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Background
Maize, or corn (Zea mays L.) is one of the most impor-
tant cereal crops in the world [1]. Color formation is an 
important part of maize kernel development, and yellow 
kernels are the dominant maize planted in the world [2]. 
Colored maize has received attention due to its role in 
diet-related chronic diseases [3]. Therefore, the market 
has different positioning demands for different colors of 
maize, which can be processed into different products 
[4]. Preferences for different maize products were impor-
tant for almost all consumer (97.3%) stated diets. Maize 
kernels contain rich nutrients and have varying degrees 
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Abstract
Background Maize has many kernel colors, from white to dark black. However, research on the color and nutritional 
quality of the different varieties is limited. The color of the maize grain is an important characteristic. Colored maize 
is rich in nutrients, which have received attention for their role in diet-related chronic diseases and have different 
degrees of anti-stress protection for animal and human health.

Methods A comprehensive metabolome (LC-MS/MS) and transcriptome analysis was performed in this study to 
compare different colored maize varieties from the perspective of multiple recombination in order to study the 
nutritional value of maize with different colors and the molecular mechanism of color formation.

Results Maize kernels with diverse colors contain different types of health-promoting compounds, highlighting that 
different maize varieties can be used as functional foods according to human needs. Among them, red-purple and 
purple-black maize contain more flavonoids than white and yellow kernels. Purple-black kernels have a high content 
of amino acids and nucleotides, while red-purple kernels significantly accumulate sugar alcohols and lipids.

Conclusion Our study can provide insights for improving people’s diets and provide a theoretical basis for the study 
of food structure for chronic diseases.
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of stress resistance protection for animal and human 
health [5].

Flavonoids, mainly anthocyanins, are the main con-
trolling substances that determine the pigment of maize 
kernels [6], and mainly control the blue, purple, and red 
hues of kernels [7]. Studies have found that flavonoids are 
helpful for patients with inflammatory diseases, chronic 
diseases, and certain types of cancer due to their antioxi-
dant activity [8]. At present, most of the studies on maize 
kernel pigmentation are genetic studies of conventional 
breeding. Certain studies have shown that purple kernel 
maize has higher contents of phenols, flavonoids, and 
proanthocyanins, while yellow maize has higher carot-
enoid content, and red kernel maize has higher contents 
of phenols [9, 10]. As a research tool, omics technology 
provides a link between gene sequences and visible phe-
notypes and can quantitatively determine a large number 
of metabolites in a short time via high throughput.

Metabolomics (LC-MS/MS) is an important tech-
nology for characterizing related bioactive substances 
(such as flavonoids, phenols, and carotenoids) in maize 
biodiversity [11]. The integration of data with other 
high-throughput omics technologies is critical to better 
understanding the underlying molecular mechanism of 
functional metabolism [12, 13]. In recent years, transcrip-
tomics (RNA-Seq) and metabolomics have been applied 
to research and screen the metabolites and related key 
genes of various crops, fruit coloring, and quality forma-
tion [14–16]. Li et al. [17] investigated in the tissue-spe-
cific anthocyanin accumulation mechanism in aleurone 
layer and pericarp of two purple corn lines by using com-
parative transcriptome analysis to identify differentially 
expressed genes involved in anthocyanin accumulation. 
Maize kernels are full of nutrients, but there are few 
reports comparing the metabolome and transcriptome of 
maize grains of different colors and comparative studies 
on the biologically active compounds in maize grains and 
related pathways [9].

This study conducted a systematic analysis of dif-
ferent maize grain colors (white, yellow, red-purple, 

purple-black). We performed metabolomics to under-
stand the composition and differences of the metabolite 
components in grains of different colors. Transcriptome 
analysis was used to explore the influence of maize grain 
quality- and color formation-related genes and their 
expression profiles, which can provide a theoretical basis 
for the dominant breeding of superior maize.

Results
Metabolite distribution in four varieties of maize kernels
To identify the potential mechanisms of coloration and 
nutritional quality between four different maize kernels 
with white (W), yellow (Y), red-purple (R), and purple-
black (P) colors (Fig. 1). LC-MS/MS was first conducted 
to detect metabolites in these four varieties of maize ker-
nels. A total of 524 metabolites were identified in this 
study, which mainly included flavonoids (19.66%), amino 
acids and derivatives (16.03%), phenolic acids (14.12%), 
lipids (11.07%), alkaloids (9.54%), nucleotides and deriva-
tives (8.40%), organic acids (5.15%), and lignan and cou-
marin (2.10%) (Fig.  2a, Additional file 1). The results 
showed that these maize variety (color) kernels were rich 
in metabolic components.

