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Abstract 

Background Genomic selection (GS) is revolutionizing plant and animal breeding. However, still its practical imple‑
mentation is challenging since it is affected by many factors that when they are not under control make this method‑
ology not effective. Also, due to the fact that it is formulated as a regression problem in general has low sensitivity to 
select the best candidate individuals since a top percentage is selected according to a ranking of predicted breeding 
values.

Results For this reason, in this paper we propose two methods to improve the prediction accuracy of this methodol‑
ogy. One of the methods consist in reformulating the GS (nowadays formulated as a regression problem) method‑
ology as a binary classification problem. The other consists only in a postprocessing step that adjust the threshold 
used for classification of the lines predicted in its original scale (continues scale) to guarantee similar sensitivity and 
specificity. The postprocessing method is applied for the resulting predictions after obtaining the predictions using 
the conventional regression model. Both methods assume that we defined with anticipation a threshold, to divide the 
training data as top lines and not top lines, and this threshold can be decided in terms of a quantile (for example 80%, 
90%, etc.) or as the average (or maximum) of the performance of the checks.

In the reformulation method it is required to label as one those lines in the training set that are equal or larger than 
the specified threshold and as zero otherwise. Then we train a binary classification model with the conventional 
inputs, but using the binary response variable in place of the continuous response variable. The training of the binary 
classification should be done to guarantee a more similar sensitivity and specificity, to guarantee a reasonable prob‑
ability of classification of the top lines.

Conclusions We evaluated the proposed models in seven data sets and we found that the two proposed methods 
outperformed by large margin the conventional regression model (by 402.9% in terms of sensitivity, by 110.04% in 
terms of F1 score and by 70.96% in terms of Kappa coefficient, with the postprocessing methods). However, between 
the two proposed methods the postprocessing method was better than the reformulation as binary classification 
model. The simple postprocessing method to improve the accuracy of the conventional genomic regression mod‑
els avoid the need to reformulate the conventional regression models as binary classification models with similar or 
better performance, that significantly improve the selection of the top best candidate lines. In general both proposed 
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methods are simple and can easily be adopted for use in practical breeding programs, with the guarantee that will 
improve significantly the selection of the top best candidates lines.

Keywords Genomic prediction, Genomic selection, Reformulation, Binary classification, Postprocessing method

Introduction
Genomic selection (GS) proposed by [1] around 20 year 
ago is a predictive methodology. This methodology is 
very promising since candidates’ individuals can be 
selected before they are planted in the field, based on pre-
dictions resulting of a statistical machine learning model 
that was trained with a reference population containing 
phenotypic and genotypic information, but for the target 
population only is required genotypic information [2].

The name GS is due to the use of high density mark-
ers with a good coverage of the whole genome [1]. The 
GS methodology is attractive since allows: (a) saving time 
needed for variety development by reducing the cycle 
length, (b) to substantially increase the selection inten-
sity, which is key for capturing greater gain per unit time, 
(c) to select traits that are complex to measure, and (d) to 
improve the accuracy of the selection process, (e) select-
ing individuals before they are planted in the field, (f ) 
with significant probability selecting superior genotypes 
with high precision, (g) reducing costs, in part by saving 
the resources required for extensive phenotyping.

The GS methodology is very promising since can 
reduce generation intervals for the development of new 
cultivars and guarantee a reasonable prediction accuracy 
in the selection process [3]. For these reasons, it had been 
implemented for the development of many crops like 
maize, wheat, cassava, chickpea, rice, groundnut, soy-
bean among others [4–7]. Nevertheless, the real, practi-
cal application of the GS methodology is complex since 
many factors affects its performance which significantly 
increase its uncertainty.

Some factors that affect the accuracy of the GS method-
ology are: (a) the degree of relatedness between individu-
als in the training and testing set [8], (b) the heritability 
of the trait of interest, (c) the size of the testing (target) 
and training (reference) sets [9], (d) the prediction goal 
for example untested lines in tested environments, tested 
lines in tested environments, untested lines in untested 
environments or tested lines in untested environments 
[9] ( e) the statistical machine learning algorithm of 
choice for making the predictions, (f ) marker density, (g) 
relatedness between training and testing individuals [9], 
(h) population structure, etc. [10].

Some studies that provide specific details for the suc-
cessful implementation of GS are those in [9, 11]. The 
first one explain with a lot of details in the context of 
cereal breeding many factors that affect the accuracy of 

the GS methodology, as well as many statistical models 
that are popular in GS, also explain with details in which 
stages of the breeding process this methodology can be 
implemented. The second one, made and excellent review 
about genomic selection and propose how to integrate 
many tools to improve its efficiency. These authors pro-
pose an integrated breeding platform for GS. The plat-
form involves various breeding technologies, including 
doubled haploid (DH) technology, speed breeding, deci-
sion support tools (Genotyping, phenotyping, germplasm 
and envirotyping), seed DNA-based genotyping, genome 
editing, and transgenosis. These authors point out that in 
addition to trying to improve genomic prediction accu-
racy it is of paramount importance to integrate GS with 
other breeding technologies to be able to shorten the 
breeding cycle time and in this way increase significantly 
the efficiency of the GS methodology. Also, in [11] they 
propose the need of establishing an open-source breed-
ing network for GS, since there is a correlation between 
the increase in genetic gain and the increase in the avail-
able inputs required to implement GS and for this rea-
son it is important sharing various resources including 
facilities, platforms, and breeding-related data across GS 
breeding programs to increase the probability of success 
even in small breeding programs.

However, many of the factors that affect the GS meth-
odology are not easy to optimize since some requires a 
significant increase in resources and others even with 
more resources are not easy to optimize. Neverthe-
less, one factor that is considerable cheap to optimize 
is related to the statistical machine learning algorithm 
to use. The GS methodology traditionally implements a 
regression model for predicting breeding values or phe-
notypic values, and some of the most popular regression 
methods are mixed models and its Bayesian counterpart 
(BayesA, BayesB, …, Bayesian Lasso, etc.), also had been 
explored many other methods like random forest, deep 
neural networks, support vector machine (SVM), ker-
nel methods in conjunction of mixed models, Bayesian 
methods, SVM, etc. [12].

In general, there are not large differences between the 
performance of many statistical machine learning meth-
ods which is supported by the non-free lunch theorem 
that suggest that “all statistical machine learning algo-
rithms perform equally well when their performance is 
averaged over all possible objective functions or different 
data sets”. For this reason, still it is predominant the use 
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of mixed models and Bayesian methods not because they 
are better in terms of prediction performance but mostly 
because its implementation is easy, since not a complex 
tunning process is required.

