studies, we studied 
a family cohort from a single cattle breed, likely leading 
to the upper bound of the LD. After removing the 127 
offspring from the trio data to limit the family structure, 
the LD between CNV and SNP in WGS data was still 
high (97% and 91.5% of stringent deletions and stringent 
duplications had tagging SNPs with r2 > 0.8). However, 
the DEL-SNP LD in the SNP array data set was lower, 
because (i) the genotyped animals were unrelated and 
(ii) the MAF of SNPs and deletions did not match well 
– CNVs were skewed towards rare variants, whereas 
SNPs were uniform across the range of MAFs, unlike 
the sequence level SNPs that include variants from a full 
spectrum of allele frequencies (Fig.  3B). Interestingly, 
fraction of SNPs or deletions that have at least one tagging 
SNPs were 14.1% and 19.4%, respectively. In contrast, 19 
duplications obtained from the 50K array were all rare 
variants and none of them had tagging SNPs. These find-
ings together are in agreement with a previous study that 
underlined that duplications are not as well captured by 
50  KSNPs compared to deletions and SNPs [36]. Based 
on these findings, large scale genomic analyses aiming 
at investigating CNVs may consider the followings. The 
first is to exploit imputed sequence level SNPs that tag 
CNVs, instead of relying on 50K density SNPs obtained 
from SNP arrays. We expect that this approach will work 
well for SNPs that tag common CNVs, however, in reality, 
many CNVs are rare and so are their tagging SNPs, pos-
ing difficulty in imputation. Also, this approach will work 
well for the CNVs that are accurately genotyped in the 
sequenced reference population (e.g., stringent calls). The 
second approach is to impute the CNVs detected from 
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WGS data. We think although this approach may work 
well for many deletions, particularly the stringent ones, 
duplications may not benefit much from it. As elaborated 
earlier, non-canonical duplications (multiplications and 
multi-allelic loci) showed high Mendelian errors, which 
can be extrapolated into low imputation accuracy. The 
third approach is to directly genotype CNVs as shown 
in the current study (adding CNV targeting probes in 
routinely used SNP arrays). This option is an economic 
option to obtain SNP and CNV genotypes from a large 
cohort. Despite this benefit, this approach is limited to 
CNVs located in relatively clean regions, and ones that 
do not involve repetitive sequences at breakpoints. It 
is worth noting that, the ORM1 duplication, one of the 
functional SVs this study reports, did not have tagging 
SNPs either at 50K density or sequence level SNPs (data 
not shown), hence the first approach is not sufficient to 
capture it. Also, it was classified as a lenient duplication, 
implying suboptimal genotyping accuracy (33 out of 266 
animals showed genotype and read-depth discrepancy), 
whereas the direct genotyping approach showed accurate 
genotyping results (data not shown). Together, the ORM1 
duplication demonstrates the complexity and challenges 
in incorporating SVs in routine genetic analyses. Lastly, 
although not covered in this study, haplotype-based 
approaches were shown to capture CNVs well [20, 21, 
41], hence can be an alternative choice.

Due to large event sizes, a single SV may have larger 
effect, compared to smaller variants [22, 40]. Under such 
circumstances, SVs with deleterious effects, if affect-
ing haplo-insufficient gene(s), are expected to be purged 
rapidly. Hence, it is assumed that most SVs would have 
a benign effect, unless they confer an adaptive advan-
tage [2]. Our SV catalogue contains 426 genes affected by 
SVs, where each animal carries on average > 100 affected 
genes. Mapping deleterious variants can be done exploit-
ing (i) a phenotype driven approach (e.g., GWAS), which 
requires high allele frequency, and (ii) a genotype driven 
approach (e.g. homozygosity depletion mapping), which 
requires a very large genotyped population and high 
allele frequency. Since the study population is a healthy 
family cohort of modest size (n = 266), it was unlikely to 
discover rare recessive lethal SVs using either of the two 
approaches mentioned above. This does not preclude that 
recessive lethal SVs are segregating in the current popu-
lation. We confirmed that two known recessive lethal 
deletions (FANCI deletion [23] and TFB1M deletion [24]) 
are segregating in the current population, thus serving 
as positive controls; however, as expected, we did not 
see any homozygous carrier of these deletions, and the 
recessive allele was segregating at a low allele frequency 
(MAF for FANCI deletion = 0.06, MAF for TFB1M dele-
tion = 0.005). Additionally, we detected a singleton pLoF 
50-Kb deletion affecting CENPC, shown to result in an 