Then, an overall analysis was conducted to understand 
the metabolite distribution and accumulation pattern of 
these components in each maize group. Figure 2b depicts 
hierarchical clustering analysis (HCA) for each group 
sample and metabolite. The results of sample cluster-
ing (red rectangular box) in the heatmap indicated that 
Y and W were first clustered into one branch (①) and 
then aggregated with R (②), while P was separated into 
another branch (③). This result suggested that compared 
with R and P, the accumulation patterns of metabolites in 
Y and W were closer or more similar. However, the dis-
tribution of metabolites in P and the other three groups 
(W, Y, and R) was quite different. The following heatmap 
also shows this result more intuitively (Fig. 2b). We also 
found that certain specific accumulated metabolites were 
identified in each group, especially in the R (1) and P (2) 
groups.

Fig. 1 Color phenotype of four varieties of maize kernels. White (W), yellow (Y), red–purple (R) and purple–black (P) kernels from left to right in the figure. 
The scale in the picture represents 1 cm
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The results of the PCA were consistent with the HCA. 
The explained phenotypic variation rates for PC1 and 
PC2 were 41.01% and 28.54%, respectively. The P and 
R groups were significantly separated on PC1 and PC2. 
The Y group was close to the W group, and these two 
groups were located between the P and R groups on PC1 
(Fig. 2c). Therefore, we combined PCA and HCA, and the 
results suggested that the W and Y groups had similar 
metabolite profiles, and their similarity to R was greater 
than that of the P group. The difference in metabolite 
distribution between the P and R groups was the largest 
compared with the other maize groups.

Differentially accumulated metabolite (DAM) analysis in 
maize kernels
The preliminary analysis of PCA and HCA found that the 
metabolite accumulation and distribution in the P group 
was greatly different from that in the other three groups 
(W, R, and Y). Then, the specific differentially accumu-
lated metabolites (DAMs) were analyzed by using the 
VIP > 1, -1 < log2FC < 1 criterion to filter DAMs in differ-
ent comparisons, such as W vs. P, R vs. P, and Y vs. P (Fig. 
S1). In the comparison of R vs. P, 178 DAMs were upreg-
ulated, and 105 DAMs were downregulated. One hun-
dred and sixty-five and 73 DAMs were upregulated and 
downregulated in the W vs. P comparison, respectively. 
In Y vs. P, 172 DAMs were upregulated, and 87 DAMs 
were downregulated. In W vs. R, 153 DAMs were upreg-
ulated, and 99 DAMs were downregulated. In Y vs. R, 
124 DAMs were upregulated, and 121 DAMs were down-
regulated (Fig. S1). The number of DAMs is consistent 
with the previous analysis. In the above three compari-
son groups, the up-accumulated metabolites were signifi-
cantly higher than the downregulated DAMs. The results 

indicated that the number of DAMs in purple maize was 
greater than that in other three-color maize.

Venn analysis and shared DAMs in maize kernels
To better characterize the differences between P and 
the other three maize groups, we used Venn analysis to 
screen their common ADMs (Fig. 3a). The results showed 
that a total of 147 DAMs were shared in each comparison 
maize group. In the comparison of R vs. P, Y vs. P, and W 
vs. P have their own unique DAMs, namely, 65, 27, and 
9, respectively. Then, we carried out a detailed analysis 
of the content changes of these DAMs in each group of 
maize. Therefore, we found that the shared DAMs in the 
four colors of maize mainly included three categories: fla-
vonoids, phenolic acids, and alkaloids. According to the 
relative content, although only a few DAMs had different 
accumulation patterns in each group, most DAMs were 
significantly accumulated in Group P.

We first conducted a detailed analysis of differentially 
accumulated flavonoids (DAFs) due to the largest num-
ber of flavonoids in shared DAMs (Fig. 3b, Additional file 
2). A total of 61 kinds of isoflavones were identified in the 
present study. Among them, 46 DAFs were not detected 
in W, or the content was very low. In addition, 17 and 12 
DAFs were not detected in the Y and R groups, respec-
tively. However, the relative content of these DAFs in the 
P group was high (73%), and all of them were above 105. 
At the same time, an anthocyanin, peonidin 3-O-gluco-
side, was not found in the W and Y groups, while it was 
highly abundant in the R (105) and P groups (more than 
107). Since anthocyanins are important pigment-related 
metabolites, we speculated that the red color of maize 
grains in R and the purple color of kernels in P have a 
strong relationship with these DAFs.