However, even that many statistical machine learning 
methods had been implemented for GS, still the pre-
dictions of the GS methodology in some cases are quite 
uncertain and not enough for the practical implementa-
tion of this methodology. For this reason, in this paper 
we propose two methods to improve the accuracy of the 
GS methodology. One method (B Model) reformulate 
the conventional genomic regression model (R model) as 
a binary classification problem, that offer the advantage 
that will increase significantly the sensitivity to detect the 
best top lines.

The second method consist in a simple postprocessing 
method (RO model) to improve the sensitivity to select 
the top lines. This RO model uses the predictions result-
ing of the R model which are continues (in the original 
scale) and with a postprocessing is obtained an optimal 
threshold to improve the classification of the top lines. 
For this reason, the RO model only help to optimize the 
use of conventional genomic prediction models, but can 
significantly improve the selection of top lines.

Both proposed methods require a threshold as a func-
tion of the trait of interest, to divide the training data as 
top lines and not top lines. This threshold can be defined 
in terms of a quantile (for example 80%, 90%, etc.) or as 
the average (or maximum) performance of the checks. 
Then under the reformulation approach (B model) we 
define a binary response variable with one for those top 
lines that are equal or larger than the specified thresh-
old and as zero otherwise. Then under this model B, it 
is trained a binary classification model, in this case we 
used a Bayesian threshold genomic best linear unbi-
ased predictor (TGBLUP) model, with the conventional 
inputs but using the binary response variable in place of 
the continuous response variable. The training process is 
implemented in such a way to guarantee at least similar 

sensitivity and specificity to guarantee a reasonable clas-
sification of the top lines.

The context in which the two proposed methods are 
helpful is when the selection process of the top lines is 
done regarding the performance of checks (best check, 
average of checks, certain percentage above the best or 
average checks, top percent of the training set, etc.). That 
is, when the selection process is done comparing the con-
tinues predicted values of candidate lines regarding a ref-
erence check (that is used as threshold) and those lines 
that have better performance than this reference check 
(Threshold) are selected for the next generation.

The proposed methods come to fix the problem that 
conventional genomic prediction models (formulated 
as a regression models) had, that when selecting the top 
lines regarding a threshold has low sensitivity to select 
the top lines. This low sensitivity to select the top lines is 
due to the fact, that only a small subset of the lines used 
during the training process are top lines. In this study, we 
used seven public data sets previously reported in other 
publications to illustrate the proposed methods. For 
benchmarking purposes, we compare the results of the 
two proposed methods with those of the conventional 
genomic prediction model formulated as a regression 
model.

Materials and methods
Data sets
We used seven data sets for evaluating the proposed 
methods in this study. A summary of the seven data sets 
is provided in Table 1.

Next are described with more details the seven data 
sets.

Datasets 1–3. Elite wheat yield trial (EYT) years 2013–2014 
(EYT_1) and 2014–2015 (EYT_2), 2015–2016 (EYT_3)
These are public data sets used by many authors [13–
15]. These three datasets were collected by the Global 
Wheat Program (GWP) of the International Maize and 

Table 1 Summary of the seven data sets. GBS denotes the genotyping‑by‑sequencing technology and MAF denotes minor allele 
frequency

Data Acronym Year No. lines No. markers Markers
Technology

MAF

Dataset1 EYT_1 2013–2014 766 2,038 GBS 0.05

Dataset2 EYT_2 2014–2015 775 2,038 GBS 0.05

Dataset3 EYT_3 2015–2016 964 2,038 GBS 0.05

Dataset4 Wheat_1 2013‑14/2014‑15 1301 78,606 GBS 0.05

Dataset5 Wheat_4 2016‑17/2017‑18 1388 78,606 GBS 0.05

Dataset6 Wheat_5 2017‑18/2018‑19 1398 78,606 GBS 0.05

Dataset7 Wheat_6 2018‑19/2019‑20 1277 78,606 GBS 0.05
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Wheat Improvement Center (CIMMYT) and belong to 
elite yield trials (EYT) established in four different crop-
ping seasons with 4 or 5 environments in each. The lines 
involved in this study correspond to years 2013–2014 
(Dataset1; EYT_1), 2014–2015 (Dataset2; EYT_2) and 
2015–2016 (Dataset3; EYT_3). The EYT datasets 1, 2 and 
3 contain 776, 775 and 964 lines, respectively. The experi-
mental design used was an alpha-lattice design and the 
lines were sown in 39 trials, each covering 28 lines and 
two checks in six blocks with three replications.

In these datasets, several traits were available for some 
environments and lines. In this study we included four 
traits that were measured for each line in each environ-
ment: days to heading (DTHD, number of days from 
germination to 50% spike emergence), days to maturity 
(DTMT, number of days from germination to 50% physi-
ological maturity or the loss of the green color in 50% 
of the spikes), plant height and grain yield (GY). For full 
details of the experimental design and how the BLUEs 
were computed, see [16].

Data sets 2 and 3 were evaluated in 5 environments, 
but dataset1 was evaluated in only 4. For EYT dataset1, 
the environments were bed planting with 5 irrigations 
(Bed5IR), early heat (EHT), flat planting and 5 irrigations 
(Flat5IR) and late heat (LHT). For EYT dataset2, the envi-
ronments were bed planting with 2 irrigations (Bed2IR), 
Bed5IR, EHT, Flat5IR and LHT, while for dataset3, the 
environments evaluated were Bed2IR, Bed5IR, Flat5IR, 
flat planting with drip irrigation (FlatDrip) and LHT. It 
is important to point out that in this study the data used 
(BLUEs) was across environments that resulted in the fol-
lowing number of lines used in each data set: 766 in in 
dataset1, 775 in dataset2 and 964 in dataset3.

Genome-wide markers for the 2515 (776 + 775 + 964) 
lines in the three datasets were obtained using genotyp-
ing-by-sequencing (GBS) [17, 18] at Kansas State Univer-
sity using an Illumina HiSeq2500. After filtering, 2,038 
markers were obtained from an initial set of 34,900 mark-
ers. The imputation of missing markers data was carried 
out using LinkImpute [19] and implemented in TAS-
SEL [20], version 5. Lines that had more than 50% miss-
ing data were removed, and 2,515 lines were used in this 
study (776 lines in the first dataset, 775 lines in the sec-
ond dataset, and 964 lines in the third dataset).