early embryonic loss in knock-out mice [25]. As such, 
mapping deleterious variants using statistical association 
may not be suitable for the current data set, yet exploit-
ing a wealth of annotation data in human and mouse can 
shed light into functional interpretation of the gene-dis-
rupting SVs reported in this study.

We mapped two copy gain events, overlapping with 
ORM1 and POPDC3, respectively, to be promising SV-
eQTL (Fig.  5 and Figure S10). ORM1 encodes acute 
phase protein and is involved in energy metabolism: mice 
lacking ORM1 expression were shown to have increased 
body weight and fat mass [26], whereas upregulation of 
ORM1 in postpartum cows was correlated with reduced 
feed intake [27, 28]. Based on these studies, we had 
expected to find feed intake QTL coinciding with the 
ORM1 duplication, however, no QTL was reported in the 
Animal QTL database or a GWAS study [42, 43]. There 
are several explanations for this conundrum. One pos-
sibility is that the duplication itself or tagging SNPs are 
inaccurately genotyped, leaving no association signals. 
Another possibility may have to do with the transient 
expression of ORM1. ORM1 is strongly upregulated from 
parturition to postpartum day 14, hence suppressing feed 
intake during this short period. However, in breeding 
programmes, feed intake traits are defined as an over-
all mean during the lactation [44]. Thus, the suppressed 
feed intake during the first ~ 2 weeks may be diluted in 
such trait definition. As such, to measure the phenotypic 
impact of the ORM1 duplication, a novel feed intake 
trait, limited to feed intake during ~ 2 weeks postpartum, 
may be highly relevant. Additionally, it is remarkable that 
the ORM1 duplication is segregating at a high frequency 
despite its presumably negative impact (low postpar-
tum feed intake), hinting that it might be under balanc-
ing selection. As with the feed intake QTL, we have not 
found any QTL associated with other traits, which may 
be logical if association studies did not have tagging SNPs 
capturing this duplication. Interestingly, ORM1 duplica-
tion was reported in human populations as well. Diploid 
CNs of ORM1 is highly frequent in the European popula-
tion (CN > 10) compared to the African population (CNs 
2–3) [7], suggesting that upregulation of ORM1 might 
confer a generic adaptive advantage across species.

Conclusion
This study reports a high-quality SV catalogue contain-
ing 13,925 SVs detected in a whole genome sequenced 
dairy cattle family cohort. Using the direct genotyping 
approach, we genotyped a subset of CNVs in an inde-
pendent cohort and confirmed that 62% of the targeted 
CNVs are segregating in the population. In search of high 
impact SVs, we prioritised two duplications overlapping 
with ORM1 and POPDC3, associated with feed intake 
and hoof health traits, respectively. The eQTL mapping 
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results corroborate that these duplications are likely the 
causal variant driving the gene expression, underpinning 
the functional importance of SVs. Given the functional 
impact of SVs, incorporating them in large scale genetic 
analyses would be crucial. Yet, our LD analyses showed 
that most CNVs are not captured by 50K SNPs, stressing 
the importance of incorporating CNVs into routine anal-
yses either by directly genotyping or exploiting CNV tag-
ging SNPs. Also, a future study may investigate whether 
a haplotype-based approach outperformed tagging SNP 
approach. The current high-quality SV catalogue will 
serve as an invaluable resource for future population 
genetics studies.