Fig. 2 Pie chart of metabolite classification and percentages in four varieties of maize kernels (a). The outer circles in the pie chart indicate the detected 
metabolite categories and the percentage, while the inner circles show the specific subcategories of metabolites contained in each major category 
metabolite. Metabolite accumulation pattern of maize kernels (b) and principal component analysis (c). In the heatmap, the colors marked with green 
and red were down- and up-accumulated in maize kernels, respectively. W represents white kernels, Y represents yellow kernels, R represents red–purple 
kernels, and P represents purple–black kernels
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We then analyzed the shared alkaloids and phenolic 
acids in four different colored maize kernels. The results 
were consistent with the accumulation pattern of flavo-
noids, and compared with the other three groups (W, Y, 
and R), these differentially accumulated alkaloids and 
phenolic acids were also significantly accumulated in 
Group P (Additional file 2). Therefore, we preliminarily 
speculated that the common DAMs in the W, Y, R, and P 
groups were mainly reflected in the secondary metabolite 
accumulation differences, including the accumulation of 
flavonoids, phenolic acids, and alkaloids.

Accumulation patterns of specific DAMs in maize kernels
According to the above HCA, PCA, and DAM screen-
ing results, we found that a huge difference existed in 
the R vs. P comparison. Therefore, except for the com-
mon DAMs in four color maize kernels, we were curious 
about the differences in specific metabolite accumulation 
between R and P, which contribute to the significant dif-
ferences between these two kernel groups. The unique 
DAMs in R and P were analyzed in this study. Accord-
ing to the Venn analysis above (Fig. 3a), we found that a 
total of 65 unique DAMs in R vs. P were identified in the 
present study. Detailed analysis indicated that most of 
these DAMs (above 75%) were mainly primary metabo-
lites, including amino acids, sugar alcohols, and lipids 
(Fig. 4a, additional file 3). Among them, amino acids and 
nucleotides notably accumulated in the P group, while 
sugar alcohol and lipids accumulated in the R group. 
Therefore, the results showed not only the accumulation 
difference of secondary metabolites but also the accumu-
lation difference of primary metabolites between the R 

and P groups, resulting in the huge difference in DAMs 
between these two groups.

At the same time, we also compared the DAMs in R vs. 
W and R vs. Y and found the same accumulation trend in 
which lipids and sugar alcohol significantly accumulated 
in the R group (Fig.  4b). In addition to these primary 
DAMs, certain flavonoids also accumulated significantly 
in the R group (Fig. 4b, additional file 4). Finally, we ana-
lyzed the accumulation of DAMs in the W and Y groups 
and found that amino acids and derivatives accumu-
lated in the W and Y groups, especially in comparisons 
of W vs. R and Y vs. R. Furthermore, compared with the 
W group, some flavonoids accumulated in the Y group 
as well. Therefore, we conducted significant pathway 
enrichment analysis (KEGG analysis) for the DAMs in W, 
Y groups and R, P groups, respectively. The results show 
that the DAMs share metabolic pathways in different 
comparison groups mainly including phenylpropanoid 
biosynthesis, phenylalanine metabolism, flavonoid bio-
synthesis, and flavone and flavonol biosynthesis (Fig. S3).

We analyzed the overall metabolite accumulation pro-
file in different kernel colors of the W, Y, R, and P groups. 
A large number of secondary metabolites were identified 
in the P group, including flavonoids, phenolic acids, and 
alkaloids. Some secondary metabolites (flavonoids and 
alkaloids) also accumulated in the R and Y groups, while 
only a few secondary metabolites (flavonoids) accumu-
lated in the W group, and most of these flavonoids were 
undetected in maize. Primary metabolites, such as amino 
acids and derivatives, accumulated significantly in W, 
while sugar alcohols and lipids accumulated significantly 
in red-purple kernels (R). The results suggested that the 

Fig. 3 Venn analysis of identified differentially accumulated metabolites (DAMs) in maize in different comparison groups (a) and accumulation patterns 
of shared differentially accumulated flavonoids (DAFs) in four different colors of maize (b). W represents white kernels, Y represents yellow kernels, R 
represents red–purple kernels, and P represents purple–black kernels. Metabolites marked with red and green indicate up- and down-accumulated in 
maize kernel, respectively
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grain color from white to purple [white (W), yellow (Y), 
red-purple (R), and purple-black (P)] was correlated with 
the accumulation of flavonoids. Therefore, we speculated 
that these flavonoid contents were related to maize ker-
nel color formation.

