
Bornhofen et al. BMC Genomics          (2023) 24:213  
https://doi.org/10.1186/s12864-023-09292-7

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomics

Genetic architecture of inter-specific 
and -generic grass hybrids by network analysis 
on multi-omics data
Elesandro Bornhofen1*, Dario Fè2, Istvan Nagy3, Ingo Lenk2, Morten Greve2, Thomas Didion2, 
Christian S. Jensen2, Torben Asp3 and Luc Janss1* 

Abstract 

Background Understanding the mechanisms underlining forage production and its biomass nutritive quality at 
the omics level is crucial for boosting the output of high-quality dry matter per unit of land. Despite the advent of 
multiple omics integration for the study of biological systems in major crops, investigations on forage species are still 
scarce.

Results Our results identified substantial changes in gene co-expression and metabolite-metabolite network topolo-
gies as a result of genetic perturbation by hybridizing L. perenne with another species within the genus (L. multiflorum) 
relative to across genera (F. pratensis). However, conserved hub genes and hub metabolomic features were detected 
between pedigree classes, some of which were highly heritable and displayed one or more significant edges with 
agronomic traits in a weighted omics-phenotype network. In spite of tagging relevant biological molecules as, for 
example, the light-induced rice 1 (LIR1), hub features were not necessarily better explanatory variables for omics-
assisted prediction than features stochastically sampled and all available regressors.

Conclusions The utilization of computational techniques for the reconstruction of co-expression networks facilitates 
the identification of key omic features that serve as central nodes and demonstrate correlation with the manifestation 
of observed traits. Our results also indicate a robust association between early multi-omic traits measured in a green-
house setting and phenotypic traits evaluated under field conditions.
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Background
Forage grasses cover large portions of agricultural land 
worldwide, efficiently converting enormous amounts of 
natural resources into macronutrients used primarily for 
feed. Their relevance can be recognized by the extent of 
the network of researchers and breeding organizations 
devoted to maximizing production efficiency. This has 
been largely achieved by conventional breeding tech-
niques aiming to explore genetic variation not only within 
but also across species and genera over the last decades. 
As biotechnology surged, breeders advanced in experi-
menting with hybridizations across species and genera, 
leading to the release of successful varieties of polyploid 
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hybrid ryegrass (L. perenne × L. multiflorum) and Festulo-
lium loliaceum (L. perenne × F. pratensis), for example. As 
high-throughput sequencing platforms reduced genotyp-
ing costs, genomics began to play a significant role across 
grass breeding programs, reshaping breeding pipelines 
aiming at the optimization of resource allocation mainly 
via genome-wide selection [1–3]. Recently, the complex 
problem of predicting phenotypes and finding candidate 
biological molecules associated with it can also be sup-
ported not only by marker information at the DNA level 
but also via transcriptomics [4] and metabolomics [5], 
leading to a holistic view of the phenomena controlling 
the expression of economically important traits.

Improving existing weaknesses of elite genetic materi-
als or simply unlocking genetic variability for breeding 
exploitation are processes that benefited by leveraging 
hybridization across genera and species within a genus. 
In spite of being predominantly diploid (2n = 2x = 14), L. 
perenne,  L. multiflorum, and  F. pratensis can also be 
found as or induced to tetraploid states, which is essential 
for amphidiploid production. However, genomic instabil-
ity is often reported and a shift to the ryegrass genome 
over generations can happen in crosses with fescues [6, 
7]. Additionally, homeolog expression bias and expres-
sion level dominance can be observed in such allopoly-
ploids [8]. Collectively, these phenomena may lead to 
distinct interactomes when hybridizations are performed 
across species, which can be analyzed through network 
reconstruction by leveraging high throughput omics data 
and appropriate statistical methods. For example, net-
work topologies revealed allopolyplid cotton resembling 
more to one of the diploid species representing a pro-
genitor besides a substantial domestication impact on the 
coexpression [9]. Additional studies on expression modi-
fications in allopolyploids remain scarce.

Adding extra layers of biological information also 
means increasing data dimensionality ( n ≪ p problem). 
Reliable inferences in high dimensions require specific 
statistical procedures and an in-depth understanding 
of the underlining phenomena. Among the methods 
proposed for the analysis of high dimensional omics 
data [10], the reconstruction and analysis of regula-
tory networks offer the possibility to prioritize omic 
features [11], significantly reducing the searching space 
for downstream analyses. Organizing omic features in 
interacting networks can be seen as an approximation 
of the true existent interconnected biological system 
that reads the information encoded on the genome and 
ends with a functional organism. Reconstructed net-
works hold biological meaningful topological proper-
ties, for example, the presence of modules that might 
cluster nodes (omic features) performing specific 

biological functions [12] and the existence of highly 
connected nodes. These hub nodes arise as biologi-
cal networks are assumed to be scale-free, meaning 
that node degrees are power-law distributed [13] and, 
therefore, few highly connected nodes are expected. 
The presence of these disproportionally connected hub 
nodes is an important topological property of networks 
as it may represent key genes/metabolites associated 
with biological pathways. Thus, it would be of special 
interest to investigate the extent to which hub omic 
features can be significantly linked to biomass yield 
and other economically important phenotypes of fod-
der grasses. Researchers have found hub genes affecting 
biomass accumulation in other families of plants, for 
example, in Ulmus pumila L. [14] and Arabidopsis thal-
iana [15]. That being stated, one needs to first estimate 
the network to be able to explore its topological prop-
erties and this can be accomplished by leveraging graph 
theory and probability for modeling and representation 
of complex biological problems as probabilistic graphi-
cal models [12].

Omics data as a graphical model is based on the esti-
mation of conditionally independent relationships across 
random variables in a multivariate setting. Learning a 
graphic in high-dimension requires dealing with a situa-
tion where the number of unknown parameters exceeds 
the sample size. In this case, ℓ1-penalization has been one 
of the main techniques used to make sparse inference in 
a Gaussian Markov random field [16], yielding a sparse 
structured precision which, in turn, can be converted into 
an undirected network and further analyzed for its topo-
logical properties. This approach has been applied to the 
study of gene expression [17, 18] and metabolomic [19] 
data in humans, with few examples in plants [20–23]. 
With a selected set of candidate features recovered from 
gene co-expression and metabolic networks, one can 
perform omic-phenotype integration. The simple corre-
lation-based integration method of omic variables and 
phenotypes is widely used, with examples in maize [24] 
and for the forage species E. sibiricus [25]. However, more 
robust approaches based on multivariate multi-level mod-
els have also been applied [26, 27], showing better prop-
erties [28]. Finding significant associations of genes and 
metabolites with dry matter yield and nutritive quality 
traits in fooder grasses could reveal potential targets for 
quantitative trait dissection studies, improve the omics-
assisted selection of elite families, and shed light on regu-
latory processes of key traits. Additionally, given the fact 
that a large part of the above-ground biomass is harvested 
in forage grasses, it can be hypothesized that randomly 
sampled hub features are more likely to be linked to a phe-
notype of interest compared to, for example, grain crops.
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The inherent properties of an organism’s interactome, 
especially the power-law distribution of interactions, 
give plasticity in face of random disturbances. However, 
interferences on hub nodes may lead to severe product 
alterations [29], making them targets for genetic stud-
ies. Additionally, hub genes appear to be associated 
with a variety of biological processes [9, 25, 30, 31] and 
had been mentioned as potential targets for the molecu-
lar breeding of forage species [32]. In the present study, 
we consider the problem of reconstructing the interplay 
among biomolecules represented by omic data from fam-
ilies of grass hybrids of two pedigree classes and narrow-
ing down the high-dimensional space to fewer conserved 
hub features between them. By using a sparse estima-
tion technique via undirected graphical models, we filter 
the relevant omic features and test the conserved hubs 
for their genetic association with quantitative traits and 
potential for prediction. The identification of significantly 
associated hubs will confirm the relevance of these inter-
acting biomolecules, providing insights into potential 
molecular biology studies and marker-assisted breeding.