Methods
Whole genome sequencing data
The genomes of 266 Dutch HF animals were sequenced. 
These 266 animals were closely related animals, where 
240 were forming 127 parents-offspring trios. The bio-
logical materials were either from sperm (males) or 
whole blood (females and males). Whole genome Illu-
mina Nextera PCR free libraries were constructed (550-
bp insert size) following the protocols provided by the 
manufacturer. Illumina HiSeq 2000 instrument was used 
for sequencing, with a paired-end protocol (2x100bp) by 
the GIGA Genomics platform (University of Liège). The 
data was aligned using BWA mem (version 0.7.5a) [45] 
to the bovine reference genome ARS-UCD1.2 [46], and 
converted into bam files using SAMtools 1.9 [47]. Subse-
quently, the bam files were sorted with Sambamba (ver-
sion 0.6.6) [48] and PCR duplicates were removed with 
Picard (version 2.7.1). All samples had a minimum mean 
sequencing coverage of 15X, and the mean coverage of 
the bam files was 26X.

Structural variation discovery pipeline
We discovered SVs using Smoove pipeline (https://
github.com/brentp/smoove). This pipeline collects split 
and discordant read pairs using Samblaster [49] and then 
discovers SVs per sample (step 1). The SV discovery was 
done sample by sample, using Lumpy [15], which detects 
deletions, duplications, inversions, and breakends (non-
canonical forms of SVs; step 2). The per sample SV dis-
covery showed that the number of SVs discovered per 
sample was related to the sequencing coverage (Figure 
S1). We did not find any outlier samples in terms of the 
total number of SV per sample and the number of single-
ton SVs per sample. Hence, the entire cohort of 266 ani-
mals was kept for further analysis. After the sample level 
SV discovery, all SVs were merged, creating a population-
wide non-redundant SV call set (step 3). Subsequently, 
the entire cohort was genotyped for the non-redundant 
SV sites using SVTyper (https://github.com/hall-lab/
svtyper), thus generating one vcf file per sample (step 4). 

Additionally, the step 4 included the annotation of the 
fold-coverage change of read-depth in SV using Dup-
hold [16]. Duphold annotated two read-depth values: (i) 
DHFFC representing sequencing depth fold-change for 
the variant compared to 1-kb flanking regions, and (ii) 
DHBFC representing sequencing depth fold-change for 
the variant compared to genomic regions with similar 
GC-content. We used DHFFC for filtering deletions and 
DHBFC for filtering duplications, as recommended by 
the developer. Finally, the individual vcf files were merged 
into a multi-sample vcf file (step 5). This multi-sample 
vcf file contained non-redundant 38,094 SVs (17,826 
deletions, 4,652 duplications, 1,811 inversions, 13,805 
breakends).

Establishing a clean call set exploiting the post hoc 
filtering based on read-depth changes
The initial SV call set contained 38,094 non-redundant 
SVs (17,826 deletions, 4,652 duplications, 1,811 inver-
sions, 13,805 breakends). We filtered out the following:

(i) 1,811 inversions and 13,805 breakends; retaining 
17,826 deletions and 4,652 duplications.

(ii) 495 deletions smaller than 50-bp; retaining 17,331 
deletions and 4,652 duplications.

(iii) 193 deletions and 11 duplications that were not 
polymorphic in the current population (all animals 
genotyped as 0/0 or 1/1); retaining 17,138 deletions 
and 4,641 duplications.

(iv) 42 deletions suggesting assembly issues (all 
animals genotyped as 0/1); retaining 17,096 deletions 
and 4,641 duplications.

(v) 4,405 deletions and 3,037 duplications suggesting 
false calls based on spurious read-depth fold-
coverage changes (explained below); retaining 12,691 
deletions and 1,604 duplications.

Current SV call set was genotyped based on SR and DP 
evidence (reads-based genotyping). In contrast, CNVs 
can be genotyped solely relying on changes in read-depth 
in absence of SR and DP evidence. Thus, to refine our SV 
call set, we performed a post hoc site-level filtering using 
the read-depth fold-coverage annotation obtained from 
Duphold (step 4 of the pipeline; see above). We obtained 
the mean read-depth fold-coverage values per genotype 
and SV type. The mean read-depth fold-coverage values 
for deletions were 0.91 for 0/0; 0.55 for 0/1 and 0.03 for 
1/1. For duplications, 1 for 0/0, 1.22 for 0/1, and 1.45 
for 1/1. Subsequently, we generated a QC plot per SV 
which visualizes the read-depth fold-coverage change 
depending on genotypes (Fig. 1D). By manually inspect-
ing underlying WGS data and the QC plots of all SVs on 
chromosome 1, we established rules that for deletions, 
a site should meet the following: (a) the ratio between 
mean read-depth fold-coverage in 0/0 carriers and mean 
read-depth fold-coverage in 0/1 carriers should be larger 