Transcriptome analysis and KEGG enrichment analysis in 
each maize group
Transcriptome sequencing was performed to explore the 
mechanism of maize grain color differences. The RNA-
Seq data are shown in Table 1. The clean bases in the 12 
maize samples were all more than 6.2 G. The error rate 
of the sequencing did not exceed 0.02%. The Q20 and 
Q30 were at least 98.08% and 94.17%, respectively. The 
GC content of each maize group exceeded 53.99%, with 

at least an 86.27% read mapping rate in these samples. 
On the premise that the quality of RNA-Seq data was not 
problematic (Table  1), PCA was carried out. The tran-
scriptome results were consistent with the metabolome 
PCA (Fig. S2). According to the results of metabolome 
analysis, we found that compared with other groups (W, 
Y, and R), there was a significant difference in flavonoid 
accumulation in Group P. Then, KEGG co-annotation 
was performed for differentially expressed genes (DEGs) 
and differentially accumulated metabolites (DAMs) 
identified and screened by the transcriptome and 
metabolome. The results showed that flavonoid biosyn-
thesis-related pathways (flavonoid biosynthesis, flavone 
and flavonol biosynthesis, phenylpropanoid biosynthe-
sis) were significantly enriched in each group of colored 

Table 1 Statistics, quality and RNA-Seq assembly results of 12 RNA sequencing libraries in different color maize varieties
Sample Raw Reads Clean Reads Clean Base (G) Error Rate (%) Q20 (%) Q30 (%) GC Content (%) Reads mapped
P-1 49,714,966 48,713,390 7.31 0.02 98.26 94.64 54.56 44,390,230(91.13%)

P-2 51,957,970 50,768,754 7.62 0.02 98.47 95.17 53.99 46,294,944(91.19%)

P-3 43,694,822 42,524,096 6.38 0.02 98.25 94.59 54.8 38,643,525(90.87%)

R-1 47,480,608 46,721,244 7.01 0.02 98.14 94.31 57.07 40,522,730(86.73%)

R-2 46,743,908 45,767,870 6.87 0.02 98.34 94.93 57.21 39,486,116(86.27%)

R-3 42,128,348 41,340,490 6.2 0.02 98.25 94.68 56.69 35,925,885(86.90%)

W-1 45,094,272 44,217,510 6.63 0.02 98.23 94.52 55.6 39,729,487(89.85%)

W-2 49,294,122 48,267,112 7.24 0.02 98.28 94.64 55.24 43,486,105(90.09%)

W-3 45,642,886 44,773,192 6.72 0.02 98.08 94.17 55.2 40,259,033(89.92%)

Y-1 44,677,430 43,805,566 6.57 0.02 98.26 94.66 55.64 39,645,741(90.50%)

Y-2 47,956,890 47,250,810 7.09 0.02 98.36 94.87 55.69 42,786,601(90.55%)

Y-3 45,326,632 44,487,150 6.67 0.02 98.27 94.67 56.12 40,292,327(90.57%)

Fig. 4 Accumulation patterns of specific metabolites (amino acids, sugar alcohols and lipids) in R vs. P (a); DAM (lipid, sugar alcohol, flavonoid) accumula-
tion patterns in R vs. W and R vs. Y (b). W represents white kernels, Y represents yellow kernels, R represents red–purple kernels, and P represents purple–
black kernels. Metabolites marked with red and green indicate up- and down-accumulated in maize kernel, respectively
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maize (Fig. S4). Therefore, we analyzed the associated key 
gene expression levels and metabolite accumulation pro-
files in flavonoid synthesis-related pathways.