Results
Genetic similarity among family pools and omics 
heritability
We constructed a genomic relationship matrix (GRM, 
see Eq.  1) for the  L. perenne ×  L. multiflorum  (hybrid 
ryegrass; HR pedigree class) using   85,283 SNPs and a 
GRM for the intergeneric crosses of L. perenne × F. prat-
ensis  (Festulolium loliaceum; FL pedigree class) using 
75,299 SNPs (Fig.  1A and B, respectively). The average 
genomic relationship was close to zero as expected due 
to the centering of allele frequencies in both data sets 
(-0.0178 and -0.024 for hybrid ryegrass and F. loliaceum, 
respectively) but with substantially more variation found 
in the FL data set (off-diagonal standard deviation equal 
to 0.21 compared to 0.15 in the HR class). In addition, 
GRM heatmaps are substantially populated with nega-
tive relationships, meaning that many pairs of individuals 
were less related than the average genomic relationship. 
Also, the GRMs revealed biparental combinations that 
substantially deviated from the expected offspring com-
position of bi-parental crosses of single-plant parents, 
suggested by the presence of blocks of high genomic 
relationships (>1.0) among families, especially for the 
FL data set (Fig. 1B). For instance, the 4 × 4 block on the 
top-left side of Fig. 1B holds highly related families that 
share the same pollen receptor parent crossed with dif-
ferent F. pratensis genotypes. As the diallel design was 
not accounted for, downstream analyses were performed 
controlling for population stratification due to replicated 
parents in the crossing scheme using principal compo-
nent (PC) scores as covariates (See Supplemental Fig. S1 

for a visual representation of the population dispersion). 
The first 10 PCs of the GRM matrices explained a cumu-
lative percentage of variation equal to 75% and 82% for 
HR and FL data sets, respectively. Additionally, adjusted 
means on the right-hand side of Fig.  1 reveal blocks of 
families with similar trait-specific performance as they 
were hierarchically clustered by IBS-based measurement 
of relatedness.

The GRMs displayed in Fig. 1 were also used in a lin-
ear mixed model to estimate the genomic heritability of 
NMR variables and gene expression entities. The density 
plots of the heritabilities for both pedigree classes are 
displayed in Fig.  2. For the HR class, median heritabili-
ties of 0.047 and 0.122 with an interquartile range (IQR) 
of 0.177 and 0.311 were observed for NMR variables 
and gene expression, respectively. For the FL class, we 
observed median heritability of 0.162 and 0.165 with IQR 
of 0.273 and 0.295 for NMR variables and gene expres-
sion, respectively. Distributions are positively skewed 
and a higher quantity of high heritable variables can be 
detected for gene expression data in comparison to NMR 
variables. Additionally, the figure suggests a slightly 
higher proportion of more heritable features measured 
on samples from the FL class, especially for metabolomic 
data. Finally, Fig.  2B and C reveal the similarity in her-
itability between pedigree classes according to the spec-
trum and genomic position, respectively. Overall, there 
is a high correspondence between classes for regions dis-
playing high and low heritability.

Hyperparameter tuning of joint graphical lasso
The search for the appropriate values of �1 and �2 (Eq. 4) 
that returned the smallest Bayesian information crite-
rion (BIC, see Eq.  5) was computationally intensive as 
the model was fitted for all combinations of the penalties 
defined in the grid search, requiring several days of CPU 
time for joint graphical lasso (JGL) model of transcrip-
tomic data but only using few wall time hours by taking 
advantage of multi-core processing. A total of 939 con-
nected nodes were estimated for gene expression. Within 
data sets, four sparse subnetworks and 4,038 edges were 
obtained for HR whereas five sparse subnetworks and 
2,182 edges were identified for the FL class given the tun-
ing parameters selected via BIC (Fig. 3). Additionally, 462 
edges were found to be shared by the two pedigree cross-
ing classes. For the next omic layer, all 556 nodes (NMR 
variables) were connected, one sparse network on each 
pedigree class was estimated, 7,757 and 4,789 edges were 
available for HR and FL data sets, respectively, and 2,371 
common interactions shared by all classes. Less than 
half of the edges were shared between the two classes, 
indicating that hybridization had a significant impact 
on regulatory processes. The HR class exhibited more 
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complex interacting networks in both omics, possibly 
due to higher hybridization success rates, mixing specific 
genomes and resulting in novel genetic combinations and 
regulatory mechanisms.

For the gene expression data, �2 was optimized at �2 = 0 . 
This implies different networks for each pedigree class 

with a different arrangement of non-zero positions for the 
gene expression data. On the other hand, for NMR data, 
the best combination of �1 and �2 that minimized the BIC 
found a small non-zero value for �2 , implying a small level 
of similarity on the sparsity pattern across precision matri-
ces for NMR data. Overall and across omic layers, the 

Fig. 1 Heatmaps of genomic relationship matrices annotated with trait means. A and B show genomic (co)variances between all pairs of 79 
families of hybrid ryegrass [HR] while B and 65 families of Festulolium loliaceum [FL], respectively. Annotations on the right-hand side of each matrix 
depict the best linear unbiased estimators (BLUEs) for dry matter yield (DMY) and each of the seven nutritive quality traits: ADF - acid detergent 
fiber; ADL - acid detergent lignin; DMDig - digestible dry matter; NDF - neutral detergent fiber; NDFD - digestible NDF; Prot - protein; and WSC 
- water-soluble carbohydrates. Partially surrounding dendrograms were produced using Euclidean as the distance measure and the agglomerative 
complete-linkage method to build the hierarchy of clusters
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Fig. 2 Genomic heritability of gene expression and NMR features. SNP-based genomic heritability distribution of NMR variables (A) and gene 
expression (C) from family pools of two pedigree classes (HR: hybrid ryegrass and FL: Festulolium loliaceum) were displayed as density plots. 
Heritability of transcripts across the genome and NMR variables by position on the spectrum are depicted in subfigures B and D 

Fig. 3 Grid searching of hyperparameters for graphical lasso model selection with ℓ1 regularization. A and C shows the Bayesian information 
criterion (BIC) as a function of the second ( �2 ) penalty for transcriptomic and metabolomic data sets, respectively. B and D are heatmaps displaying 
the complete grid search for the values of the tuning parameters �1 and �2 that minimize BIC, yielding parsimonious models for transcriptomic and 
metabolomics data sets, respectively
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hybridization process generated substantial differences 
between pedigree classes and it seems to be better cap-
tured at the gene expression level.

