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Abstract 

Background Genetic correlations between complex traits suggest that pleiotropic variants contribute to trait vari‑
ation. Genome‑wide association studies (GWAS) aim to uncover the genetic underpinnings of traits. Multivariate 
association testing and the meta‑analysis of summary statistics from single‑trait GWAS enable detecting variants asso‑
ciated with multiple phenotypes. In this study, we used array‑derived genotypes and phenotypes for 24 reproduction, 
production, and conformation traits to explore differences between the two methods and used imputed sequence 
variant genotypes to fine‑map six quantitative trait loci (QTL).

Results We considered genotypes at 44,733 SNPs for 5,753 pigs from the Swiss Large White breed that had der‑
egressed breeding values for 24 traits. Single‑trait association analyses revealed eleven QTL that affected 15 traits. 
Multi‑trait association testing and the meta‑analysis of the single‑trait GWAS revealed between 3 and 6 QTL, respec‑
tively, in three groups of traits. The multi‑trait methods revealed three loci that were not detected in the single‑trait 
GWAS. Four QTL that were identified in the single‑trait GWAS, remained undetected in the multi‑trait analyses. To 
pinpoint candidate causal variants for the QTL, we imputed the array‑derived genotypes to the sequence level using a 
sequenced reference panel consisting of 421 pigs. This approach provided genotypes at 16 million imputed sequence 
variants with a mean accuracy of imputation of 0.94. The fine‑mapping of six QTL with imputed sequence variant 
genotypes revealed four previously proposed causal mutations among the top variants.

Conclusions Our findings in a medium‑size cohort of pigs suggest that multivariate association testing and the 
meta‑analysis of summary statistics from single‑trait GWAS provide very similar results. Although multi‑trait associa‑
tion methods provide a useful overview of pleiotropic loci segregating in mapping populations, the investigation of 
single‑trait association studies is still advised, as multi‑trait methods may miss QTL that are uncovered in single‑trait 
GWAS.
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Background
Genome-wide association studies (GWAS) combine 
genotype and phenotype information to identify trait-
associated variants. Genotypes at polymorphic loci are 
tested for association with phenotypes to determine 
their impact on traits of interest. Multi-trait GWAS can 
increase the statistical power over single-trait GWAS 
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because they exploit cross-phenotype associations at 
pleiotropic loci [1–3].

Several methods have been developed to detect plei-
otropic variants. These methods can be divided into 
two groups based on their underlying statistical frame-
work [4, 5]. First, multivariate methods jointly model 
all traits of interest. This group of methods requires 
that all individuals included in the study have pheno-
typic records for all traits analysed, although there are 
exceptions (e.g., single step GWAS [6], imputation of 
phenotypes [7]). These methods exploit the genetic 
covariance between traits, thereby increasing statisti-
cal power over their univariate counterparts [5, 8, 9], 
unless all traits are highly correlated [9, 10]. Second, 
the meta-analysis of summary statistics enables to com-
bine results from single trait GWAS, which means that 
the analyses can be carried out with different sets of 
individuals for each trait [1, 11–13].

The power to detect trait-associated variants 
increases as the marker density increases [14–17]. 
Low-pass sequencing is a cost-effective approach to 
provide high marker density [18–21]. The imputation 
from medium-density arrays to the whole-genome 
sequence level using a sequenced reference panel is 
another approach to provide sequence variant geno-
types for large cohorts. Large and diverse porcine hap-
lotype reference panels facilitate imputing sequence 
variant genotypes at high accuracy for animals from 
various breeds [22]. Medium-sized breed-specific refer-
ence panels may enable similar accuracy while reducing 
computational costs [23]. Imputation from medium-
density genotypes to the whole-genome sequence level 
has been explored when high-density array-derived 
genotypes were not available [16, 24–26].

Only few genome-wide association studies have been 
conducted in the Swiss Large White (SLW) population. 
Becker et al. [27] performed association tests between 26 
complex traits and 60  K SNPs genotyped in 192 breed-
ing boars. This effort revealed only 4 QTL likely because 
the sample size was too small. Large-scale association 
testing had been conducted in other pig breeds (e.g., 
[27–29]). Fat deposition and weight gain-related traits 
have been considered frequently in these GWAS as they 
are economically relevant and highly heritable. Previous 
GWAS led to tens of proposed candidate genes affecting 
these traits, including MC4R, BMP2, IGF2, and CCND2 
[30–35].