Datasets 4–7. Wheat data
Also, these datasets are public and had been used in many 
publications [13, 14]. Spring wheat lines selected for 
grain yield analyses from CIMMYT first year yield trials 
(YT) were used as the training population to predict the 
quality of lines selected from elite yield trials (EYT) for 
grain yield analyses in a second year. Details of these four 
data sets are given next: - Wheat_1 (2013-14/2014-15; 

denoted as dataset4), 1,301 lines from the 2013-14 EYT 
and 472 lines from the 2014-2015 EYT trial. In this data-
set, only the grain yield trait was used. The lines across 
environments that were used in this study were 1301. - 
Wheat_4 (2016-17/2017-18; denoted as dataset5), 1,372 
lines from the 2016-17 EYT and 567 lines from the 2017-
2018 EYT trial. The lines across environments that were 
used in this study were 1388. - Wheat_5 (2017-18/2018-
19; denoted as dataset6), 1,386 lines from the 2017-18 
EYT and 509 lines from the 2018-2019 EYT trial. In this 
dataset, only the grain yield trait was used. The lines 
across environments that were used in this study were 
1398. - Wheat_6 (2018-19/2019-20; denoted as data-
set7), 1,276 lines from the 2018-19 EYT and 124 lines 
from the 2019-2020 EYT trial. More details of these data-
sets can be found in [21]. The lines across environments 
that were used in this study were 1277. All the lines were 
genotyped using genotyping-by-sequencing (GBS; [18]). 
The TASSEL v.5 (Trait Analysis by Association Evolu-
tion and Linkage) GBS pipeline was used to call marker 
polymorphisms [22], and a minor allele frequency of 0.01 
was used for single nucleotide polymorphism (SNP) dis-
covery. The resulting 6,075,743 unique tags were aligned 
to the wheat genome reference sequence (RefSeq v.1.0) 
[23] with an alignment rate of 63.98%. After filtering for 
SNPs with homozygosity >80%, p-value for Fisher’s exact 
test <0.001 and Chi-square value lower than the critical 
value of 9.2, we obtained 78,606 GBS markers that passed 
at least one of those filters. These markers were further 
filtered for less than 50% missing data, greater than a 0.05 
minor allele frequency and less than 5% heterozygosity in 
all the datasets. Markers with missing data were imputed 
using the ‘expectation-maximization’ algorithm in the ‘R’ 
package rrBLUP [24].

Statistical methods
Model R
Model R, is the Bayesian best linear unbiased predictor 
(GBLUP) model, that is formulated as a regression prob-
lem. This model is given next:

Where Yi denotes the continues response variable 
measured in the ith line, µ is a general mean or intercept. 
gj ,i = 1, . . . , J  , denotes the random effect of ith genotype, 
and ǫi is the random error component of ith genotype 
distributed as an independent normal random variable 
with mean 0 and variance σ 2 . It is assumed that 
g = g1, . . . , gJ

T
∼ NJ 0, σ 2

g G  , where G is a linear ker-
nel known as genomic relationship matrix computed 
according with the method of [25]. This model was 

(1)Yi = µ+ gi + ǫi
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implemented in the R statistical software [26] with the 
BGLR library of [27].

Since we are interested in selecting the top lines for 
each trait, the threshold, Yτ , (where Yτ is the empiri-
cal quantile τ of training response values ( Y1,…,Yntr ), we 
used τ = 0.8 , but any other value between 0 and 1 can be 
used) is used for the classification of the lines as top lines 
(denotes as 1; if Ŷi > Yτ , for i = 1, . . . , ntst ) and not top 
lines (denotes as 0; if Ŷi < Yτ , fori = 1, . . . , ntst ). For this 
reason, after we obtain the continuous predictions with 
this model those lines with predicted values larger than 
this threshold, Yτ ,were classified as top lines and those 
with predicted values less than the threshold were classi-
fied as not top lines.

Model B
Model B is the threshold Bayesian probit binary model 
(TGBLUP) that assumes that conditioned to  g i (covari-
ates of dimension J  ), Ybi is a random variable that takes 
values   0 and 1, with the following probabilities:

where β0 is an intercept parameter, gi denotes the ran-
dom effect of the ith genotype distributed exactly as was 
defined in model (1), and li = β0 + gi+ǫi is the underly-
ing or latent continuous normal process that gives rise 
to the observed categories (top lines and not top lines), 
where ǫi  is a normal random variable for errors with 
mean 0 and variance 1. The values of li are called “liabili-
ties” [28, 29]. The binary categorical phenotypes in model 
(2) are generated from the underlying phenotypic values, 
li , as follows: ybi = 0 if −∞< li < 0, otherwiseybi = 1. 
Given that model (2) is formulated under a Bayesian 
framework for this reason this model assumes a flat prior 

(2)P
(
Ybi = 1|gi

)
= �

(
β0 + gi

)
= P(li > 0)

distribution for β0 ( f (β0) ∝ 1 ). The TGBLUP model was 
implemented in the BGLR package of [27] in the R statis-
tical software [26].

Figure 1 provides a representation of the steps required 
for the training process under model B. These steps are 
described next:

Step 1: First transform the continuous response vari-
able to a binary response variable using the same 
threshold (for example average performance of 
checks) mentioned before in the R model, but now 
using the observed original response variable. That is, 
when the values of the continues traits are larger than 
the specific threshold, then is assigned a value of one 
(1 = top line) otherwise a zero (0 = not top lines).
Step 2: First split the data in inner-training, valida-
tion and test set.
Step 3. Train model B (Classification model) with 
the inner-training set,
Step 4. Using the trained model B (in step 3) with 
the validation set compute the predicted probabili-
ties, P̂Val,l for i = 1, . . . , nval ,for the validation set 
and after use these predicted probability values to 
estimate the metrics of classification accuracy to 
select the optimal probability threshold (τ 0).
Step 5. Then select the optimal hyperparameter, that 
is, the probability threshold ( τ0) that minimize the 
average of the squared difference between the sensi-
bility and specificity.
Step 6. Then with the whole training set (inner-
training + validation) refit model B and produce 
probability predictions for the testing set, that 
is,P̂Test,l for i = 1, . . . , nTest ,for the testing set.
Step 6. Then with the optimal probability threshold 
( τ0) of Step 5 and the predicted probabilities of the 
testing set of Step 6, we classified the lines as.

Fig. 1 Schematic representation of the training process under model B. X denotes the input (markers and other covariates) data, Y the continuous 
response variable and Yb the binary response variable resulting of transforming Y to a binary response variable. The final predictions are done as 1 
for top lines and 0 as not top lines
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If P̂Test,l > τ0 the line is classified at top line (1), other-
wise as not top line (0).

Details of the steps are given in Fig. 1.