Exploring lasso penalized precision matrices and network 
topologies
We detected 14 candidate modules for gene expression 
and 10 modules for metabolomic for the HR class (Fig. 4). 
In the FL data sets, it was estimated 16 modules for gene 
expression and also 10 modules for metabolomics data. 
The modularity view of the gene-to-gene and metabolite-
to-metabolite networks reveals the power-law distribu-
tion of node connections, where few vertices are highly 
connected whereas the majority has only one or few con-
necting edges. The organization of network structure 
based on modularity optimization allowed for the selec-
tion of intramodular hub nodes that are more likely to be 
involved in different biological pathways. Out of 70 hubs 
extracted from HR transcriptomic data (Fig. 4A) and 80 
from FL transcriptomic data (Fig.  4C), 30 genes (hubs) 
were conserved. These high-degree genes are located 
across all seven chromosomes, varying from two hubs 
on chromosome three up to 10 on chromosome two. 
Also, the degree of the hub gene set ranged from 34 to 
182 edges. For metabolomic data, we found 32 conserved 
hub nodes (Fig. 4, B and D), all localized in one half of the 
NMR spectrum and with degrees ranging from 52 to 357 
edges.

Integrative omics
The pairwise fitting of the multivariate genomic model 
revealed 21 significant edges between traits and omic 
hub features after FDR correction (Fig. 5). The multi-trait 
model was fitted 496 times but failed to converge in 54 
cases, possibly due to the variance component being close 
to zero. Therefore, five traits displayed at least one sig-
nificant edge with hub features in both pedigree classes. 
More edges can be seen on the left side of the omics-phe-
notype network relative to the right side, which can be 
explained by the higher heritability across traits in the FL 
data set (Supplemental Table S1) as well as overall higher 
heritability of genomic features (Fig.  2). Additionally, 
significant connections were found for six out of 30 hub 
genes and four out of 32 hub NMR variables. Three (hubs 
16, 18, and 21) out of the six genes are located distantly 
apart on chromosome four whereas the remaining hubs 
3, 7, and 22 are located on chromosomes one, two, and 
five, respectively (Supplemental Fig.  S2). Genomic her-
itabilities of hubs displaying significant edges were con-
siderably higher compared to the full feature space, with 
median h2 twice as large. A closer look reveals a consist-
ent pattern regarding the direction of the associations. 
Hub features positively or negatively associated with fiber 

content traits are also positively or negatively associated, 
respectively, to dry matter yield. The same holds true for 
protein content and digestibility traits, where associated 
hub features are inversely connected to fiber content.   
Additionally, the majority of hubs associated with phe-
notypes have more than one significant edge computed 
from independent analysis and, therefore, confirms the 
reliability of the estimated omics-phenotype network. 
We also fitted hub features as covariates in submodel  9 
and computed the z-scores and associated p-values, 
which overall confirmed the results displayed in Fig.  5 
(data not shown). Finally, no hub feature had significant 
edges with traits from both pedigree classes, which can 
suggest steady genetic differences between classes and/
or a lack of power to detect these shared genomic-based 
associations.

Gene-set enrichment analysis revealed four gene 
ontology (GO) terms enriched in the set of 30 hub 
genes displayed in Fig.  5. Overrepresented GO terms 
were  GO:0019438 (aromatic compound biosynthetic 
process), GO:0018130 (heterocycle biosynthetic pro-
cess),  GO:1901362 (organic cyclic compound biosyn-
thetic process), and  GO:0044271 (cellular nitrogen 
compound biosynthetic process). Bivariate mixed model 
analysis revealed significant genetic correlations between 
the expression of gene hubs 18 and 21 and dry matter 
yield. While hub gene 18 codes for the  atpF gene (syn-
thase subunit b, chloroplastic) and is associated with 
energy production (GO:0015986 - proton motive force-
driven ATP synthesis), the blast of biological sequences 
revealed a  putative unclassified retrotransposon protein 
originating from hub gene 21.

Omics‑assisted predictions
Using gene expression data as an independent variable 
performed similarly to SNP-based marker predictions, 
except for digestibility, protein, and neutral detergent 
fiber (Fig. 6). Despite the overall poor prediction perfor-
mance across traits obtained when using NMR features as 
independent variables, the information contained in this 
omic layer is useful for protein content prediction, with 
correlations above 0.4. Prediction accuracy using only 
hub genes was compared with a second scenario where 
samples of the same size were drawn from the whole pre-
dictor space aiming to check whether hub features carry 
asymmetrically more (or less) information for prediction 
purposes. Overall, hub NMR variables appear to be more 
predictive of nutritive quality traits than random samples 
of metabolomic features. On the other hand, results sug-
gest a weaker relationship between observed and pre-
dicted quality parameters using hub genes as regressors. 
Finally, using the whole set of available predictors yields 
predominantly higher accuracies across traits.
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Discussion
The study elaborated here explores a network-based 
approach to combine multi-omic data arising from 
an  n ≪ p scenario, inferring associations between bio-
marker candidates with dry matter yield and nutritive 
quality traits of polyploid forage grass families. This was 

accomplished by using a joint graphical lasso model 
with a fused penalty for network reconstruction, fol-
lowed by topological property extraction and integra-
tion via multivariate mixed modeling. Further, a machine 
learning-based prediction scheme was explored to verify 
the extent of information available in hubs and in the 

Fig. 4 Abstract modularity view of the gene co-expression and metabolite networks. A and C networks constructed from gene expression data. B 
and D metabolite-metabolite networks built from nuclear magnetic resonance (NMR) spectroscopy. Data of family pools from two pedigree classes 
were used for network estimation, i.e., A and B refer to the hybrid ryegrass class while C and D to the Festulolium loliaceum. Both node color and 
size reflect the hub score, i.e., the principal eigenvector of Adj · t Adj  matrix operation, where Adj is the adjacency matrix of each graph. The color 
range goes from red for low-degree nodes to blue for highly connected ones. Edges between modules were collapsed and the width refers to the 
number of connections shared between any two modules. Venn diagrams show the overlap among sets of top hub features from each data set
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whole feature space for predicting agronomically impor-
tant phenotypes. The plant material consisted of family 
pools of inter-specific and- generic grass hybrids from 
two connected diallels. Crossing different pasture spe-
cies/genera is not a trivial task; obstacles can emerge. 
Firstly, out of all initially planned crosses, only a sub-
set generated viable seeds, impacting the sample size. 
Also, seeds were not abundant for many of the crosses, 
requiring an additional year of multiplication. Secondly, 
extraneous offspring patterns were detected, prompt-
ing a question of whether normal parental contributions 
were formed for some of the  F2 families. This inquiry 
remained unanswered in this manuscript given the com-
plexity of the genetic material (family pools), SNPs called 
from RNA-seq data, and the unavailability of parental 

genotypes. Despite the self-incompatibility (SI) ensuring 
cross-pollination in perennial ryegrass [33], four to eight 
percent of self-fertilization has been reported  [34, 35]. 
This, in addition to the low success rate of inter-specific 
and- generic hybridization, might have caused the devi-
ated genomic state of offspring families for crosses that 
produced a small number of seeds. We did not use the 
parental information from the diallel structure in the net-
work construction but removed it by regression to con-
trol for the kinship among individuals across analyses, a 
crucial action to avoid spurious results in network recon-
struction. Due to the genetic design, correlation among 
samples is expected, which can lead to the detection of 
co-expression among features as a result of shared chro-
mosomal segments. Additionally, confounding artifacts 