Combined transcriptome and metabolome analysis in 
maize of different colors
We used |log2Fold Change | ≥ 1 and FDR < 0.05 criteria 
to filter and identify flavonoid synthesis-related DEGs in 
each kernel group (R v P, W vs. P, and Y vs. P). A total 
of 107 DEGs were screened (additional file 5), includ-
ing key synthase genes in the flavonoid synthesis path-
way. According to the KEGG analysis results of DEGs 
and DAMs and combined with the differential flavo-
noid accumulation pattern (Table S2), a heatmap of the 
metabolic pathway flow chart was drawn in this study 
(Fig. 5). The results showed that flavonoids were signifi-
cantly accumulated in Group P, and the expression levels 
of related key synthetic genes, such as chalcone synthase 
(CHS), chalcone isomerase (CHI), flavanone 3-hydroxy-
lase (F3H), phenylalanine ammonia-lyase (PAL), antho-
cyanidin synthase (ANS), and 4-coumarate-CoA ligase 
(4CL), were also highly expressed in Group P. In addition, 
the accumulation pattern of corresponding metabolites 
involved in regulation or synthesis by these key genes 
is also consistent with the gene expression profile, such 
as naringenin chalcone, naringenin, apigenin, luteolo-
side, pinobanksin, periconidin 3-glucoside, hesperetin, 
butin, kaempferin, kaempferol, astragalin, eriodictyol, 
trifolin, vitexin, isovittexin, myricetin, syringetin, rutin, 

isoquercitrin, and baimaside. The results of the combined 
transcriptome and metabolome analysis indicate that 
these key genes and metabolites might play an impor-
tant role in the biosynthesis of flavonoids in maize ker-
nels, which is also an important factor in determining 
the color formation causing the difference in the color of 
maize kernels.

qRT–PCR verification
To verify the reliability of the RNA-Seq profile results, 
we performed qRT–PCR analysis on some key regulatory 
genes related to maize grain color formation (Fig. S5). 
These key regulated genes included bifunctional dihydro-
flavonol 4-reductase/flavanone 4-reductase (DFR), narin-
genin 3-dioxygenase, F3H, CHS, CHI, chalcone-flavonone 
isomerase, leucoanthocyanidin dioxygenase/anthocyani-
din synthase (LDOX/ANS), flavonol synthase (FLS), 4CL, 
and PAL. The results showed that qRT–PCR analysis had 
a significant positive correlation with the gene expres-
sion level in the RNA-Seq (R2 = 0.708, P < 0.01). Thus, the 
results indicate the reliability of the RNA-Seq data and 
the accuracy of the results of this study.

Discussion
Maize has a high yield worldwide, and as a staple food 
in many countries [18], maize can have market poten-
tial and undergo further development as research on 
food functionality progresses. During the development 
of maize kernels, various metabolites are synthesized 

Fig. 5 Expression levels of structural genes and metabolites involved in the flavonoid biosynthesis pathway in maize kernels. The heatmap represents 
the expression of corresponding genes, and white to red in the heatmap indicates the expression levels of structural genes ranging from low to high. The 
color of the heatmap from yellow to blue indicates the accumulation levels of metabolites ranging from low to high. Enzymes in this pathway are shown 
as follows: PAL, phenylalanine ammonia lyase; 4CL, 4-coumarate-CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; CYP73A, trans-cinnamate 
4-monooxygenase, F3H, flavanone 3-hydroxylase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; FLS, flavonol synthase, CYP75A, flavo-
noid 3’,5’-hydroxylase, and CYP75B1, flavonoid 3’-monooxygenase
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and stored [19]. Studying the molecular and biochemi-
cal mechanisms of nutritional quality and color forma-
tion in maize kernels is of great significance not only for 
basic research on maize development but also for maize 
improvement through metabolic engineering. Therefore, 
the dynamic transcriptome and metabolome of four vari-
eties of maize kernels with different colors were analyzed 
in the present study.

Research on grain color and nutritional quality has 
received more attention with the development of meta-
bonomic technology. Metabonomic analysis has been 
applied to a variety of grains, such as rice, wheat, and 
sorghum [20, 21]. However, there is a lack of comparative 
studies on the metabolome and transcriptome of maize 
kernels of different colors. In this experiment, metabo-
lomics technology based on HPLC–MS/MS was used to 
study the metabolic profiles of maize kernels of different 
colors and to understand the differences in the principal 
components. A total of 524 metabolites were detected 
from 4 maize varieties, which mainly included flavonoids, 
amino acids, phenolic acids, and lipids. Among them, we 
found that the accumulation pattern of metabolites in 
group P was significantly different from that in the other 
three groups, while the accumulation pattern of metabo-
lites in the Y and W groups was similar. The content and 
chemical diversity of flavonoids in purple maize kernels 
were the highest, followed by red maize, yellow maize, 
and kernels, indicating that the accumulation pattern and 
content of flavonoids might be related to the difference in 
maize grain color. In addition, the results of the synthe-
sis and widespread distribution of polyphenol secondary 
metabolites in plants indicate that these related phenolic 
compounds may also be related to the coloring of grains 
of different colors.