https://github.com/brentp/smoove
https://github.com/brentp/smoove
https://github.com/hall-lab/svtyper
https://github.com/hall-lab/svtyper
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than 1.39, and (b) neither mean read-depth fold-coverage 
in 0/0 carriers nor mean read-depth fold-coverage in 
0/1 carriers is equal to 0, and (c) the highest read-depth 
fold-coverage in 0/0 carriers is smaller than 3, and (d) 
the highest read-depth fold-coverage in 0/1 carriers is 
smaller than 1.3, and (e) the lowest read-depth fold-cov-
erage of 0/0 carriers are larger than 0.1; for duplications, 
a site should meet the following: (a) the ratio between 
mean read-depth fold-coverage of 0/1 and1/1 carriers 
and read-depth fold-coverage of 0/0 carriers should be 
higher than 1.2 and smaller than 5, and (b) the lowest 
read-depth fold-coverage in 0/0 carriers should be higher 
than 0.44, and (c) the lowest read-depth fold-coverage in 
0/1 carriers should be higher than 0.5.

(vi) 490 deletions and 74 duplications that were 
duplicates (explained below); retaining 12,201 
deletions and 1,530 duplications.

While inspecting all SVs on chromosome 1, we discov-
ered that our pipeline sometimes outputs two call (e.g., 
due to complex breakpoints) although there is a single 
true SV. We manually screened all SVs using IGV to 
detect duplicate SVs.

Finally, some duplication QC plots showed non-canon-
ical read-depth fold-coverage changes. For a biallelic 
duplication, read-depth fold-coverage changes will form 
three distinctive distributions (Fig.  1D). Some duplica-
tions showed non-canonical form of read-depth fold-
coverage distributions, which formed more than three 
distributions, indicating more than two alleles. By manu-
ally screening all QC plots, we re-classified 21 duplica-
tions as mCNVs (Figure S2). With this our clean call set 
was established, which includes 12,201 deletions, 1,509 
duplications, and 21 mCNVs.

Differentiating the clean call set into stringent and lenient 
calls
While manually inspecting underlying WGS data and 
the QC plots of all SVs on chromosome 1, we learned 
that some clean SV calls do not conform canonical read-
depth fold-coverage changes. For example, for a deletion, 
one may be genotyped as 0/0, despite the fact that the 
read-depth fold-coverage indicates heterozygous deletion 
(e.g., 0.5). For downstream analyses which may require 
accurate genotyping results, we divided the clean SV call 
set into a “stringent” call set, with CNVs of which their 
read-depth fold-coverage corresponds unambiguously to 
the reads-based genotypes, and a “lenient” call set with 
CNVs of which their read-depth fold-coverage does not 
always match with the reads-based genotypes. Among 
the CNVs in the clean call set, ones that meet the follow-
ing criteria were classified as stringent and otherwise as 
lenient.

(i) For deletions, (a) the highest read-depth fold-
coverage value among 0/1 carriers should be smaller 

than the lowest read-depth fold-coverage value 
among 0/0 carriers, and (b) the highest read-depth 
fold-coverage value among 0/0 carriers should be 
smaller than the lowest read-depth fold-coverage 
value among 0/1 carriers, and (c) the lowest read-
depth fold-coverage value among 0/1 carriers should 
not be equal to 0;

(ii) For duplications, (a) the lowest read-depth fold-
coverage value among 0/1 carriers should be larger 
than the highest read-depth fold-coverage value 
among 0/0 carriers, and (b) the lowest read-depth 
fold-coverage value among 1/1 carriers should be 
larger than the highest read-depth fold-coverage 
value among 0/1 carriers, and (c) the lowest read-
depth fold-coverage value among 0/1 carriers should 
not be equal to 0, and (d) the lowest read-depth 
fold-coverage value among 1/1 carriers should not be 
equal to 0;

Using these criteria, we classified the clean call set into 
4,013 stringent calls (3,828 deletions and 185 duplica-
tions) and 9,697 lenient calls (8,373 deletions and 1,324 
duplications).