Fig. 5 Weighted network reveals hub features associated with the expression of economic important phenotypes. Traits arranged on the left-hand 
side were measured on families of hybrid ryegrass while traits arranged on the opposite side were assessed on families of Festulolium loliaceum. 
Edges represent the additive genetic correlation between omic features and traits and were built by the pair-wise fitting of a multivariate genomic 
model. Stronger edges in a gradient from red (negative) to blue (positive) represent false discovery rate corrected significant correlations at 
alpha 0.05. Highlighted omic nodes show at least one significant edge. Hub codes from 1 to 62 can be used to gather more information from 
Supplemental Fig. S2 DMY - dry matter yield;   ADF -  acid detergent fiber; ADL - acid detergent lignin; DMDig - digestible dry matter; NDF: -neutral 
detergent fiber; NDFD - digestible NDF; Prot - protein; and WSC - water-soluble carbohydrates
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not controlled for can affect groups of genes and NMR 
variables, which can lead to the detection of spurious 
correlations. We fitted population structure as covari-
ates by using principal component scores derived from 
the genetic markers covering the whole genome aiming 
to alleviate the non-independence among samples, which 
has been shown to reduce false network discoveries effi-
ciently  [36]. An extra layer of  precaution to avoid the 
effect of false-positive edges was deployed by retaining 
only common hub features between pedigree classes.

The gene co-expression and metabolic networks as the 
ones we reconstructed in this study (Fig. 4) using RNA-
seq and NMR variables, respectively, can contain inter-
esting topological properties e.g., the existence of highly 
connected nodes and the organization of nodes in mod-
ules  [12]. We explored these two properties aiming to 
select, across pedigree classes, conserved hubs extracted 
at a rate of five per module, therefore, increasing the like-
lihood of sampling hubs associated with diverse biologi-
cal processes. Our approach to selecting and associating 
these features with phenotypic traits is altogether differ-
ent from the conventional method, which consists of per-
forming a simple correlation-based gene co-expression 
network analysis followed by thresholding to find mod-
ules that can then be summarized into a synthetic (eigen) 
gene for association with external sample traits  [37]. As 
highlighted by other authors  [38, 39], this correlation-
based approach cannot distinguish between linear rela-
tionships due to directly dependent nodes and those 

arising from confounding nodes, which might create 
spurious edges in the graph and, consequently, mislead-
ing clustering. In contrast, Gaussian graphical models, as 
used here, are based on the precision (inverse variance) 
matrix and express conditional dependence between 
pairs of features given all the other variables in the data 
set [40] which, therefore, avoids declaring an edge when 
no causal relationship exists. Regarding the presence and 
distribution of edges across reconstructed networks, the 
proportion of undirected edges given the total available 
nodes was much higher for the NMR -based metabolic 
network relative to the gene expression graph. This is a 
consequence of the lack of independence among bins 
closely located across the NMR spectrum. Indeed, an 
average autocorrelation across samples revealed sig-
nificant spikes up to lag 12 (data not shown). There-
fore, a proper feature selection algorithm for spectral 
data can be implemented to deal with the existence of 
autocorrelation.

Picturing a biological regulatory cascade, hub genes 
are usually regulatory factors located upstream, whereas 
genes represented by low-degree nodes are located on 
the other end [41]. They can be associated with biologi-
cal processes from which several others are dependent, 
yielding the commonly observed power-law degree dis-
tribution. The presence of a limited amount of impor-
tant hub genes, however, does not necessarily imply a 
simple genetic architecture, because the regulation of 
the hub gene expression is typically highly polygenic. 

Fig. 6 Random forest-based prediction accuracies reveal strong links between greenhouse and field phenotypes. Accuracies were computed for 
eight forage grass traits as a function of predictors encompassing three omic layers (DNA: SNP-based markers, RNA: gene expression via RNA-seq, 
and NMR: variables representing bucketed NMR spectra) and three predictor set configurations as indicated by the color gradient. The standard 
errors for the mean accuracy of sampled features are depicted in blue color. DMY - dry matter yield; ADF - acid detergent fiber; ADL - acid detergent 
lignin; DMDig - digestible dry matter; NDF: -neutral detergent fiber; NDFD - digestible NDF; Prot - protein; and WSC - water-soluble carbohydrates
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Investigating putative hubs can reveal important genes 
as, for example, the  cold-regulated gene  Lolium per-
enne  LIR1 (LpLIR1)  [42] represented by the hub gene 
coded as 22 in Fig. 5, which is located at chr5:155166187-
155167265 in the L. perenne genome and appears to act 
in the photoperiodic regulation of flowering. The results 
presented in Fig.  5 suggest that the up-regulation of 
LpLIR1 is positively correlated with higher fiber con-
tent and reduced digestibility. One possible explanation 
for this observation could be the effect of heading date 
on these traits. It is well established that early-flowering 
genotypes tend to show an early decline in digestibility 
and higher fiber content, while the opposite is true for 
late-flowering genotypes. The up-regulation of LpLIR1 
may be influencing heading date, thus leading to changes 
in fiber content and digestibility. Another example is 
hub 7, which represents the  PDX1.1 gene, involved in 
the  biosynthesis of vitamin B6 and protection against 
stresses [43]. Overexpression of PDX proteins was shown 
to increase seed size and biomass in Arabidopsis [44]. For 
metabolite-metabolite networks, high-degree nodes may 
represent signaling molecules or molecules engaged in 
many reactions. The content and diversity of such mol-
ecules have been shown to be shaped by domestication as 
well as due to crop improvement [45]. Improving biomass 
output per area is the ultimate breeding goal in a forage 
breeding program and also implies selection pressure for 
stress endurance due to animal grazing or mechanical 
harvesting. In this sense, secondary metabolites are well-
known for their role in the plant’s response to external 
disturbances as herbivory  [46]. In more general, signifi-
cant associations can be detected between metabolites 
and agronomic traits [47] and the whole NMR spectrum 
can be used for metabolomic-assisted prediction  [48]. 
That being stated, genetic selection for elite grasses might 
be linked to an altered profile of metabolites, leveraging 
their usefulness as markers for selection or for predic-
tion purposes. Indeed, great chemical diversity is avail-
able in perennial ryegrass  [49], not only adding another 
layer of information for omics-assisted breeding but also 
enabling target improvement of varieties with a specific 
profile of key metabolites.