As the average life expectancy of humans has increased, 
research on chronic diseases has become increasingly 
important. Flavonoids are a broad class of plant second-
ary metabolites that determine the color of plants or fruit 
skins and have also been widely used in improving animal 
body disease resistance and improving immune mecha-
nisms [22, 23]. In our research, the common DAMs in 
maize kernels of different colors mainly included flavo-
noids, phenolic acids, and alkaloids. Among them, there 
were 61 DAFs, and as the color changed and deepened, 
the types increased, and their content also increased. 
White kernels have the least variety and the lowest con-
tent, and the difference in purple kernels is rich in fla-
vonoids and high in content, which is consistent with 
previous studies [24, 25]. The results of our study showed 
that the type and accumulation content, and distribu-
tion ratio of flavonoids significantly affect the color of 
maize kernels. In addition, we also found that 46 kinds of 
DAFs were not detected in W, mainly including 15 flavo-
noids (diosmetin, 6,7,8-tetrahydroxy-5-methoxyflavone, 

jaceosidin, hesperetin-7-O-glucoside, 2,6-dimethyl-
7-octene-2,3,6-triol, tricin 7-O-glucuronide, apigenin 
6,8-C-diglucoside, lonicerin, etc.), 14 flavonols (isor-
hamnetin-3-O-glucoside, kaempferol-7-O-glucoside, 
quercetin-7-O-glucoside, isoquercitrin, etc.), and 9 dihy-
droflavonols (pinobanksin, hesperetin 5-O-glucoside, 
naringenin, butin, eriodictyol, hesperetin, and homoe-
riodictyol, etc.). Furthermore, 17 and 12 DAFs were not 
detected in Y and R, respectively, and mainly included 
myricetin, kaempferin, astragalin, trifolin, peonidin 
3-O-glucoside, C-hexosyl-luteolin O-hexoside, eupato-
rine, and cynaroside. Therefore, we speculated that red–
purple and purple maize grains had a strong relationship 
with these DAFs.

Anthocyanin, a flavonoid, is a water-soluble natural 
pigment widely distributed in plants [26] and is related 
to the main pigments found in fruits, vegetables, and 
flowers [27]. In this study, we found that an anthocyanin, 
peonidin 3-O-glucoside, was not detected in white and 
yellow maize kernels but had a high content in red and 
purple kernels. Among them, the content of peonidin 
3-O-glucoside in purple maize kernels was significantly 
higher than that in red kernels, which may be closely 
related to the color change (from red–purple to purple–
black) of maize grains. Previous studies have shown that 
this compound also has various pharmacological activi-
ties, such as antioxidative, antitumor, and cholesterol-
lowering activities, and affects the immune mechanism 
of the animal body [28–30]. Therefore, red–purple and 
purple–black maize can be used as raw materials for 
developing functional health foods, and the different col-
ors of maize grains can also be used as phenotypic indi-
cators for preliminary judgment and classification.

Nutritional quality is the most important indicator of 
crops. In a comparison of deep-colored maize grains (R 
and P), 65 metabolites were found to be related to nutri-
tional quality, such as amino acids, sugar alcohols, lipids, 
and lignans and coumarins, which were important fac-
tors in grain quality [31]. There were almost no differen-
tial metabolites associated with color formation because 
these DAMs were all present in both R and P maize ker-
nels but with different relative contents to decide color 
changes. Therefore, we speculate that the difference in 
color between R and P is determined by the content of 
flavonoids/anthocyanins. Nutritional quality analysis of 
these two maize varieties showed that P contained more 
amino acids and nucleotides, while R contained more 
sugar alcohols and lipids. Lignans and coumarins belong 
to the class of phenylpropanoids that have anticoagulant, 
hemostasis, anticancer, and photosensitivity effects on 
animals [32–34], which have growth regulation and dis-
ease resistance effects on plants. In addition, coumarin 
has a sweet smell that may contribute to the flavor modi-
fication of maize kernels. The results suggested that the 
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two maize varieties had different nutritional values and 
taste sensations.