Model RO
The RO acronym denotes regression optimum, this 
model use model R for the training process to adjust 
the threshold (computed with the 80% quantile of the 
response variable of the training set or with the average 
performance of checks) to be able to guarantee a similar 
sensitivity and specificity. An schematic representation 
of the steps involved in the training process of model RO 
are given in Fig. 2. These steps are described next:

Step 1: First split the data in inner-training, validation 
and test set.
Step 2. Train model R with the inner-training set 
using the original response variable.
Step 3. Using the trained model R (in step 2) with 
the validation set compute the predicted continues 
values, ŶVal,l for i = 1, . . . , nval ,for the validation set, 
and after use this predicted values to estimate the 
metrics of classification accuracy to select the opti-
mal probability threshold (τ 0).
Step 4. Then select the optimal hyperparameter, 
that is, the probability threshold ( τ0) , with which is 
computed optimal threshold ( Yτ0) that minimize the 
average of the squared difference between the sensi-
bility and specificity.
Step 5. Then with the whole training set (inner-
training + validation) refit model R, and with this 
refitted model compute the predicted values of the 
testing set, that is, ŶTest,l .

Step 6. Then with the optimal threshold ( Yτ0) com-
puted in Step 4 and the predicted values of the test 
set in Step 5, we classified the lines as

If ŶTest,l > Yτ0 the line is classified at top line (1), other-
wise as not top line (0).

In Fig. 2 can be appreciated the use of model R during 
the training process of model RO.

Note that this optimal modified rule can be expressed 
in terms of the traditional threshold values ( Yτ ). This is 
because classifying a line as top 

(
Ŷi > Yτ0

)
 is equivalent 

to classifying a line if Ŷ ∗
i > Yτ where Ŷ ∗

i = Ŷi(Yτ /Yτ0) is 
the modified predicted values or adjusted predicted value 
that guarantee similar sensitivity and specificity.

Finally, since with the three models evaluated (R, RO 
and B) the predictions are in terms of zeros (not top lines) 
and ones (top lines) were computed classification metrics 
for evaluating the prediction accuracy for the testing sets.

Metrics for evaluation of prediction performance
In each of the seven data sets, one outer-fold cross valida-
tion and one inner-fold cross validation was implemented 
[12]. The outer-fold cross-validation was implemented 
for evaluating the prediction accuracy in out-of-sample 
data using 5 fold cross-validation, while the inner-cross-
validation to tune the probability threshold hyperparam-
eter under models B and RO and this was implemented 
with 10 fold cross-validation (See Figs.  1 and 2). Under 
the outer-5-fold cross validation the model was trained 
with four folds and the remaining was used as testing 
set until each of the 5 folds were used as testing set once. 
For sure the testing set was not used for training only for 
evaluating the prediction accuracy. The average of the 5 

Fig. 2 Schematic representation of the training process under model RO. X denotes the input (markers and other covariates) data and Y the 
continuous response variable. The final predictions are done as 1 for top lines and 0 as not top lines
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testing sets was reported as prediction accuracy with 4 
metrics that are explained in the following paragraphs.

Next, the average of the 5-folds was reported as pre-
diction performance using the Kappa coefficient, the 
Sensitivity, the Specificity and the F1 score. For the 
implementation of the R model (GBLUP) no tuning was 
required, but for models B and RO was tuned the prob-
ability threshold to guarantee similar sensitivity and 
specificity. For this reason, under models B and RO 
where tuning was required the inner-cross validation 
was implemented using ten folds to optimize the prob-
ability thresholds that were selected as the average of the 
ten folds of the inner cross validation. Then these optimal 
thresholds were used for the classification of the lines at 
top lines and not top lines in each testing set (See Figs. 1 
and 2).

Then with the outputs (predictions) of three models 
(R, RO and B) for each testing set were computed the 
metrics that are described next. The Kappa coefficient 
(κ) statistic is a chance-corrected method for assessing 
agreement (rather than association) among raters. Kappa 
is defined as follows:

where P0 is the agreement between predicted 
and observed values and it is computed by the 
TP+TN

N  , where TN  is the number of true nega-
tives, TP is the number of true positives, FN  is 
the number of false negatives, FP is the number 
of false positives, and N = TP + TN + FP + FN  ; 
Pe is the probability of agreement calculated as 
Pe =

TP+FN
N × TP+FP

N + FP+TN
N × FN+TN

N  . Sensitivity is 
defined as the probability of a positive test, conditioned 
on truly being positive: TP/ (TP+ FN), whereas speci-
ficity is defined as the probability of a negative test, con-
ditioned on truly being negative: TN/ (TN+ FP) [10]. 
Precision is the ratio of correctly predicted positive 
observations to the total predicted positive observations 
(Precision = TP/(TP+FP)). The higher the precision the 
lower the false positive rate and for sure the higher the 
precision the better the prediction accuracy.

The F1 Score is the weighted average of Sensitivity and 
Precision. Therefore, this score takes both false negatives 
and false positives into account. The F1 score is normally 
more useful than accuracy, especially in unbalanced data 
sets class distribution. Accuracy works best if false posi-
tives and false negatives have similar cost. If the cost of 
false negatives and false positives are very different, it’s 
better to look at both Precision and Sensitivity [30]. To 
compare two methods (R and B or R and RO or B and 
RO) the relative efficiencies in terms of F1 score were 
computed as,

κ =
P0 − Pe

1− Pe

where Kappay and Kappaz denotes the Kappa coefficient 
of models y and z, respectively. With y = R, B and z = B, 
RO. While in terms of sensitivity the RE was computed 
as:

In a similar fashion was computed the RE for the F1 
score and specificity. Under the four metrics, if REx > 1, 
with x = Kappa, Sensitivity, Specificity, F1,the best pre-
diction performance was obtained using method y, but 
when REx < 1, the best method was z. When REx = 1, 
both methods were equally efficient.

Results
The results are given in 5 sections one for data set 
EYT_1, EYT_2, Wheat_5, Wheat_6 and the last one for 
the results across data sets. In each section we compare 
the prediction performance between the conventional 
regression model, R, the reformulation as a binary classi-
fication problem, model B, and the adjusted conventional 
regression model (RO). The comparison is done in terms 
of four metrics F1 score, Kappa coefficient, sensitivity 
and specificity. For the remaining data sets the results are 
given in supplemental material.