Together, significant additive genetic correlations 
between omic features and phenotypic traits displayed in 
Fig.  5 and the presence of over-represented gene ontol-
ogy (GO) terms in the hub gene set supports the evidence 
that these features hold fundamental biological prop-
erties. We further assessed the predictive power avail-
able in the sets of gene and metabolite hubs. This was 
accomplished by merging the HR and FL data sets for 
trait prediction aiming to increase the sample size, which 
even though still below the appropriate size for genomic 
selection was counterbalanced by a high signal-to-noise 

ratio given the diallel structure which is expected to 
boost information for model learning (see Fig.  1). Split-
ting between training and testing sets would reduce the 
sample size for training. Therefore, we used the ensemble 
learning method of random forest with all samples and 
reported the out-of-bag (OOB) accuracy as a prediction 
performance metric, eliminating the need to set aside 
a test set  [50]. Despite the crossing scheme, eigenvec-
tors from marker data did not reveal large dissimilarity 
between pedigree classes (Supplemental Fig.  S1), there-
fore allowing for the joint analysis. Also, random forest is 
not very sensitive to hyperparameter tunning [51], mak-
ing it a good option for the designed prediction setup. 
This can be attested by the magnitude of predictions 
displayed in Fig.  6. Prediction accuracy for dry matter 
yield was reported in other studies at 0.31 using diploid 
ryegrass synthetic populations  [52], 0.34 using tetra-
ploid ryegrass  [53], and 0.5 investigating diploid peren-
nial ryegrass  [2]. Here, we report values of prediction 
accuracy of dry matter yield that approximate 0.5 (Fig. 6) 
using both SNP-markers and gene expression, despite the 
lower sample size but helped by high relatedness among 
samples, an important component in genomic selec-
tion [54]. Also for dry matter yield, surprisingly the most 
heritable trait (Supplemental Table S1), the set of hub 
genes and SNPs markers tagging them seem more pre-
dictive than features sampled at random. For the remain-
ing traits, mixed results were observed which can be an 
artifact due to sample size, low heritability, or population 
structure.  Additionally, the signal might be dependent on 
the genetic background and disappeared as we merged 
the two data sets for the prediction study. Heritability is 
an important parameter driving prediction accuracy. If it 
is low, the error variance will be higher, leading to diffi-
culties in estimating the effect of genome segments accu-
rately [55], especially if the sample size is not sufficiently 
large. Small values of heritability were primarily observed 
for quality traits (Supplemental Table S1), which explains 
the lack of predictive power of the model for digestibil-
ity, water-soluble carbohydrates, and digestible NDF, for 
example. The NIR-based quality parameters are obtained 
from calibrated models using data of chemical analysis 
from samples of standard breeding materials and might 
not translate well into curves of inter-generic and- spe-
cies hybrids, explaining the lower heritability.

Given that plant tissues were sampled once from pools 
of seedlings grown in a greenhouse environment at 
the  F2 generation for transcriptomic and metabolomic 
analyses, the information carried by the recorded fea-
tures represents a snapshot of the complex interactome 
at that particular condition in space, time, and random 
mating generation. This information was learned by the 
model and translated into higher prediction accuracy for 
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protein and digestibility, despite the fact that phenotypes 
were recorded in later growth stages and in another gen-
eration of random mating. Across omic layers, the results 
also showed that using all available features is almost 
always a better choice for increased prediction accuracy. 
Besides more main effects being captured, the random 
forest model can capture feature-feature interactions 
[56] as long as the marginal effects are large enough to 
cause a tree split, therefore, accounting for some of the 
existing epistasis. Therefore, the existence of significant 
edges displayed in Fig.  5 and the magnitude of the pre-
diction accuracies presented in Fig.  6 reveals a strong 
link between field-based phenotypes and heritable omic 
features assessed from young seedlings in a controlled 
environment. Altogether, this information brings the 
question of whether phenotypes from seedlings grown 
for DNA sampling could be recorded through a low-cost 
NIR-based method and used to improve the accuracy of 
genomic selection models, a subject worthy of considera-
tion in future research.

The use of multi-omics in plant breeding-related stud-
ies is becoming more popular due to decreasing in cost 
per data point as a result of modern high-throughput 
technologies. This has been allowing researchers to 
reconstruct complex biological networks for inference 
and mining. Out of the many topological properties that 
can be retrieved from an interaction network, hub fea-
tures showing many putative links have been shown to 
play important biological roles in plants [30]. Our study 
reveals that narrowing down the high-dimensional fea-
ture space generated by high-throughput omic analysis 
to fewer entities by leveraging properties of the graphical 
theory can reveal important biomolecules for molecular 
studies and breeding. Additionally, dimensionality reduc-
tion can substantially boost detection power by alleviat-
ing the multiple testing problem. Further investigations 
of candidate features may help elucidate biological pro-
cesses underlying the expression of phenotypic traits and 
serve as markers for omics-assisted selection in breeding 
programs. Even though we did not perform compound 
identification from the NMR data, this is a feasible task 
and may reveal metabolites playing important roles in 
biomass yield and nutritional quality.

Conclusion
The scientific community has seen a sharp increase in 
publications exploring the usefulness of biological net-
work reconstruction based on high throughput omics 
data since the 2000s, but studies with forage species 
remain scarce. Here, we have explored the usefulness of 
topological properties of gene co-expression and meta-
bolic networks in explaining the phenotypic variance of 
eight traits assessed in family pools of inter-specific and 

-generic grass hybrids. Network topology estimated via 
fused graphical lasso revealed profound network dif-
ferences between pedigree classes, but a set of 30 high-
degree hub genes and 32 hub NMR variables remained 
conserved across classes given the selection criteria, out 
of which 10 hubs were found as candidate biomolecules 
significantly associated with the expression of agronomic 
phenotypes. Gene set enrichment analysis and weighted 
omics-phenotype network estimation suggested that sets 
of hubs are likely to contain essential features modulating 
interactomes and the expression of economically impor-
tant phenotypes.

Methods
Plant material and phenotypes
Interspecific hybridization of  L. perenne ×  L. multiflo-
rum  (hybrid ryegrass) and intergeneric crosses of  L. 
perenne  ×  F. pratensis  (Festulolium loliaceum), all in 
tetraploidy forms (2n = 4 × = 28), were performed as 
two connected (by L. perenne parents) sparse diallels in 
the summer of 2017 at the DLF Seeds A/S research sta-
tion,  Store Heddinge - Denmark. Single plants used as 
parents were extracted from commercial varieties of  L. 
perenne, L. multiflorum, and F. pratensis. A total of 79 and 
65 allotetraploid families of hybrid ryegrass and Festulo-
lium loliaceum, respectively, were obtained out of several 
attempts. Hybrid ryegrass  (referred to hereinafter as HR) 
families were obtained after crossing 31 L. perenne par-
ents with 79 L. multiflorum in a sparse diallel design. For 
the pedigree class  F. loliaceum (referred to hereinafter 
as FL), 24 L. perenne parents out of the 31 from the HR 
diallel were crossed with four F. pratensis parents. A suf-
ficient quantity of seeds of  F3 families was obtained after 
two rounds of multiplication. The field trials were carried 
out in the autumn of 2020 at two testing sites: i) Denmark 
( 55◦ 17’ 52" N, 12◦ 24’ 58" E) and ii) the Czech Republic 
( 49◦ 40’ 59" N, 17◦ 58’ 05" E). Families from the HR pedi-
gree class were sown in Denmark in plots of 12.5  m2 with 
two replicates while families of the FL pedigree class were 
sown in the Czech Republic in plots of 6.25  m2, also with 
two replicates. At each location, entries were assigned 
to plots arranged in five smaller trials in a randomized 
complete block design with ∼ 16 entries each. Alongside 
the described steps, seeds from  F2 families were sown in 
a greenhouse environment in 2019 at Aarhus University, 
Research Center Flakkebjerg. One gram of seeds from 
each family was sown in pots 10 cm in diameter aim-
ing  at 120 to 150 emerging individual plants. The total 
above-ground biomass was harvested as one bulk per 
family, flash-frozen using liquid nitrogen to stop metabo-
lism, and placed in a - 80◦ C freezer. Frozen tissue ground 
into a fine powder with liquid nitrogen was used for 
RNA isolation and sequencing after a quality check. In 
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addition, aliquots weighing 300 mg from ground tissue 
were freeze-dried for NMR-based metabolomic profiling.