In this paper, we compare single-trait, multivariate and 
meta-GWAS in 5,753 genotyped pigs from a Swiss breed 
to investigate the genetic architecture of 24 traits. We 
inferred sequence variant genotypes from a sequenced 
reference panel to identify candidate causal variants for 
six pleiotropic QTL.

Results
Single‑trait association studies between array genotypes 
and 24 traits
A detailed description of the 24 traits considered in 
our study including their grouping into four categories 
(reproduction, production, conformation, all) is shown 
in Table  1. Marked pairwise correlations exist between 
the drEBV of the 24 traits (Additional file  1). The SNP-
based heritability estimates of the drEBV (Table 1) were 
between 0.04 and 0.67.

Mixed model-based single-trait genome-wide associa-
tion studies (stGWAS) between 40,382 SNPs and dere-
gressed estimated breeding values (drEBV) for 24 traits 
in 5,753 Swiss Large White (SLW) pigs revealed 237 sig-
nificantly associated variants (P < 1.24 ×  10−6). Fifteen out 
of 24 traits had at least one significantly associated vari-
ant (Table 1; Additional files 2 and 3).

The number of variants that exceeded the Bonferroni-
corrected significance threshold was between 1 for GL, 
NIT, MAS and MTF, and 49 for ADFI (Table  1). The 
inflation factors of the stGWAS were between 0.85 for 
NT and 1.03 for SCH with an average value of 0.95 ± 0.04 
across all 24 stGWAS indicating that population stratifi-
cation was properly considered.

The 237 associations were detected at 99 unique SNPs 
located at 11 QTL on SSC1, 5, 11, 15, 17 and 18. The two 
strongest associations were detected between the num-
ber of teats (NT) and a variant on SSC7 (MARC0038565 
at 97,652,632  bp, P: 3.35 ×  10−35), and between life-
time daily weight gain (LDWG) and a variant on SSC1 
(ASGA0008077 at 270,968,825  bp, P: 3.28 ×  10−28). 57 
SNPs were significantly associated with more than one 
trait (two SNPs, ALGA0123414 and ASGA0008077, were 
associated with six traits) suggesting that pleiotropic 
effects are present and detectable in our dataset.

Comparison of multi‑trait studies using array genotypes
In order to exploit genetic correlations among the traits 
to detect pleiotropic loci, we conducted multivariate 
linear mixed model-based (mtGWAS) association test-
ing and performed a multi-trait meta-analyses of the 
single-trait GWAS  (metaGWAS1) for traits within the 
four trait categories. For unbiased investigation of dif-
ferences between both methods, we considered between 
1,074 and 2,689 individuals with complete phenotypic 
records for all traits within a trait category (Table 2) for 
the multi-trait analyses.

Both methods yielded similar results, but the 
 metaGWAS1 revealed more significantly associated vari-
ants as well as QTL (Table 2; Fig. 1; Additional files 4, 5 
and 6). Across the four trait categories, the  metaGWAS1 
revealed slightly more significant SNPs (Fig. 1A) resulting 
in a 18% smaller FDR than mtGWAS. The  metaGWAS1 
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revealed 65 unique variants that were significantly asso-
ciated with at least one trait category, of which 41 were 
also detected using mtGWAS. The mtGWAS revealed 
only associations that were also detected by  metaGWAS1 

(Fig.  1B). The P-values of lead SNPs were highly corre-
lated (r = 0.8), but slightly lower (i.e., more significant) in 
the  metaGWAS1 than the mtGWAS (Fig. 1C).

Table 1 Traits with their abbreviations, full descriptions, corresponding trait group and descriptive statistics of the drEBV

The false discovery rate (FDR) and genomic heritability based on drEBV  (h2) were based on array genotypes
a before filters
b after filters
c raw phenotypes for conformation traits are recorded on a scale from 1 to 7, where 4 represents the optimum value, but phenotypes for genetic evaluation and hence 
(deregressed) breeding values reflect the deviation from the optimum

Trait group Acronym Full name [unit of raw records] Na Nb Mean ±  SDb Min,  Maxb h2 ±  SEa FDR

Reproduction PSP Stillborn piglets [%] 2,886 2,610 0.4 ± 3.57 ‑9.46, 19.63 0.07 ± 0.01 ‑