EYT_1
As can be seen in Fig.  3 the proposed reformulation 
model, B, has better prediction performance than the 
conventional regression model, R, but not has better 
prediction performance than the regression optimum 
model, RO. In terms of F1 score the accuracy in the 
four trait was: DTHD (B = 0.357, R = NA, RO = 0.408), 
DTMT (B = 0.345, R = 0.103, RO = 0.391), GY (B = 0.411, 
R = 0.215, RO = 0.487) and Height (B = 0.383, R = 0.226, 
RO = 0.415), that is, in terms of F1 score model B outper-
formed model R in trait DTMT by 235.0% (RE = 3.350), 
in trait GY by 91.3% (RE = 1.913) and in trait Height by 
69.3% (RE = 1.693). Also, in terms of F1 score model RO 
outperformed model R in trait DTHD by 12.6%, in trait 
DTMT by 11.9%, in trait GY by 15.6% and in trait Height 
by 7.9% for details see appendix Table A1 and Fig.  3A. 
Also, in terms of Kappa coefficient, model B outper-
formed model R, but not the RO model, in traits DTHD 
(B = 0.109, R = 0.070, RO = 0.190), DTMT (B = 0.092, 
R = 0.046, RO = 0.166) and GY (B = 0.180, R = 0.164, 
RO = 0.304), only for Height trait model R showed bet-
ter prediction performance than model B (B = 0.140, 
R = 0.169, RO = 0.200), in other words in terms of Kappa 

REKappa =
Kappay

Kappaz

RESensitivity =
Sensitivityy

Sensitivityz
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coefficient model B outperformed model R by 55.9% 
(RE = 1.559 for trait DTHD), 98.6% (RE = 1.986 for trait 
DTMT), 9.9% (RE = 1.099 for trait GY). Also, in terms of 
Kappa coefficient model R outperformed model B in trait 
Height by 17.2%, while model RO outperformed model 
B by 42.6% in trait DTHD, by 44.8% in trait DTMT, by 
40.8% in trait GY and by 30.1% in trait Height, for details 
see in appendix Table A1 and Fig. 3B. In terms of sensi-
tivity model B and RO were better than model R in the 
four traits, but model RO showed better performance 
than model B in traits DTHD (B = 0.633, R = 0.076, 
RO = 0.654), DTMT (B = 0.593, R = 0.063, RO = 0.634), 
GY (B = 0.696, R = 0.128, RO = 0.711) and Height 
(B = 0.663, R = 0.137, RO = 0.639), that is, in terms of 
Sensitivity model B outperformed model R by 734.8% 
(RE = 8.348), 833.6% (RE = 9.336), 4.442% (RE = 5.442) 
and 383.2% (RE = 4.832%) for traits DTHD, DTMT, GY 
and Height respectively, on the other hand model RO 
outperformed model B by 3.2% in trait DTHD, by 6.4% 
in trait DTMT and by 2.1% in trait GY, but model B out-
performed model RO by 3.8% in trait Height. For details 
see in appendix Table A1 and Fig. 3C. Finally, in terms of 
specificity model R and RO showed better performance in 

the four traits DTHD (B = 0.548, R = 0.976, RO = 0.621), 
DTMT (B = 0.544, R = 0.970, RO = 0.614), GY (B = 0.577, 
R = 0.987, RO = 0.699) and Height (B = 0.551, R = 0.982, 
RO = 0.647), that is, model R outperformed model B by 
43.8% in trait DTHD, by 43.9% in trait DTMT, by 41.5% 
in trait GY and by 43.9% in trait Height, while model RO 
outperformed model B by 11.8% in trait DTHD, by 11.4% 
in trait DTMT, by 17.5% in trait GY and by 14.8% in trait 
Height. For details see in appendix Table A1 and Fig. 3D.

EYT_2
As can be seen in Fig.  4 the proposed model, RO, out-
performed models R and B. In terms of F1 score this was 
the performance in traits DTHD (B = 0.387, R = 0.209, 
RO = 0.412), DTMT (B = 0.411, R = 0.361, RO = 0.479), 
GY (B = 0.418, R = 0.343, RO = 0.508) and Height 
(B = 0.354, R = 0.283, RO = 0.467), that is, in terms of F1 
score model B outperformed model R in trait DTHD by 
85.0% (RE = 1.850), in trait DTMT by 14.0% (RE = 1.140), 
in trait GY by 21.7% (RE = 1.217) and in trait Height by 
24.9% (RE = 1.249). While model RO outperformed 
model R by 6.1% in trait DTHD, by 14.2% in trait DTMT, 

Fig. 3  A Mean accuracy in terms of F1 score for classification model (B), regression model (R) and regression optimum model (RO) for traits DTHD, 
DTMT, GY and Height for dataset EYT_1. B Mean accuracy in terms of Kappa coefficient for classification model (B), regression model (R) and 
regression optimum model (RO) for traits DTHD, DTMT, GY and Height for dataset EYT_1. C Mean accuracy in terms of sensibility for classification 
model (B), regression model (R) and regression optimum model (RO) for traits DTHD, DTMT, GY and Height for dataset EYT_1. D Mean accuracy in 
terms of specificity for classification model (B), regression model (R) and regression optimum model (RO) for traits DTHD, DTMT, GY and Height for 
dataset EYT_1
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by 17.8% in trait GY, by 24.2% in trait Height. For details 
see appendix Table A2 and Fig.  4A. Also, in terms of 
Kappa coefficient, model R and RO outperformed model 
B in traits DTHD (B = 0.135, R = 0.142, RO = 0.195), 
DTMT (B = 0.175, R = 0.292, RO = 0.292), GY (B = 0.183, 
R = 0.259, RO = 0.337) and Height (B = 0.163, R = 0.222, 
RO = 0.281), in other words, in terms of Kappa coef-
ficient model R outperformed model B by 5.1% for trait 
DTHD, 40.1% for trait DTMT, 29.3% for trait GY and 
26.8% for trait Height. While model RO outperformed 
model B by 30.8% in trait DTHD, by 40.0% in trait 
DTMT, by 45.6% in trait GY and by 42.0% in trait Height. 
For details see in appendix Table A2 and Fig. 4B. In terms 
of sensitivity model B was better than models R and 
RO in traits DTHD (B = 0.705, R = 0.133, RO = 0.642), 
DTMT (B = 0.729, R = 0.248, RO = 0.713), GY (B = 0.748, 
R = 0.242, RO = 0.718) and Height (B = 0.551, R = 0.178, 
RO = 0.672), that is, in terms of Sensitivity model 
B outperformed model R by 431.4% (RE = 5.314), 
194.2% (RE = 2.942), 209.4% (RE = 3.094) and 209.5% 
(RE = 3.095%) for traits DTHD, DTMT, GY and Height 
respectively. Also, model B outperformed model RO by 
9.8% (RE = 1.098), 2.3% (RE = 1.023), 4.3% (RE = 1.043) 

for traits DTHD, DTMT and GY respectively, only in 
trait Height the model RO outperformed B model by 
18.1%, see details in appendix Table A2 and Fig.  4C. 
Finally, in terms of specificity models R and RO showed 
better performance in the four traits DTHD (B = 0.509, 
R = 0.971, RO = 0.637), DTMT (B = 0.549, R = 0.976, 
RO = 0.685), GY (B = 0.543, R = 0.960, RO = 0.720) and 
Height (B = 0.665, R = 0.982, RO = 0.704), that is, model 
R outperformed model B by 47.6% in trait DTHD, by 
43.7% in trait DTMT, by 43.4% in trait GY and by 32.3% 
in trait Height. While model RO outperformed model 
B by 20.1% in trait DTHD, by 19.8% in trait DTMT, by 
24.6% in trait GY and by 5.4% in trait Height for details 
see in appendix Table A2 and Fig. 4D.