We collected phenotypes for eight traits at four-time 
points in Denmark and three-time points in the Czech 
Republic across the Spring, Summer, and Autumn of the 
2021 production year. The following traits were assessed: 
moisture-corrected dry matter yield standardized by 
plot size (DMY, g  m-2), acid-detergent fiber (ADF), acid-
deterged lignin (ADL), dry matter digestibility (DMDig), 
neutral deterged fiber (NDF), digestible NDF (NDFD), 
protein (Prot), and water-soluble carbohydrates (WSC). 
All nutritive quality traits are expressed as a percentage 
of DMY, except for NDFD, which is a percentage of NDF. 
Nutritive quality traits were obtained via a near-infrared 
(NIR) spectrometer onboard the plot combine harvester. 
Raw NIR data had previously been calibrated and is 
yearly updated  with new wet chemistry analysis, a rou-
tine procedure in the breeding company.

Multi‑omics data
Gene expression via RNA sequencing
RNASeq libraries were prepared and sequenced at the 
Beijing Genomics Institute (BGI Hong Kong) using the 
BGISEQ-500RS sequencing platform technology in 
100nt paired-end (PE100) mode. Paired-end reads (20 
to 25M sequences per sample) were mapped to pseudo-
chromosomes and scaffolds of the Lolium_2.6.1 refer-
ence genome [57] using the splice-aware aligner HISAT2 
[58]. Alignments were processed by StringTie [59] for 
transcript reconstruction and gene expression quantifica-
tion. Normalized read count values in fragments per kilo-
base of transcript per million (FPKM) were collected for 
139,004 transcripts annotated on the Lolium_2.6.1 refer-
ence genome. A filter was applied to the expression pro-
file matrix to get rid of transcripts with expression values 
very low/equal to zero. The threshold for transcription 
was set to 0.5 median FPKM across all samples, yield-
ing the final filtered gene expression matrix with 18,499 
transcripts.

RNASeq‑based genetic variants
Variant calling was performed from RNA-seq merged 
BAM-format alignments using the Bayesian genetic 
variant detector Freebayes [60]. The initial single-nucle-
otide polymorphism (SNP) calling resulted in 1,689,206 
variants. After retaining only biallelic markers, we fil-
tered variants by the following criteria: i) a maximum 
missing proportion of 50% at each locus, ii) a minimum 
mapping quality of 20, iii) a minimum read coverage of 
five reads per variant position, and iv) minor allele fre-
quency (MAF) greater than 0.05. The final set of SNPs 
comprises 89,862 variants that were used for down-
stream analyses.

NMR‑based metabolomic data
The metabolomic profiling by proton nuclear magnetic 
resonance spectroscopy (1H-NMR) was carried out at 
the Natural Products Laboratory (The Netherlands). 
Following the sample preparation and spectra acquisi-
tion with a 600 MHz Bruker AVANCE III spectrometer 
(Bruker BioSpin GmbH, Germany), the raw NMR data 
were processed using the software package  NMRProc-
Flow [61]. After chemical shift calibration and normali-
zation, metabolomic fingerprinting yielded a total of 556 
bins with non-zero intensities (referred to hereafter as 
NMR variables) for 144 plant samples by applying an 
adaptive Intelligent Binning [AI-Binning, [62]] algorithm. 
A tab-separated file with samples on rows, NMR vari-
ables on columns, and cell-wise intensity values was gen-
erated for downstream analysis.

Statistical analysis
Prior exploratory analysis revealed considerable dif-
ferences between the omics data from the HR class 
compared to FL class samples. Therefore, downstream 
analyses were performed considering each of the two 
classes as distinct but related across layers of omics data. 
Additionally, this decision was supported by the fact that 
phenotypes were assessed in different locations, lacking 
connectedness. Later, these data sets were merged for an 
omic-assisted prediction study.

Allele frequency‑based genomic kernel
The genomic relationship matrix (GRM), which gives the 
realized genetic similarities among any pair of individu-
als, was computed for SNP data sets of sizes p× n equal 
to 85,283× 79 for the HR and 75,299× 65 for FL data sets 
after individually re-filtering by MAF, depth, and missing 
rate using the same thresholds as described before.  The 
GRM was then used for downstream omics feature cor-
rections due to population stratification and multivariate 
mixed model analysis. The GRM based on pooled DNA 
was calculated using method 2 in VanRaden [63] adapted 
to use allele frequencies instead of discrete genotype 
calls. First, a column-centered matrix M was computed 
as M = F− F , where Fij is a matrix of alternative allele 
frequencies with i indexing samples and j indexing SNP 
markers. The matrix G can then be obtained as shown in 
Eq. 1.

where n is the ploidy of the breeding material,  m is the 
number of markers, and p̂j represents the frequency at jth 
locus simply obtained by taking the column means of 
the M matrix. As outbred full-sib  F2 families of tetraploid 

(1)G = MM′

1
n

∑m
i=1 p̂j

(

1− p̂j
)
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plants, the genotype of a family can be described as 
octoploid  [64]. Therefore, the realized relatedness is 
obtained by scaling the plain genomic relationship matrix 
from the cross product of M by the expected SNP vari-
ances, yielding a kernel that is analogous to the tradi-
tional numerator relationship matrix, also known as 
the A matrix. Finally, a diagonal correction was applied 
to G considering ploidy number and coverage depth [65].

Adjustment for population stratification
The impute file for the analysis of gene expression data 
consisted of two subsets of 4,767 features times the num-
ber of samples of each pedigree class. The reduced set of 
genes was obtained after further filtering out transcripts 
with more than 50% of samples having zero reads and 
retaining positions with at least 10 or more samples hav-
ing 10 or more reads. Additionally, a filter on the expres-
sional variance of non-zero elements was performed, 
selecting features ranked in the top 50th percentile as the 
variation for genes in the bottom may be largely due to 
non-biological noise. Finally, we retained only features 
common to both data sets followed by the addition of a 
pseudo count to the expression matrix, which was sub-
sequently log(2)-transformed  [log2(x+1)]. The input file 
for the analysis of NMR data consisted of two subsets 
of 556 NMR variables for each pedigree class. NMR fea-
tures were mean-centered and variable intensities were 
addressed via Pareto scaling, which uses the square root 
of the standard deviation to reduce the relative impor-
tance of high-variance features across the spectrum with-
out much disturbance to the data structure.

Population stratification was detected in an unsupervised 
manner via the multivariate statistical technique of princi-
pal component analysis and corrected via regression mod-
eling. We empirically retained coordinates of the top 10 
eigenvectors of each k pedigree class to regress out popu-
lation stratification as well as possible batch effects among 
samples. Therefore, the transcriptomic and metabolomic 
data sets were feature-wise corrected by incorporating 
principal component scores in the linear model of the form 
described in Eq. 2.

where,  yi represents the response variable  i (omic fea-
ture);  xPCip  is the entry-specific coordinates of the  pth 
principal component, with  p = 1...P where P is equal to 
10,  βp is the fixed regression coefficients adjusting for 
population stratification, and εi is the residual which was 
retained to reconstruct the full corrected omics data sets 
for network estimation.