PUP Underweight (< 1 kg) piglets [%] 2,886 2,554 0.88 ± 3.20 ‑13.83, 18.29 0.09 ± 0.01 2.50

NBA Piglets born alive [number] 2,886 2,697 2.46 ± 1.46 ‑4.04, 8.35 0.13 ± 0.01 ‑

GL Gestation length [days] 2,886 2,866 0.55 ± 0.88 ‑2.77, 5.18 0.29 ± 0.02 5.00

Production MAS Meat surface in longissimus dorsi  [cm2] 5,457 3,829 ‑3.71 ± 3.35 ‑15.17, 12.13 0.53 ± 0.02 5.00

IMF Intramuscular fat content in MAS [%] 5,422 3,335 0.23 ± 0.53 ‑1.99, 2.92 0.52 ± 0.01 1.67

DRL Drip loss [%] 5,515 3,595 0.86 ± 1.57 ‑6.12, 7.32 0.43 ± 0.02 ‑

LMC Lean meat content [%] 5,468 5,155 0.19 ± 1.87 ‑10.34, 8.53 0.46 ± 0.02 0.18

PH24 pH 24 h postmortem in the loin 4,615 2,729 0 ± 0.05 ‑0.20, 0.20 0.06 ± 0.01 ‑

ADFI Average daily feed intake [kg/day] 5,467 5,109 0 ± 0.15 ‑0.67, 0.62 0.37 ± 0.01 0.10

DWG Daily weight gain on test [g/day] 5,467 5,008 10.72 ± 68.15 ‑256.11, 347.54 0.24 ± 0.02 0.15

LDWG Lifetime daily weight gain [g/day] 5,468 5,399 14.27 ± 31.06 ‑113.33, 168.03 0.23 ± 0.02 0.11

MT Loin muscle thickness [mm] 5,467 3,944 ‑2.25 ± 1.74 ‑8.07, 5.58 0.09 ± 0.01 5.00

BFT Back fat thickness [mm] 5,468 5,120 ‑0.87 ± 1.95 ‑8.96, 7.7 0.47 ± 0.01 0.25

Conformation WSFH Week to steep fetlock, hind legs c 5,434 2,274 0.06 ± 0.19 ‑0.82, 0.81 0.05 ± 0.01 ‑

GAIT Gait 5,434 2,025 0.39 ± 0.22 ‑0.83, 1.45 0.08 ± 0.01 ‑

BFL Bent to pre‑bent curve of forelegs c 5,434 2,581 0.14 ± 0.14 ‑0.55, 0.87 0.41 ± 0.01 2.50

NEIH Narrowed (reduced) to enlarged inner hoof, hind claws c 5,430 2,564 0.18 ± 0.13 ‑0.45, 0.64 0.06 ± 0.01 ‑

SCH Sword‑ to chair‑legged, hind legs c 5,434 2,361 0.17 ± 0.17 ‑0.65, 0.91 0.06 ± 0.01 ‑

XOH X‑ to O‑legged (knocked‑kneed to bow‑legged), hind c 5,434 2,516 0.04 ± 0.12 ‑0.6, 0.67 0.04 ± 0.01 ‑

CL Carcass length [cm] 5,433 3,638 4.11 ± 2.66 ‑5.25, 14.64 0.67 ± 0.01 0.17

NT Number of teats (both sides) 5,433 5,419 2.19 ± 0.78 ‑0.72, 5.03 0.41 ± 0.01 0.25

NIT Number of inverted teats 5,427 2,721 ‑0.28 ± 0.21 ‑1, 0.96 0.09 ± 0.01 5.00

NUT Number of underdeveloped teats 5,433 2,234 0.01 ± 0.09 ‑0.27, 0.45 0.09 ± 0.01 2.50

Table 2 Number of QTL in trait groups revealed by each of the methods

a performed in pigs with complete records in the trait groups
b performed in GWAS conducted in between 2,025 and 5,419 pigs
c based on array-derived genotypes at 40,382 SNPs

Group Reproduction Production Conformation All

Number of traits 4 10 10 24

Number of animals with records for all traits 2,553 1,927 2,689 1,074

Mean correlation between drEBV (± SD) 0.14 ± 0.18 0.32 ± 0.24 0.17 ± 0.19 0.10 ± 0.16

QTL—stGWASa,c (in N traits) 2 (2) 5 (8) 4 (5) 11 (15)