Wheat_5
As can be seen in Fig.  5 model B, has better prediction 
performance than model R, but not has better predic-
tion performance than model RO. In terms of F1 score 
in trait GY (B = 0.454, R = 0.174, RO = 0.467) model 
B outperformed model R by 161.4% (RE = 2.612) and 
model RO outperformed model B by 2.7%, for details see 

Fig. 4  A Mean accuracy in terms of F1 score for classification model (B), regression model (R) and regression optimum model (RO) for traits DTHD, 
DTMT, GY and Height for dataset EYT_2. B Mean accuracy in terms of Kappa coefficient for classification model (B), regression model (R) and 
regression optimum model (RO) for traits DTHD, DTMT, GY and Height for dataset EYT_2. C Mean accuracy in terms of sensibility for classification 
model (B), regression model (R) and regression optimum model (RO) for traits DTHD, DTMT, GY and Height for dataset EYT_2. D Mean accuracy in 
terms of specificity for classification model (B), regression model (R) and regression optimum model (RO) for traits DTHD, DTMT, GY and Height for 
dataset EYT_2
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appendix Table A3 and Fig. 5A. Also, in terms of Kappa 
coefficient, model B outperformed model R, but not RO 
model in trait GY (B = 0.256, R = 0.123, RO = 0.275), in 
other words, model B outperformed model R by 108.2% 
(RE = 2.082 for trait GY) and model RO outperformed 
model B by 6.8% for trait GY, for details see in appendix 
Table A3 and Fig. 5B. Also for GY trait in terms of sensi-
tivity model B was better than model R, but not of model 
RO (B = 0.677, R = 0.104, RO = 0.698), that is, in terms 
of sensitivity model B outperformed model R by 546.4% 
(RE = 6.464) and model RO outperformed model B by 
2.9%, for details see in appendix Table A3 and Fig.  5C. 
Finally, in terms of Specificity models R and RO showed 
better performance than B model in GY trait (B = 0.673, 
R = 0.981, RO = 0.679), that is, model R outperformed 
model B by 31.4% and model RO outperformed model B 
by 0.8% in trait GY, for details see in appendix Table A3 
and Fig. 5D.

Wheat_6
As can be seen in Fig.  6 model RO has better predic-
tion performance than model R and B. In terms of F1 
score this was the prediction performance in trait GY 
(B = 0.505, R = 0.305, RO = 0.516), that is, in terms 

of F1 score model B outperformed model R by 65.8% 
(RE = 1.658), and model RO outperformed model B by 
2.1%, for details see appendix Table A4 and Fig.  6A. 
Also, in terms of Kappa coefficient, model B out-
performed model R, but not RO model in trait GY 
(B = 0.333, R = 0.225, RO = 0.347), in other words 
model B outperformed model R by 48.1% (RE = 1.481 
for trait GY), and model RO outperformed model B by 
3.8%, for details see in appendix Table A4 and Fig. 6B. 
Also, in terms of sensitivity model RO was better 
than models B and R in GY trait (B = 0.713, R = 0.207, 
RO = 0.737), that is, in terms of sensitivity model B 
outperformed model R by 244.1% (RE = 3.441), but 
model RO outperformed model B by 3.2%, for details 
see in appendix Table A4 and Fig. 6C. Finally, in terms 
of specificity the regression model showed better per-
formance that models RO and B in trait GY (B = 0.725, 
R = 0.965, RO = 0.723), that is, model R outperformed 
model B by 24.8% and model B outperformed model 
RO by 0.3% for details see in appendix Table A4 and 
Fig. 6D.

Fig. 5  A Mean accuracy in terms of F1 score for classification model (B), regression model (R) and regression optimum model (RO) for traits GY 
for dataset Wheat_5. B Mean accuracy in terms of Kappa coefficient for classification model (B), regression model (R) and regression optimum 
model (RO) for trait GY for dataset Wheat_5. C Mean accuracy in terms of sensibility for classification model (B), regression model (R) and regression 
optimum model (RO) for trait GY for dataset Wheat_5. D Mean accuracy in terms of specificity for classification model (B), regression model (R) and 
regression optimum model (RO) for trait GY for dataset Wheat_5
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Fig. 6  A Mean accuracy in terms of F1 score for classification model (B), regression model (R) and regression optimum model (RO) for trait GY 
for dataset Wheat_6. B Mean accuracy in terms of Kappa coefficient for classification model (B), regression model (R) and regression optimum 
model (RO) for trait GY for dataset Wheat_6. C Mean accuracy in terms of sensibility for classification model (B), regression model (R) and regression 
optimum model (RO) for trait GY for dataset Wheat_6. D Mean accuracy in terms of specificity for classification model (B), regression model (R) and 
regression optimum model (RO) for trait GY for dataset Wheat_6

Fig. 7 Mean accuracy in terms of F1 score for classification model (B), regression model (R) and regression optimum model (RO) across traits and 
across datasets 
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Across datasets
As can be seen in Fig. 7 in general model, RO, has bet-
ter prediction performance than models R and B. In 
terms of F1 score across traits and across datasets 
(B = 0.421, R = 0.219, RO = 0.460), model B outper-
formed model R by 92.5% (RE = 1.925) and model RO 
outperformed model B by 8.5%, for details see appendix 
Table A5 and Fig. 7. Also, in terms of Kappa coefficient, 
model RO outperformed models R and B across traits 
and across datasets (B = 0.207, R = 0.155, RO = 0.265), 
that is, model B outperformed model R by 33.5% 
(RE = 1.335 for across traits and across datasets), and 
model RO outperformed model B by 21.9% for details 
see in appendix Table A5 and Fig. 7. Also, in terms of 
sensitivity model RO was better than models R and B 
across traits and across datasets (B = 0.664, R = 0.137, 
RO = 0.689), that is, model B outperformed model R by 
386.6% (RE = 4.866) and model RO was slightly better 
than model B, for details see in appendix Table A5 and 
Fig.  7. Finally, in terms of specificity model R showed 
better performance than models B and RO across traits 
and across datasets (B = 0.626, R = 0.977, RO = 0.674), 
that is, model R outperformed model B by 36.0% and 
model RO outperformed model B by 7.2% for details 
see in appendix Table A5 and Fig. 7.