Evaluation of the SV call set
Mendelian inheritance errors Using the 127 trios, we 
coined a quality assessment metric based on Mendelian 
inheritance. We counted the number of trios showing 
Mendelian inheritance error and expressed it as a frac-
tion. For example, for a CNV locus, if 10 trios showed 
Mendelian error, we assigned 0.08 (10/127 = 0.08). Hence, 
the scale ranged from 0 to 1, where 0 stands for no trios 
showing inheritance error, whereas 1 indicates all of the 
127 trios showing inheritance error. We calculated this 
metric for all the CNV sites, both lenient and stringent 
calls. Additionally, to correct for a possible bias, where 
common CNVs may be biased to have higher Mendelian 
errors, we changed the denominator from the total num-
ber of trios (n = 127) to the effective number of trios of 
which at least one of the trio animals carried the variant 
for a given site.

Direct genotyping of CNVs using a 50 K SNP array To 
avoid highly costly validations, we opted for direct geno-
typing of a subset of CNVs. We designed probes directly 
targeting the breakpoint sequences of 372 CNVs (342 dele-
tions and 30 duplications) that appeared in non-repetitive 
regions, using the Illunima DesignStudio Custom Assay 
Design Tool. These probes were added in the custom part 
of the EuroGenomics SNP genotyping array [18]. Geno-
typing was done for 815 Dutch HF animals using their ear 
punch or blood samples. Of note, these samples did not 
overlap with the WGS data set samples.
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Comparison with an array-based CNV catalogue The 
overall WGS-based CNV call set (including both lenient 
and stringent calls) was compared to an array-based CNV 
call set. The array-based CNV call set was obtained based 
on Illumina BovineHD Genotyping BeadChip (770 K) in 
315 HF animals [14]. Of the 315 animals, 34 were overlap-
ping with the WGS samples. The event size determined 
from an array-based CNV detection is strongly dependent 
on the local probe density. Thus, applying reciprocal over-
lap criteria for comparing array- and WGS- call set may 
underestimate the true overlapping calls. Accordingly, we 
intersected two call sets using Integrative Genome Viewer 
(IGV) [50] and manually inspected the underlying WGS 
data for overlapping calls. Where array- and WGS- based 
sites are overlapping and the underlying WGS data sup-
ports true presence of CNVs, we confirmed them as over-
lapping calls.

Linkage disequilibrium in WGS data sets
We investigated the CNV-SNP LD using WGS data sets. 
SNPs were discovered from the same WGS data set 
explained above. Variant calling was done using GATK 
workflow (v4.1.7) and subsequently recalibrated using 
the following algorithms: BaseRecalibrator, Haplotype-
Caller, GenomicsDBImport, GenotypeGVCF, Gath-
erVcfs, Variant Recalibrator [51–53]. We applied Variant 
Quality Score Recalibration (VQSR) at a truth sensitivity 
filter level of 97.5 to remove spurious variants. For cal-
culating CNV-SNP pairwise LD, SNPs located inside the 
CNVs were removed, and SNPs located within 100-kb 
distance from the CNV breakpoints were kept. Pairwise 
CNV-SNP LD (r2) was obtained from PLINK software 
(v1.9) [54].

Linkage disequilibrium in 50 K SNP array data sets
The genotype data obtained from 50K SNP array, aug-
mented with probes targeting the CNV breakpoints, 
was used to obtain 50K level CNV-SNP LD (explained 
above). Genotyping was done for 815 Dutch HF animals, 
and all samples passed the quality criteria (call rate per 
sample > 0.99). Of 53,917 SNPs and 284 CNVs that passed 
variant level filter (call rate per variant > 0.99), 50,342 
SNPs and 229 CNVs were segregating in the popula-
tion. As the number of segregating duplications was 
low (n = 19), we only performed the LD analyses on 210 
deletions. We compared SNP-SNP and CNV-SNP LD 
depending on the inter-marker distance. The number of 
CNVs was lower than SNPs, and hence SNP-SNP pairs 
outnumbered CNV-SNP pairs. To compare the same 
number of pairs, we sampled an equal number of SNP-
SNP pairs 1,000 times and compared the mean LD with 
the CNV-SNP pairs. Pairwise SNP-SNP and CNV-SNP 
LD (r2) was obtained from PLINK software (v1.9) [54]. 