QTL—mtGWASa,c 0 5 3 4

QTL—metaGWASa,c 0 7 3 4

QTL—metaGWASb,c 0 6 3 7

QTL—metaGWASb, (imputed WGS) 0 6 3 6
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Neither of the multi-trait methods detected signifi-
cantly associated SNP for the reproduction trait cat-
egory. For the conformation trait category, mtGWAS 
and  metaGWAS1 revealed 15 and 18 associated SNPs, 
respectively. The associated SNPs defined three QTL on 
SSC7, 10, and 17. For the production trait category, the 
mtGWAS and  metaGWAS1 revealed 26 and 46 associa-
tions, respectively. Both methods revealed QTL at SSC1, 
16, two QTL at SSC17, and SSC18. The  metaGWAS1 
revealed two additional QTL at SSC1 and SSC11. When 
all 24 traits were combined for 1,074 pigs, the mtGWAS 
and  metaGWAS1 revealed only 5 and 7 associated SNPs, 
respectively. These SNPs spanned four QTL on SSC5, 7, 
17, and 18.

Seven QTL detected by mtGWAS and  metaGWAS1, 
were also detected by stGWAS (Fig. 1D). Both multi-trait 
methods detected three QTL on SSC11, 16 and 17 that 
were not detected in the stGWAS. Four QTL detected in 
the stGWAS were not revealed by either of the multi-trait 

methods: these were QTL on SSC7, 11, and 15 that were 
slightly above the Bonferroni-corrected significance 
threshold for one trait (GL with P = 5.03 ×  10−7, NIT 
with P = 1.06 ×  10−6, PUP with P = 2.66 ×  10−7, respec-
tively), and one QTL on SSC10 that was associated with 
MT (P = 5.60 ×  10−7) and MES (P = 8.44 ×  10−7). From 
the seven QTL detected by both multi-trait and single-
trait methods, six were associated with more than one 
trait in stGWAS. For the six pleiotropic QTL, at least one 
single trait analyses revealed more associated variants, 
and smaller P-value of the top SNP, than the mtGWAS or 
 metaGWAS1 (Additional file 7).

Using summary statistics from stGWAS for a multi-
trait metaGWAS facilitates including data from animals 
with partially missing phenotypes. In order to maximize 
the power to identify trait-associated pleiotropic vari-
ants, we reran the metaGWAS using summary statistics 
from stGWAS with all available animals per trait (Addi-
tional file 8), denoted as  metaGWAS2.

Fig. 1 Comparison of variants associated with 24 traits from 3 multi‑trait GWAS methods. Multivariate (mtGWAS), meta‑analyses with complete 
dataset  (metaGWAS1), and meta‑analyses including samples with missing trait records  (metaGWAS2) were based on array‑derived genotypes. A 
Proportions of significantly associated variants discovered across chromosomes, groups of traits and multi‑trait methods. B Overlaps between the 
associated variants revealed by each of the methods. Sum across all four trait‑groups. C QQ plot between ‑log10(P) of variants (N = 41) associated in 
both mtGWAS and  metaGWAS2. The line denotes a correlation of 1. D QTL detected by different methods across all trait groups
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Compared to the previous  metaGWAS1 that was based 
on fewer individuals that had phenotypes for all traits, the 
number of SNPs exceeding the Bonferroni-corrected sig-
nificance threshold (P < 1.24 ×  10−6) increased by 10, 14 
and 48 to 28, 60 and 55 in the conformation, production, 
and all groups, respectively (Additional file  9). No sig-
nificant markers were detected for the reproduction trait 
category. Across the four trait groups, the  metaGWAS2 
revealed 86 variants, from which 34 were also detected 
by both other methods, while 21 were detected only by 
the  metaGWAS1 (Fig. 1B). Including all available samples 
into the  metaGWAS2 did not reveal any additional QTL 
(Fig. 2A).