Conclusion
Transcriptomics data can be combined with metabolic 
networks that clarify the reasons for different maize ker-
nel colors and provide metabolic network information 
for subsequent customized cultivation of functionally 
enriched maize. The results of metabolomic and tran-
scriptomic analysis showed that DEGs and their metab-
olites were significantly enriched in flavonoid synthesis 
pathways. Compared with the light-colored maize ker-
nels, the levels of these compounds in the dark-colored 
maize kernels were significantly higher. Flavonoids and 
anthocyanins are important pigment-related metabo-
lites. Therefore, the different accumulation of flavonoids 
made different color of the maize grains in group R (red), 
group Y (yellow), and group P (purple). At the same time, 
amino acids, nucleotides, sugar alcohols and lipids accu-
mulate specifically in P and R to form nutritional quali-
ties. The expression levels of key flavonoid/anthocyanin 
biosynthesis-related genes were also consistent with the 
metabolite accumulation pattern in these different col-
ored maize kernels, and the reliability was verified by 
qRT–PCR analysis. Our results showed that there are 
considerable molecular (transcriptional and metabolic) 
changes in colored maize grains, thus revealing the 
potential regulation of nutritional quality and color for-
mation in maize kernels.

Materials and methods
Plant materials
White waxy maize (W), yellow waxy maize (Y), red-
purple waxy maize (R), and purple-black waxy maize (P) 
were selected in this experiment (Fig.  1). Among them, 
W was derived from the inbred line of Xuannuo 255. Y 
is derived from the inbred line of Xiandanuo 001. R was 
derived from the inbred lines of hybrid Jingfeng 5 and 
Peruvian black maize after continuous self-breeding. 
P was derived from the inbred lines of hybrid Jingfeng 
5 and hybrid Jingnuo 308. The four maize varieties are 
cultivated in the same soil environment and with the 
same planting crop technique at the Guangxi Academy 
of Agricultural Sciences Experiment Station in Guangxi, 
China. The maize plants are arranged according to a ran-
dom block design. Each variety was grown in a single row 
3 m × 0.6 m in length and width, with 10 individual maize 
plants per row. Isolation zones are designed between 
each variety to ensure that different maize varieties were 
self-pollinated when more than 80% silk appeared. The 
waxy ripening (close to physiological maturity) of fresh 
maize/corn kernels were sampled within 25–28 days after 
pollination. The sampling time was November 26, 2019, 
and the location was Mingyang Base of Guangxi Zhuang 

Autonomous Region, Nanning Jiangnan District, Acad-
emy of Agricultural Sciences (CAAS) (N: 22°36’ 28.69”, E: 
108°14’ 4.16”). In this study, three replicates were made 
for each group of maize samples. In order to ensure the 
authenticity and accuracy of the samples and reduce sys-
tematic error in the experiment, a replicate consisted of 
more than 6 maize plants with the same growth pattern 
from each maize variety. All of the maize kernels (W, Y, 
R, and P) were placed in a centrifuge tube and quickly 
frozen in liquid nitrogen to brought back to the labora-
tory. Then transferred these samples to a -80℃ refrigera-
tor for subsequent LC-MS/MS and RNA-Seq detection.

Determination of metabolite content
Twelve samples from different colored maize kernel cul-
tivars (W, Y, R, and P maize kernels) were washed three 
times with ddH2O and freeze-dried for the subsequent 
test. Three biological replicates were used for all sam-
ples. A single biological replicate of each maize variety 
was collected from more than 10 maize plants and fully 
mixed. Each colored maize kernel had an exact 100  mg 
of powder using a grinder to the ground for 1.5  min at 
30  Hz. The collected extraction samples were obtained 
to acquire the content of metabolites in Wuhan Met-
ware Biotechnology Co., Ltd. (www.metware.cn) [35]. 
The extraction simplification step and conditions were 
as follows: 1 ml 70% v/v precooled (4℃) methanol was 
added to a 2.0 ml microcentrifuge tube with a 100  mg 
sample of powder stored at 4 °C overnight for extraction, 
centrifuged at 10,000 g for 10 min and then the superna-
tants were immediately acquired. CNWBOND Carbon-
GCB SPE Cartridge (250  mg, 3 ml) was used; ANPEL 
(Shanghai, China) was subsequently absorbed. Then, 
the harvested extracts were further analyzed in the fol-
lowing section. Sample extracts were analyzed using an 
LC–ESI–MS/MS system (HPLC, Shimpack UFLC SHI-
MADZU CBM30A system; MS, Applied Biosystems 6500 
Q TRAP; MS, API 6500 Q TRAP) [36].