The analyses were ran for common (MAF ≥ 0.05) and rare 
(MAF < 0.05) variants separately.

Coding sequence disrupting SVs
We classified coding sequence (CDS) disrupting SVs into 
predicted loss-of-function, copy gain, and intergenic 
exon duplication following [22]. The CDS disrupting SVs 
were identified using Variant Effect Predictor (Ensembl 
release 98) [55].

Regulatory element disrupting SVs
Bovine liver ChIP-seq data (H3K27ac and H3K4me3) 
was obtained from ArrayExpress (E-MTAB-2633; [31]). 
This ChIP-seq data was aligned to the bovine reference 
genome ARS-UCD1.2 using Bowtie2 [56], and peaks 
were called using MACS2 [57]. The SVs overlapping 
with enhancer or promoter signals were identified using 
BedTools software [58]. Based on the strength of the 
regulatory elements signal, the allele frequency of the SVs 
(MAF > 0.05), and literature suggesting their functional 
roles in phenotypes [27, 28, 30], we selected two SVs for 
subsequent SV-eQTL mapping.

SV-eQTL mapping
Genotype data and imputation Liver biopsy sam-
ples were collected from ~ 14-day postpartum HF cows 
(n = 178). The procedures had local ethical approval 
and complied with the relevant national and EU legisla-
tion under the European Union Regulations 2012 (S.I. 
No. 543 of 2012). These samples were genotyped using 
Illumina BovineHD Genotyping BeadChip (770K). 
Genotypes in a 10-Mb region encompassing the SV of 
interest were parsed out, and rare variants were filtered 
out (MAF < 0.02). We included both SNPs and the SVs of 
interest in the imputation panel to see whether SV(s) is 
the underlying variant driving the gene expression. The 
SNPs were discovered, as explained above. Two different 
SV genotypes were used: (i) the original reads-based gen-
otypes obtained from SVtyper (https://github.com/hall-
lab/svtyper) which utilizes SR and DP evidence and (ii) 
genotypes manually corrected based on the read-depth 
fold-coverage changes (Figure S11). The initial imputation 
panel included SNPs in a 10-Mb region harbouring the SV 
of interest and two different genotypes of SVs (contained 
266 WGS animals). This panel was phased, and variants 
with low phasing accuracy and allele frequency were fil-
tered out (DR2 < 0.95 and MAF < 0.02). Subsequently, the 
BovineHD genotypes were imputed to the sequence level 
variants and variants with low imputation accuracy and 
low minor allele frequency were filtered out (allele R2 < 0.9 
and MAF < 0.025). Phasing and imputation were done 
using Beagle 4 [59].

https://github.com/hall-lab/svtyper
https://github.com/hall-lab/svtyper
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RNA-seq data and eQTL mapping The liver RNA-seq 
data was obtained from the GplusE consortium (http://
www.gpluse.eu; EBI ArrayExpress: E-MTAB-9348 and 
9871) [60]. RNA-seq libraries were constructed using Illu-
mina TruSeq Stranded Total RNA Library Prep Ribo-Zero 
Gold kit (Illumina, San Diego, CA) and sequenced on Illu-
mina NextSeq 500 sequencer with 75-nucleotide single-
end reads to reach average 32 million reads per sample. 
The reads were aligned to the bovine reference genome 
ARS-UCD1.2, and its corresponding gene coordinates 
from UCSC as a reference using HISAT2 [61]. Transcript 
assembly was conducted with StringTie [62], using a ref-
erence-guided option for transcript assembly. Reads were 
counted at gene level using StringTie. Subsequent QC on 
the RNA-seq data set removed three samples with subop-
timal quality (QC steps are explained in detail elsewhere; 
[17]), normalised gene expression was associated with the 
imputed WGS variants for 175 samples, using a linear 
model in R package “MatrixEQTL” [63].
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