Reference panel and imputation of array genotypes 
to sequence level
Whole-genome sequence-variant genotypes from 421 
pigs were used to impute the medium-density genotypes 
of 5,753 pigs to the whole-genome sequence level. The 
principal components analysis (PCA; Additional file  10) 
of a GRM built from 16 million biallelic SNP genotypes 
confirmed that the sequenced reference panel is repre-
sentative for our GWAS cohort. Five-fold cross-valida-
tion indicated high accuracy of imputation (Additional 
file 11) with values of 0.92, 0.97 and 0.95 for the squared 
Pearson’s correlation  (R2) between true and imputed 
allele dosages, cross-validated proportion of correctly 
imputed genotypes (concordance ratio – CR) and model-
based accuracies from Beagle5.2 (Beagle DR2), respec-
tively. Although the model-based estimate from Beagle 
was highly correlated with the Pearson  R2 (0.81), the Bea-
gle DR2 values were consistently higher.

Imputed sequence‑based association studies
The stGWAS between 24 traits and the 16,051,635 
imputed variants revealed 45,288 variants exceeding the 
Bonferroni-corrected significance threshold in 7 QTL 
regions which largely agreed with the results from the 
array-based GWAS (Additional file  12). Two QTL on 
SSC5 and SSC12 were detected in stGWAS for BFT and 
NT, respectively, while the other five QTL were associ-
ated with multiple traits. The sequence-based GWAS 
revealed one additional QTL (on SSC12) but did not 
detect significant association at 5 previously detected 
QTL likely due to a more stringent Bonferroni-corrected 
significance threshold resulting from a 350-fold denser 
marker panel.

A metaGWAS using the summary statistics from stG-
WAS between the 16,051,635 imputed whole-genome 
sequence variants and 24 traits using all animals revealed 
six QTL on SSC1, 5, 7, 17 and 18 (Fig.  2, Table  3) with 
a total of 9,774 variants exceeding the Bonferroni-cor-
rected significance threshold. When the six lead imputed 

SNPs were fitted as fixed effects in stGWAS, the peaks in 
the metaGWAS Manhattan plot disappeared (Additional 
file  13), indicating that the lead SNP accounted for the 
QTL variance. Four QTL revealed by metaGWAS were 
significantly associated in stGWAS exclusively with pro-
duction traits, whereas two QTL (on SSC7 and SSC17) 
were associated with traits from both the production and 
conformation categories (Fig. 2C). The total trait variance 
explained per QTL ranged from 0.18 to 11.02% (Fig. 2C).

QTL 1 with lead SNP 1_159637589
A QTL on SSC1 was between 157.73 and 162.74  Mb 
and encompassed 34,312 imputed sequence variants 
including 1,157 that were significantly associated in the 
sequence-based metaGWAS (-log10(P) > 8.5). The QTL 
was associated with ADFI, DWG, and LDWG, and 
explained 5.16, 3.45, and 4.49% of the trait variance, 
respectively. The lead SNP at this QTL was an imputed 
intergenic sequence variant (rs692827816) located at 
159,637,589  bp (P = 5.26 ×  10–13). rs692827816 was in 
high LD (R2 > 0.90) with 935 variants that had similar P 
values. One of the variants in high LD was a missense 
variant (rs81219178) at 160,773,437 bp within the MC4R 
gene, which has previously been proposed as candi-
date causative variant for growth and fatness traits [36]. 
rs81219178 segregated at MAF of 0.36 in the SLW pop-
ulation and was imputed from the reference panel with 
high accuracy (DR2 = 1).

QTL 2 with lead SNP 1_270599319
Another QTL on SSC1 was between 270.33 and 
272.32  Mb and encompassed 21,683 imputed sequence 
variants including 3,765 that were significant in the 
sequence-based metaGWAS (Additional file  14). The 
QTL was associated with ADFI, DWG, LDWG, LMC, 
BFT, and IMF, and explained 4.57, 1.77, 4.69, 2.70, 2.35, 
and 1.40% of the trait variance, respectively. The lead 
variant was an imputed insertion polymorphism (C > CT) 
located at 270,599,319  bp (P = 2.85 ×  10–36), approxi-
mately 13 kb downstream from ASS1 and 53 kb upstream 
from FUBP3. The lead variant was in high LD (R2 > 0.90) 
with 747 variants. The MAF of the lead variant was 0.14 
and its genotypes were imputed from the reference panel 
with high accuracy (DR2 = 0.98).