Discussions
The genomic selection methodology that is revolutioniz-
ing plant breeding was proposed more than 20 years ago 
by [1]. It is atractive and efficient since it is a predictive 
methodology that is able to select candidate individuals 
before they are planted in the field, thanks to the use of 
statistical machine learning methods trained with phe-
notypic and markers data of a reference population and 
markers of candidate individuals. However, since many 
factor affects its efficiency and precision (see more details 
in [10, 11]) for this reason continues the research with 
the goal for achieving and obtaining greater genetic gain 
and for improving the production of staple crops to meet 
the human demand from an increasing global population 
[11]. For this reason, a successful implementation of the 
GS needs to guarantee high sensitivity and reasonable 
specificity in the selection of the top lines. High sensitiv-
ity is required to guarantee that the lines selected are the 
best (those top lines) and reasonable specificity to guar-
antee that those not top lines are not selected. However, 
the conventional formulation of the genomic selection 
methodology as a regression problem, model R, where 
the model is trained to predict a continues response 
variable not always guarantee a reasonable sensitivity 
and specificity since the top lines in the training set are 
minority. For this reason, the model R most of the time 
only guarantee high specificity and low sensitivity.

For this reason, in this paper we propose two methods 
to improve the accuracy of the GS methodology. The first 
one, reformulate the genomic selection methodology as 
a classification problem, where those lines in the training 
set with top performance are allocated to the top class 
labeled as one and the others are allocated to the zero 
class. Then in place of training a regression model it is 
trained a classification model with the binary response 
variable, just created, with the goal to guarantee at least 
a similar sensitivity and specificity. While the second 
one, modified the threshold for classification the con-
tinues predictions resulting of the conventional genomic 
prediction models. The threshold, under this method is 
optimized to guarantee similar sensitivity and specificity 
because the conventional prediction model has very low 
sensitivity and very high specificity. This second method 
consists on a postprocessing step since we use the contin-
uous predictions produced by the conventional genomic 
prediction model that is formulated as a regression prob-
lem. However, to be able to estimate the optimal thresh-
old each training set was divided in inner-training and 
validation, and with the inner-training were trained the 
models and with the validation evaluated the hyperpa-
rameter (threshold) from which the optimal threshold 
was estimated that was used for improving the sensitivity 
of the classification of the predicted lines. For this reason, 
the optimal threshold is data dependent. This threshold 
guarantee similar sensitivity and specificity since was 
selected in such a way that minimize the average of the 
squared difference between the sensibility and specificity.

Our results found that the proposed reformulation of 
the GS methodology, model B, has more power to select 
the best top lines since outperformed the conventional 
approach, model R by 92.5, 33.5, 386.6% in terms of F1 
score, Kappa and Sensitivity. Also, the proposed refor-
mulation method (model B) decrease significantly the 
specificity from 97.7% across traits and data sets under 
the conventional regression formulation to 60% under 
the proposed reformulation, that is, a reduction in 36% in 
the specificity. It is important to point out that the con-
ventional regression model has high specificity (97.7% 
across traits and data set) and for this reason is extremely 
efficient for detecting not top lines, but extremely bad 
for detecting top lines (Sensitivity of 13.7% across traits 
and data sets), while the proposed reformulation method 
(model B) across traits and data sets is able to detect 
top lines with a probability of 66.4% (Sensitivity) and to 
detect not top lines with a probability of 62.2%, which 
by large margin better than the conventional regression 
model.

On the other hand, the second method, model RO, that 
is a postprocessing method outperform the conventional 
prediction model in terms of sensitivity by 402.9%, in 
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terms of F1 score by 110.04% and in Kappa coefficient by 
70.96% but resulted with worse efficacy in terms of speci-
ficity by 44.95%. These results illustrate that this pro-
posed method guarantee a better sensitivity (larger than 
0.5) and lower specificity (less than 0.7 and larger than 
0.5) regarding the conventional method with sensitiv-
ity and specificity equal to 13.7% and 97.7% respectively. 
Also, in general terms produce similar or slightly bet-
ter performance than the reformulation method (model 
B) that reformulate the regression model (model R) as a 
binary classification problem, but with the advantage that 
not required to reformulate the original regression prob-
lem of the GS methodology. Both methods outperform 
the conventional regression model (model R), but model 
RO, can be more attractive for its simplicity and good 
prediction performance.

In general, both methods (Model B and RO) offer a 
very flexible framework to improve the selection accu-
racy of the top lines. With regard to model B, it can be 
implemented with many conventional machine learning 
methods for classification like neural networks, gradi-
ent boosting machines, support vector machine, random 
forest, logistic regression, extreme gradient boosting 
machine, etc. However, to have a successful implemen-
tation of the proposed reformulation of the GS method-
ology, with model B, it is required to focus the training 
process to guarantee at least a similar sensitivity and 
specificity. However, also it is possible with the proposed 
reformulation method to perform a training process in 
such a way to obtain a significantly larger sensitivity and 
moderate specificity.

It is important to point out that both proposed meth-
ods (model B and RO) should be useful when the selec-
tion process is done regarding to checks or a threshold 
stablished regarding a quantile (80%, 90%, etc.) or any 
other mechanism. Because in these cases the sensitivity 
to detect the top lines is very low as was observed in the 
seven data sets used in this study (13.7%). For this rea-
son, in these scenarios it is of paramount importance to 
adjust the thresholds, under both models for improving 
the sensitivity of selecting the top lines. In both proposed 
methods (model B and RO) their respective adjusted 
thresholds are shrunken to a lower value to guarantee 
at least a similar sensitivity and specificity. This shrink-
age of the thresholds is required since in general machine 
learning models shrink the predicted values to the mean 
because they are not good in general to generalize out 
of the data used for training [12]. However, when the 
selection process will not be performed regarding to a 
threshold (performance of the best check, or average 
performance of checks, etc.) in the scale of the continues 
trait it is not required this adjustment for the thresholds 
since the breeder can select only a certain percentage of 

the top lines after making the ranking of the predicted 
genotypes.

The advantage of the proposed methods is that they 
guarantee that the classification of lines had a similar 
sensitivity and specificity since the classification process 
is performed in such a way that is minimized the aver-
age of the squared difference between the sensitivity and 
specificity. For this reason, in place of using the conven-
tional thresholds ( Yτ and τ ) for the classification of the 
predicted lines we used the optimal thresholds ( Yτ0 and 
τ0) that produces similar sensitivity and specificity since 
these optimal threshold were obtained by splitting each 
training set in inner-training and validation in such a way 
that with the validation set we can find these optimal 
thresholds that minimize the average of the squared dif-
ference between the sensitivity and specificity.

Regarding model RO, because we use the predictions 
resulting of using the conventional genomic prediction 
model, in this case the GBLUP model, the proposed 
method consists of only a postprocessing method that 
look for an optimal threshold ( Yτ0)for a better classifica-
tion of the genotypes in the testing set. For this reason, 
this method even that produce similar or slightly better 
performance than model B, should be preferred since use 
the same machinery of conventional genomic prediction 
plus a simple postprocessing step.