(2)yi = µ+
P
∑

p=1

(

xPCip βp

)

+ εi

Joint graphical lasso analysis for inverse covariance 
estimation
A joint graphical lasso (JGL) method was used for esti-
mation in a scenario of double-related Gaussian graphi-
cal models. The two-class problem of high dimensional 
features was present in the data set due to the avail-
able inter-species/genus crosses. One can expect simi-
lar graphical models between the two classes as parents 
were shared among crosses between them, but also 
some nuances once the involved species have substan-
tial differences regarding phenotypic traits. Therefore, 
the joint graphical lasso [40] can handle this situation 
by estimating two graphical models, one for each pedi-
gree class, and borrowing information across classes. 
For each pedigree class k ( k = 1, 2 ), let a data matrix X(k) 
represent column-centered data with  p omic features, 
and X(k) ∼ N

(

µ(k),�(k)
)

 , where �(k) is a positive defi-
nite  p× p  covariance matrix of the omic features. The 
inverse of �(k) is the precision matrix  �(k) represent-
ing the network structure of omic features. By applying 
an ℓ1-penalty on �(k) the network is made sparse, where 
elements will be 0 for conditionally independent pairs 
of features given the remaining variables. The sparsity 
condition allows learning graphics even in small sample 
sizes. The fused graphical lasso formulation in which �(k) 
are estimated by maximizing the penalized form of the 
likelihood function for the two classes is shown in Eq. 3.

where P({�}) is as follows:

here, S(k) is the empirical covariance matrix of omics fea-
tures calculated as  S(k) = n−1X(k)X(k)T . The optimiza-
tion problem is here solved by the alternating direction 
method of multipliers (ADMM) algorithm. The solution 
to the problem of n ≪ p in the joint graphical lasso model 
is based on a penalized log-likelihood approach. In addi-
tion, as can be seen in Eq. 4, running JGL requires tuning 
two nonnegative parameters ( �1 and �2 ). The �1  penalty 
controls the degree of sparsity while �2 determines net-
work similarity. If �2 is zero (i.e., no penalty is imposed) 
then �(k)are independent and no information is shared 
between them. To select the proper hyperparameters, we 
used a goodness-of-fit approach where a grid search was 
performed to select values that minimize the Bayesian 
information criterion [BIC]  [66] specified in Eq.  5  [67], 
yielding values that balance model likelihood and 
complexity.

(3)
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{�}

{

2
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In order to reduce the computational burden, a dense 
search was performed over �1 for each fixed value of �2 
and a quick search for the former parameter for each 
fixed value of �1 as suggested by  [40]. For the metabo-
lomic data set, a uniform log spaced grid starting from 
0.01 to 20 with a size equal to 30 was defined for  �1 
whereas a simple sequence equally spaced from 0 to 
0.5 (size of 15) was defined for �2 . The same grid search 
space was defined for transcriptomic data, however, 
smaller sizes of 15 for �1 and 10 for �2 were specified. 
After selecting the proper hyperparameter values, we 
run JGL for each omics data set producing four preci-
sion matrices �(k) . From these matrices, one can com-
pute the partial correlation between pairs of dependent 
features as  corrij|V\{i,j} = −θij/

√

θiiθjj  . The joint 
graphical lasso method implemented in the R package 
JGL [40] was used for network estimation.

Network reconstruction, candidate modules, 
and hubidentification
Network analyses aiming for complexity reduction were 
performed in order to  prioritize candidate genes and 
metabolomic features for further integration with phe-
notypes of interest. Initially, each  precision matrix �(k) 
was converted into a symmetric (graph is undirected) 
0-1 matrix of dimensions equal to p× p , referred to as 
the adjacency matrix A(k) for each k data set following 
the definition:

Four adjacency matrices A were obtained and from them, 
we created graphic objects using the R package igraph [68]. 
Initially, a graph is denoted as G = (V ,E) in which each 
node v ∈ V  represents a biomolecule in this study, whereas 
each edge e =

(

vi, vj
)

∈ E refers to the interaction between 
pairs of nodes vi and vj . Each graph was organized in mod-
ules (communities) via a  multi-level modularity optimi-
zation algorithm  [69], forcing highly connected edges to 
cluster in modules that are sparsely connected among 
them. In other words, more edges occur within identified 
modules than the quantity expected at random. The com-
munity structure is essential for finding hub nodes that are 
more likely to be involved in different biological processes.

Hub features were identified intramodule via maximum 
Kleinberg’s hub centrality score, which is the  principal 

(5)BIC(�1, �2) =

2
∑

k=1

[

nk

{

tr(S(k)�̂�(k)) − log det �̂�(k)
}

+ log nk
∑

i≤j

1{
�̂�

k
ij
≠0

}

]

(6)A
(k)
ij =

{

1 if �
(k)
ij �= 0, i �= j;

0 otherwise

eigenvector of A(k) ·
(

A(k)
)T [70]. By using the hub scores, 

one can identify the most influential features in the net-
work and explore the biological function of these inter-
acting biomolecules. Therefore, we selected the top five 
hub features per module and kept only those intersect-
ing across data sets to maximize the probability of select-
ing true/conserved hubs of genes and metabolites. Aside 
from boosting power by minimizing the issue of multiple 
testing, information about conserved hub genes is more 
likely to possess broad biological significance.

REML variance components and heritability
Single omic features were analyzed by fitting a linear 
mixed model of the form: y = 1µ+ Zu + e , where y is 
the response vector (normalized gene expression values 
or total area of the bin from the bucketed NMR spec-
trum), 1 is a vector of ones linking observations to the 
constant µ, u ∼ N (0,Gσ 2

u ) , and e ∼ N (0, Iσ 2
e ) are vectors 

of the random additive genetic with covariance struc-
ture G (Equation  1) and independent (identity matrix  I 
as covariance structure) residual effects, respectively. Z is 
the design matrix assigning observations of omic features 
to the respective  F2 family. The genomic heritability was 
calculated as h2g = σ 2

u/(σ
2
u + σ 2

e ) , where h2g measures the 
proportion of the variance attributed to allele substitu-
tion effects captured by the genome-wide markers rela-
tive to the total variance.

Phenotypic variance within location was partitioned into 
the terms defined by the linear mixed model displayed in 
Equation 7:

where,  y,  β,  u,  s , and  e  represent the vectors of the 
response variable, fixed trial-block effect, random addi-
tive genetic effect following  u ∼ N (0,Gσ 2

u ) , random 
spatial effect following s ∼ N (0, Iσ 2

s ) , and random resid-
ual effect assumed  e ∼ N (0, Iσ 2

e ) , respectively. Matri-
ces G and I are as defined before. Design matrices X, Z , 
and S link observations of the response variable to the 
specific model effect. The spatial effect is a sliding win-
dow  accounting for 10 neighboring plots in addition to 
the target experimental unit and works by scanning 
the field for spatial variation not accounted for by the 
prior trial design.  Genomic heritability was calculated 
as:  h2g = σ 2

u/(σ
2
u + 11σ 2

s + σ 2
e ) . Variance components 

and heritabilities for eight phenotypic traits can be found 

(7)y = Xβ + Zu +
∑11

i=1
Sis+ e
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in the Supplemental Table S1. Finally, the parameter σ 2
u 

was multiplied by the average diagonal of the GRM in 
both heritability equations presented before.