QTL 3 with lead SNP 5_65997650
A QTL on SSC5 was located between 65.75 and 
66.21  Mb and encompassed 5,065 imputed sequence 
variants, from which eight were significantly associ-
ated with BFT (Additional file 15). The QTL explained 
1.16% of the phenotypic variance of BFT. The lead 
SNP was an imputed sequence variant located in 
an intergenic region at 65,997,650 (P = 5.40 ×  10–10; 
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rs346219461) which was in high LD (R2 > 0.90) with 
seven other variants. rs346219461 was 7.60  kb down-
stream the fibroblast growth factor 6 (FGF6) encoding 
gene and it had MAF of 0.41, and it was imputed from 
the reference panel with high accuracy (DR2 = 0.99). 

The rs346219461 was in LD (R2 = 0.82) with a 
non-coding variant (rs80985094 at 66,103,958  bp, 
P = 6.41 ×  10–10) in the third intron of CCND2, that 
was previously proposed as putative causal variant for 
backfat thickness [35].

Fig. 2 Fine mapping of six QTL detected by metaGWAS. A Manhattan plots from array (upper) and imputed sequence (bottom) variants in 
metaGWAS with 24 traits. B Linkage disequilibrium between the lead SNPs and all other variants. Black circles mark array SNPs, arrows point to 
previously proposed causal variants. The red line indicates the genome‑wide Bonferroni‑corrected significance threshold. C Variation explained 
(in % of the drEBV variance) by alternative alleles of the lead SNPs in the single traits. Production traits are in blue scale (ADFI—Average daily 
feed intake; DWG—Daily weight gain on test; LDWG—Lifetime daily weight gain; LMC—Lean meat content; BFT—Back fat thickness; IMF—
Intramuscular fat content in loin), and conformation traits in red scale (CL—Carcass length; NT—Number of teats—both sides; NUT—Number of 
underdeveloped teats; BFL—Bent to pre‑bent, front legs; XOH—X‑ to O‑legged)
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QTL 4 with lead SNP 7_97636980
A pleiotropic QTL on SSC7 was between 93.12 and 
99.26 Mb and it encompassed 31,013 imputed sequence 
variants including 2,341 that were significant in the 
sequence-based metaGWAS. The QTL was associated 
with BFT from the production group (0.37% variance 
explained), and CL, NT, and NUT from the conforma-
tion group, where it explained 6.11, 5.00, and 3.32% of the 
trait variance, respectively. The lead SNP was an imputed 
variant (rs333375257 at 97,636,980  bp, P = 8.09 ×  10–45) 
located 12.7 kb downstream VRTN. The rs333375257 had 
MAF of 0.34 and was imputed from the reference panel 
with high accuracy (DR2 = 0.99). The rs333375257 was in 
high LD (R2 > 0.90) with 424 sequence variants. A previ-
ously described candidate causal variant (rs709317845 
at 97,614,602  bp, P = 6.71 ×  10–44) for the number of 
thoracic vertebrae [37] was in LD (R2 > 0.99) with the 
rs333375257. In addition, 334 significant variants in the 
ATP binding cassette subfamily D member 4 (ABCD4) 
gene were detected. This gene was proposed to impact 
NT in a Duroc population [38] with top SNP rs692640845 
at position 97,568,284. In our study, the rs692640845 was 
highly significantly associated (P = 1.49 ×  10–42) with CL, 
NT and NUT, and in almost complete LD (R2 = 0.98) 
with the lead SNP.

QTL 5 with lead SNP 17_15643342
A pleiotropic QTL on SSC17 encompassed 82,132 
imputed sequence variants including 2,112 that were 
significantly associated residing between 10.80 and 
20.93 Mb. The QTL was associated with DWG, LDWG, 
and BFT from the production group (explaining 1.56, 
1.36, and 0.97% of the trait variance, respectively), and 
with BL, BFL, and XOH from the conformation group 
(explaining 11.02, 5.48, 0.18% of the trait variance, 
respectively). The strongest association was from an 
imputed sequence variant (rs342044514 at 15,643,342, 
P = 1.19 ×  10–84) in an intergenic region 106 kb upstream 
the BMP2 gene. The variant had MAF of 0.2 and it was 
imputed from the reference panel with high accuracy 
(DR2 = 0.97). The lead SNP was in high LD (R2 > 0.90) 

with two other variants. One of them was a previously 
proposed candidate causative variant for carcass length 
[34] (rs320706814 at 15,626,425, P = 8 ×  10–82) in an 
intergenic region upstream of the BMP2 gene, 17 kb away 
from the lead SNP.