Finally, it is important to point out that the proposed 
methods can be evaluated with other machine learn-
ing algorithms like random forest, gradient boosting 
machine, etc., to have a better picture of their perfor-
mance. Also, variable selection methods can be incorpo-
rated to select only the optimal features to improve the 
efficiency of the proposed methods. Novel methods that 
had been applied for solving gene selection problem that 
combine existing metaheuristics like binary dragonfly 
algorithm (BDF) and binary black hole algorithm (BBHA) 
[31] can provide a significant increase in prediction accu-
racy if are combine with the two proposed methods in an 
appropriate way.

Conclusions
In this research were proposed two methods to improve 
the accuracy of the conventional genomic selection 
methodology (formulated as a regression model). The 
first one reformulated the conventional regression model 
as a classification model, where top lines are labeled as 
ones and not top lines labeled as zeros according with a 
threshold that can be a quantile for the best (top lines) 
or the average (or maximum) performance of the checks. 
The second one is a simple postprocessing method to 
improve the sensitivity of detecting top lines under 
the conventional formulation of the genomic selection 
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methodology. Our results shows that the two proposed 
models outperform by large margins the conventional 
genomic prediction models. For example across data 
sets in terms of F1 score, kappa coefficient and sensitiv-
ity the reformulation of the regression model as a clas-
sification model outperform the conventional prediction 
model (formulated as a regression problem) by 92.5, 33.5 
and 386.6% respectively. While the simple postprocess-
ing method outperforms the conventional regression 
model by 110.04, 70.96 and 402.9% in terms of F1 score, 
kappa coefficient and sensitivity, respectively. A success-
ful implementation of the proposed models (Model B and 
RO) requires concentrating the learning process to guar-
antee a similar sensitivity and specificity. Also, in general 
the proposed postprocessing method produce equal or 
better prediction performance than the reformulation 
of the conventional genomic prediction methodology as 
a classification model. The advantage of the proposed 
simple postprocessing method over the reformulation 
as a classification method is its simplicity since only is 
required to modify the threshold to classify the continu-
ous predictions resulting of the conventional prediction 
model. Given that our results are not conclusive we invite 
other scientist to evaluate with other data the proposed 
methods.
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Additional file 1: Table A1. Comparison between regression model, 
R, the classification model, B, and the regression optimum model, RO, 
for EYT_1 dataset in terms of F1 score, Kappa coefficient, Sensitiv‑
ity and Specificity. SE denotes standard error, LL denotes lower limit and 
UL denotes upper limit and RE denotes relative efficiency. Table A2. 
Comparison between regression model, R, the classification model, B, 
and the regression optimum model, RO, for EYT_2 dataset in terms of F1 
score, Kappa coefficient, Sensitivity and Specificity. SE denotes standard 
error, LL denotes lower limit and UL denotes upper limit and RE denotes 
relative efficiency. Table A3. Comparison between regression model, R, 
the classification model, B, and the regression optimum model, RO,  for 
Wheat_5 dataset in terms of F1 score, Kappa coefficient, Sensitivity 
and Specificity. SE denotes standard error, LL denotes lower limit and 
UL denotes upper limit and RE denotes relative efficiency. Table A4. 
Comparison between regression model, R, the classification model, B, 
and the regression optimum model, RO, for Wheat_6 dataset in terms 
of F1 score, Kappa coefficient, Sensitivity and Specificity. SE denotes 
standard error, LL denotes lower limit and UL denotes upper limit and RE 
denotes relative efficiency. Table A5. Comparison between regression 
model, R, the classification model, B, and the regression optimum model, 
RO,  for Across datasets in terms of F1score, Kappa coefficient, Sensitiv‑
ity and Specificity. SE denotes standard error, LL denotes lower limit and 
UL denotes upper limit and RE denotes relative efficiency. Table B1. 
Comparison between regression model, R, the classification model, B, 
and the regression optimum model, RO, for EYT_3 dataset in terms of F1 
score, Kappa coefficient, Sensitivity and Specificity. SE denotes Standard 
error, LL denotes lower limit and UL denotes upper limit and RE denotes 
relative efficiency. Table B2. Comparison between regression model, 
R, the classification model, B, and the regression optimum model, RO, 
for Wheat_1 dataset in terms of F1 score, Kappa coefficient, Sensitiv‑
ity and Specificity. SE denotes Standard error, LL denotes lower limit and 

UL denotes upper limit and RE denotes relative efficiency. Table B3. Com‑
parison between regression model, R, the classification model, B, and the 
regression optimum model, RO, for Wheat_4 dataset in terms of F1 score, 
Kappa coefficient, Sensitivity and Specificity. SE denotes Standard error, LL 
denotes lower limit and UL denotes upper limit and RE denotes relative 
efficiency. Fig. S1. A)Mean accuracy in terms of F1 score for classification 
model (B), regression model(R) and regression optimum model (RO) for 
trait GY for dataset EYT_3. B)Mean accuracy in terms of Kappa coefficient 
classification model (B), regression model (R) and regression optimum 
model (RO) for trait GY for dataset EYT_3. C)Mean accuracy in terms of 
sensitivity for classification model(B), regression model (R) and regression 
optimum model (RO) for trait GY for dataset EYT_3. D) Mean accuracy in 
terms of specificity for classification model (B), regression model (R) and 
regression optimum model (RO) for trait GY for dataset EYT_3. Fig. S2. A)
Mean accuracy in terms of F1 score for classification model (B), regression 
model (R) and regression optimum model (RO) for trait GY for dataset 
Wheat_1. B)Mean accuracy in terms of Kappa coefficient for classification 
model (B), regression model (R) and regression optimum model (RO) for 
trait GY for dataset Wheat_1.C) Mean accuracy in terms of sensitivity for 
classification model (B),regression model (R) and regression optimum 
model (RO) for trait GY for dataset Wheat_1. D)Mean accuracy in terms of 
specificity for classification model(B), regression model (R) and regres‑
sion optimum model (RO) for trait GY for dataset Wheat_1. Fig. S3. A)
Mean accuracy in terms of F1 score for classification model (B), regression 
model (R) and regression optimum model (RO) for trait GY for dataset 
Wheat_4. B) Mean accuracy in terms of Kappa coefficient for classification 
model (B), regression model (R) and regression optimum model (RO) for 
trait GY for dataset Wheat_4. C)Mean accuracy in terms of sensitivity for 
classification model (B), regression model (R) and regression optimum 
model (RO) for trait GY for dataset Wheat_4. D) Mean accuracy in terms of 
specificity for classification model (B), regression model (R) and regression 
optimum model (RO) for trait GY for dataset Wheat_4.
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