Phenotypes and omics integration via pairwise fitting 
of mixed models
The raw phenotypic data were analyzed alongside hub 
omic features in a multitrait genome-wide fashion via 
linear mixed models to investigate pair-wise additive 
genetic correlations. The bivariate model (Eq.  8 and  9) 
was fitted  lm times, combining  l hub nodes and m phe-
notypic traits, for each data set, yielding correlations 
used to describe the existence of a significant association 
between the concentration of selected biological mol-
ecules and economically important phenotypes.

where yOMEl and yPHEm are vectors of expression/intensi-
ties of hub omic features and records of phenotypic traits, 
respectively; βOMEl

 contains the fixed general mean effect 
while βPHEm also contains the fixed effect of block within 
trial;  vectors  bOMEland  bPHEm contains fixed regression 
coefficients estimated by regressing response variables on 
principal components’ dimensional scores calculated 
from the genomic kernel; uOMEl and uPHEm are vectors of 
families’ additive genetic effect;    sPHEm is the vector of 
random spatial effect with  sPHEm ∼ N

(

0, Iσ 2
sPHEm

)

 ; 
and eOMEl and ePHEm are vectors of random residuals for 
expression/intensity of hub omic feature  l and pheno-
typic trait m, respectively. For incidence matrices X link-
ing fixed effects to response variables, the general mean 
was the only fixed effect for submodel  8, thus X1 = 1 . 
Matrices  X2 contain scores of the top three principal 
components computed from the G matrix (Eq. 1) instead 
of 1’s and 0’s, aiming at further accounting for population 
structure to avoid false-positive associations. The selec-
tion of the appropriate number of PC’s followed an 
empirical evaluation of the changes in response variables’ 
heritabilities as they were added. The matrix Z is the cor-
responding incidence matrix of additive family effects. 
Finally, the series of matrices Si link the random spatial 
effect to the surrounding plots and work as a sliding win-
dow (cross-shaped format) mapping the field for micro-
environmental variations missed by the blocking design. 
The joint covariance structure of the remaining random 
terms was assumed as follows:

(8)
yOMEl = X1βOMEl

+ X2bOMEl + ZuOMEl + eOMEl

(9)
y
PHEm

= �
�
�PHEm

+ �
�
bPHEm + ZuPHEm

+

∑11

i=1
�
�
�
PHEm

+ ePHEm

and

where I represents an identity matrix and ⊗ is the Kro-
necker product. Besides the scores of the first three 
principal components, here  G also accounts for the 
whole-genomic relationship structure of the population. 
Covariances between response vectors were set to non-
existent for residual genetic and error random effects.

For hypothesis testing, we also ran a constrained ver-
sion of the bivariate model, setting the additive genetic 
covariance between submodels  8 and  9  (Eq.  10) to zero 
( σuOMEl

uPHEm
= σuOMEl

uPHEm
= 0 ). The significance of the 

additive genetic correlations was tested by comparing the 
constrained and unconstrained models via a one-tailed 
log-likelihood ratio test (LRT) with 0.5 degrees of free-
dom [71, 72]. Multiple testing correction was performed 
for coefficients across traits within omic features via Ben-
jamini-Hochberg false discovery rate (FDR)  [73] proce-
dure at alpha equals 0.05 aiming to control for type I error.

The  lm additive genetic correlations estimated by fit-
ting the full bivariate model for each data set were 
retained along with the p-values and FDR-based signifi-
cant associations and used for constructing the omics-
phenotype weighted network graph. A visualization of 
the network was produced using the software Cytoscape 
3.9.1 [74], weighing edges by the magnitude of the trait-
omic associations.

Gene ontology enrichment analysis
Transcript protein sequences were subjected to local 
InterPro analysis using InterProScan v5.28-67.0  [75]. 
Predictive information concerning conserved protein 
domains, signal peptides, transmembrane domains, and 
gene ontology (GO) data was acquired from 14 mem-
ber databases of InterPro. Per transcript, non-redundant 
GO information was collected from InterPro outputs 
using custom scripts. GO-term enrichment analysis was 
carried out using the Python library GOATOOLS  [76] 
by intersecting the GO-term list of the full perennial 
ryegrass transcriptome, the GO-term subset of expressed 
genes, and the GO-term lists of filtered transcript sets 
(study lists). Significant enrichment was declared via 
Fisher Exact Test, corrected for false discovery rate [73].

(10)
[
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Omics‑assisted prediction
Starting from the centered  M matrix of SNP markers 
defined before, missing allele frequencies were imputed 
by chained random forest. This method was selected 
after comparing the ability in predicting missing allele 
frequencies against the weighted K-nearest neighbors 
(KNN) method via cross-validation.   The imputations 
were performed for each pedigree class separately using 
the R package missRanger [77]. The missRanger function 
ran using the arguments num.trees equal to 100, sample.
fraction equal to 0.1, max.depth of 6, and  extratrees for 
the splitrule argument. The imputation was performed by 
looping over one chromosome at a time within clusters 
of SNPs created by running a complete-linkage clustering 
algorithm with k = 30 as the desired number of groups.

We used the best linear unbiased estimator (BLUE) of 
entries as response variables in the prediction study. The 
adjusted phenotypes were obtained by rearranging the 
terms and refitting the submodel in Eq. 9 with families as a 
fixed effect and no PC scores were included. BLUEs within 
locations were mean-centered to remove differential envi-
ronmental effects followed by the merging of phenotypes 
and predictors from HR and FL data sets. The unsupervised 
machine learning algorithm random forest was used as the 
engine for the prediction study. Models were fitted using the 
‘ranger’ R package [78] with the hyperparameters minimum 
node size and a number of randomly drawn candidate fea-
tures set to five and ⌊√n⌋ , respectively, where n is the num-
ber of variables. Therefore, the random forest model was 
fitted on the combined data sets, setting the number of deci-
sion trees to 2,000. Training out-of-the-bag accuracy (OOB 
accuracy) was reported as a performance metric. Finally, 
variable importance was computed via permutation.

Three prediction scenarios were studied. First, we 
selected a subset of SNPs tagging common hub genes 
across data sets, the common hub genes, and the com-
mon hub NMR variables as three sets of regressors. The 
second scenario consisted of stochastically sampling 20x 
sets of 30 genes (then SNPs within these genes) and 32 
NMR variables aiming to compare the prediction power 
contained in hub nodes with randomly sampled features. 
In the last scenario, we used all common SNPs, genes, 
and NMR variables as regressors. Besides comparing 
prediction accuracy with the previous scenarios, here we 
can assess a common prediction task where the goal is to 
evaluate the closeness of predicted and observed values 
using all available predictor variables.

Statistical computing and data visualization
Large-scale computations were performed in the GenomeDK 
high-performance computing facility located at Aarhus 
University, Denmark. Mixed model analyses were fitted using 
DMU package version 6 [79]. Modular network visualizations 

were produced using the R package NetBioV [80] with the 
Fruchterman-Reingold layout algorithm to arrange nodes in 
each module. Finally, miscellaneous plots wore drawn employ-
ing the ggplot2 R package [81].
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