QTL 6 with lead SNP 18_10678235
A QTL on SSC18 between 10.03 and 10.90  Mb encom-
passed 5,790 imputed sequence variants including 408 
that were significant. The QTL was associated with 
LMC and BFT, explaining 2.34 and 2.62% of the pheno-
typic variance, respectively. The QTL had two lead SNPs 
(P = 2 ×  10–19) in complete LD, which were imputed 
sequence variants located at 10,678,235 bp (rs338817164) 
and 10,678,293 bp (rs334203353). Both variants had MAF 
of 0.32. The imputation accuracy was 0.80. They were in 
high LD (R2 > 0.90) with other 11 intergenic variants.

Discussion
Single- and multi-trait genome-wide association studies 
involving array-derived and imputed sequence variant 
genotypes from 5,753 SLW pigs enabled us to investi-
gate the genetic architecture of 24 complex traits from 
three trait groups. The response variables for the asso-
ciation tests were deregressed breeding values because 
the genotyped pigs had progeny-derived phenotypes. 
Progeny-derived phenotypes have been frequently used 
to perform association studies in animals that lack own 
performance records for the traits of interest. To avoid 
false-positive associations arising from the accumula-
tion of family information in the progeny-derived phe-
notypes [39], we used the deregressed breeding values 
and weighed them according to equivalent relatives’ 
contributions.

The single-trait association analyses revealed 26 trait 
× QTL associations at eleven QTL of which seven were 
associated with at least two traits. Exploiting genetic 
correlations among the traits in a multi-trait framework 
revealed association for six out of the seven pleiotropic 
QTL detected in the stGWAS. Despite considering up to 

Table 3 Imputed lead variants in pleiotropic QTL revealed by a multi‑trait meta‑analyses

a Minor allele in the genotyped dataset; Reference alleles were determined according to the Sscrofa11.1 genome assembly

QTL SSC Start (bp) Stop (bp) Lead SNP P‑value MAF Ref | Alt #traits Candidate gene(s)

1 1 157,732,172 162,736,434 1_159637589 5.26 ×  10–13 0.31 Ga | C 3 MC4R

2 1 270,331,332 272,315,496 1_270599319 2.85 ×  10–36 0.14 C |  CTa 6 na

3 5 65,753,637 66,210,538 5_65997650 5.40 ×  10–10 0.41 G |  Aa 1 CCND2

4 7 93,119,538 99,261,691 7_97636980 8.09 ×  10–45 0.34 Aa | C 4 VRTN; ABCD4

5 17 10,801,927 20,928,904 17_15643342 1.19 ×  10–84 0.20 Ca | T 5 BMP2

6 18 10,024,756 10,904,242 18_10678235
18_10678293

2.00 ×  10–19 0.32 C |  Aa

A |  Ga
2 na
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10 phenotypes in the mtGWAS and up to 24 phenotypes 
in the metaGWAS, the multivariate methods applied in 
our study revealed three QTL, that were not detected 
by the single-trait association studies. The multi-trait 
methods did not reveal association at four QTL that 
were revealed by stGWAS. These QTL had low P-val-
ues, and perhaps because of higher penalty for multiple 
testing their effects were too small to be detected in our 
medium-sized cohort. The phenomenon that associa-
tions detected by stGWAS might disappear in multi-trait 
analyses has been reported earlier [12, 40].

The mtGWAS and  metaGWAS1 detected largely the 
same associated SNPs for almost all trait-groups. How-
ever, the  metaGWAS1 revealed more associated SNPs, 
and lower P-values for the lead SNPs. Combining all 24 
traits in the mtGWAS revealed five associated SNPs, and 
the  metaGWAS1 conducted with the same individuals 
detected association of seven SNPs. Multivariate linear 
mixed models may suffer from over-parametrisation and 
loss of power when more than ten traits are considered 
[41]. The low number of detected QTL might also result 
from low genetic correlations between the 24 traits, or 
from a small sample size (N = 1,074 pigs with non-miss-
ing records for all 24 traits).

The metaGWAS approach enabled us to establish a 
larger sample size by considering summary statistics 
from stGWAS that were conducted with a various num-
ber of individuals (i.e., some pigs had missing records for 
some of the traits). In this setting, the number of asso-
ciated SNPs detected by the  metaGWAS2 increased to 
55 (tenfold higher than before). According to Bolormaa 
et al. [1], in situations where each stGWAS is performed 
on partially different set of individuals, the metaGWAS 
approach still appropriately considers variances and 
covariances among the t-values. It is worth mentioning 
that there are also frameworks that enable considering 
samples with partially missing phenotypes in multi-trait 
GWAS [42–44], but these avenues were not explored in 
the current study.