Analysis of total metabolite content
All metabolite identification was annotated by the Met-
Ware database platform (MWDB), which is used to 
detect more than 5000 substances, covering more than 
16 categories of metabolites. The relative content of sub-
stances was accurately detected by triple and four-stage 
MRM mode, including an ultra-performance liquid 
chromatography system (UPLC), a tandem mass spec-
trometry system (MS/MS), and a partial least squares 
discriminant analysis of the samples [36, 37]. For quan-
titative accuracy detection of the relative content of sub-
stances acquired on a triple quadrupole-linear ion trap 
mass spectrometer (Q TRAP), LIT and triple quadrupole 
(QQQ) scans were used.

http://www.metware.cn
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RNA isolation and transcriptome analysis
The RNA of each color maize kernel was isolated from 
4 different colored maize kernels using the mirVana 
miRNA isolation kit, using 1% agarose gels to detect the 
RNA’s degradation and contamination, using an RNA 
Nano 6000 Assay Kit of the Bioanalyzer 2100 system 
(Agilent Technologies, CA, USA) to verify the RNA’s 
quality. Total RNA was extracted from the maize kernels 
and reverse transcribed to cDNA using the RNAprep 
Pure Plant Kit (Tiangen Biotech, Beijing, China). The 
cDNA library was sequenced on an Illumina sequenc-
ing platform (HiSeqTM 2500), and the original data 
were subsequently processed to acquire clean reads by 
using Trimmomatic [38]. Finally, more than 41,340,490 
clean reads were assembled into contigs, and these con-
tigs were assembled into transcripts using Trinity in 
the paired-end method [39]. The integrative analysis 
between metabolites and genes in the flavonoid bio-
synthesis pathway used the Spearman correlation test 
to select the coefficient data that satisfied the standard 
with a P-value < 0.05 and R > 0.9. The database resources 
TBTools and Cytoscape were used to process the data. 
Classified protein and annotated protein functions and 
pathways of the genes were determined by the UniProt-
GOA database (http://www.ebi.ac.uk/GOA/), the Gene 
Ontology (GO) (http://www.geneontology.org/), the 
NCBI (https://www.ncbi.nlm.nih.gov/), GO, and KEGG 
databases [40]. Using DESeq2 software for each sample’s 
differentially expressed gene (DEG) analysis, the false dis-
covery rate (FDR) was set to meet conditions < 0.05 and 
|log2 FC| of ≥ 1.

Real-time polymerase chain reaction (qRT–PCR) analysis
An SYBR Green PCR kit (Qiagen, Dusseldorf, Ger-
many) containing 5 µL 2xSYBR Green mix, 1 µL cDNA, 
0.5 µL forward primer, 0.5 µL reverse primer, and 3 µL 
ribonuclease (RNase)-free water was used to test the 
gene expression level. The qRT-PCR system conditions 
were as follows: 95  °C for 2  min and 38 cycles of 95  °C 
for 15  s, 58  °C for 15  s, and 72  °C for 40  s [16]. Gene-
specific primers were used for analysis. The designed 
primers are shown in Table S1. The actin gene was used 
as the normalized reference gene for all tested tran-
scripts, and the expression of genes was calculated. The 
differential expression of genes was tested using the for-
mula F = 2−ΔΔCt. All samples were repeated three times. 
qRT–PCR data were analyzed by R software 3.1.3 (http://
cran.r-project.org/), and the FPKM (fragments per kilo-
base of transcript per million) value was normalized 
using log2 (fold change) measurements.

Statistical analysis
All the experiments in this study had three biological 
replicates. Data analysis was performed using the tools 

included GraphPad Prism 5 and SPSS v20.0 (SPSS Inc., 
Chicago, IL, USA). The partial least squares-discriminant 
analysis (PLS-DA) model and Analyst 1.6.1 software 
were used to analyze the metabolite data and check the 
ed variable importance in projection (VIP) value. Iden-
tification of VIP scores ≥ 1 and |log2 (fold change) | ≥ 1 
as differentially metabolite for subsequent data analysis. 
The threshold P < 0.05 was considered to be statistically 
significant. VIP > 1, -1 < log2FC < 1 criterion was used to 
filter the specific differentially accumulated metabolites 
(DAMs) between different colored maize variety and 
− 1 < log2FC < 1, FDR < 0.05 criteria to filter and identified 
differentially expressed genes(DEGs)in different compar-
isons group.
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