Our comparisons between GWAS approaches con-
sidered microarray-derived SNP genotypes. The impu-
tation of array-derived genotypes up to the sequence 
level provides more statistical power to identify asso-
ciated loci because causal variants are in the data and 
directly tested for association with traits of interest [24, 
26]. The pigs in our study were genotyped at 44,733 
SNPs. No samples were genotyped with denser (e.g., 
600  K) arrays precluding the stepwise imputation of 
genotypes up to the sequence level. The imputation of 
sequence variant genotypes into sparsely genotyped 
samples may be inaccurate particularly for rare alleles 
[16]. However, imputation in our mapping cohort with 
a haplotype reference panel of 421 sequenced animals 

was accurate. This is likely because the haplotype ref-
erence panel mainly contained animals from the target 
breed.

The imputed sequence variants were used in 
metaGWAS to fine-map QTL and prioritise candidate 
causal variants. The top associated variants in four 
QTL were variants that had been previously identified 
as candidate causal variants [34–38], indicating that 
they might also underpin these QTL in the SLW breed. 
However, none of the proposed candidate causal vari-
ants was the top variant in our association studies pos-
sibly indicating sampling bias [45], presence of multiple 
trait-associated variants in linkage disequilibrium [46, 
47], or that the top variants were inaccurately imputed 
[48]. It is also possible that the previously reported can-
didate causal variants are not causal. Further in-depth 
functional investigations are required to determine and 
validate the molecular mechanisms underpinning the 
QTL identified in our study.

Our meta-analyses approach using imputed sequence 
variants revealed six QTL of which five were associated 
with multiple traits. Several porcine pleiotropic loci are 
underpinned by heterozygous loss-of-function alleles 
that may have fatal consequences in the homozygous 
state [49–51]. Pleiotropic QTL have also been described 
in pigs for highly correlated traits [31, 52]. The meta-
analyses of 24 traits conducted in our study revealed 
six QTL, that were significantly associated in one to six 
stGWAS. These results emphasize the importance of the 
single-trait analyses for dissecting the pleiotropic effects. 
A QTL on SSC17 which is associated with traits belong-
ing to distinct trait categories. This QTL is associated 
with carcass length (P = 1 ×  10–62) and daily weight gain 
(P = 6 ×  10–13). These two traits are barely correlated with 
each other (r = 0.02—0.05). Another pleiotropic QTL on 
SSC1 at ~ 270  Mb was associated with six traits ADFI, 
DWG, LDWG, LMC, BFT, and IMF, that were moder-
ately to highly correlated (mean r ± SD = 0.37 ± 0.27). 
This chromosomal region harbours QTL for backfat 
thickness and feed efficiency-related traits in other pig 
populations [33, 53]. However, candidate causal variants 
underpinning this QTL had not been proposed so far. 
The lead SNP in our study was at position 270,599,319 bp, 
which is 13 kb downstream from the ASS1 gene. Expres-
sion of ASS1 has been associated with digestive tract 
development, cell adhesion, response to lipopolysaccha-
ride, and arginine and proline metabolism in pigs [54, 
55]. Considering its putative role in energy metabolism, 
we propose ASS1 as a positional and functional candidate 
gene for a pleiotropic QTL at ~ 270  Mb. Further func-
tional annotations of the trait-associated variants in the 
non-coding regions might help elucidating the genetic 
mechanism underpinning this pleiotropic QTL.
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Conclusions
Multi-trait associations analyses provide strength of evi-
dence for the presence or absence of a QTL segregating 
in populations. Here, we compared the multivariate lin-
ear model with meta-analyses of single-trait summary 
statistics using real data. Both approaches performed 
similarly in correlated groups of traits with complete 
datasets. The ability of meta-analyses to include different 
sets of individuals and unrestricted number of traits pro-
moted the detection power. Thus, we recommend using 
the meta-analyses for getting overview of pleiotropic 
QTL in cohorts with more than 10 traits. For analyses 
of reduced and correlated groups of traits, the choice 
of the method seems to provide indifferent results. Yet, 
we stress the importance of the single-trait analyses for 
accurate interpretation of the pleiotropic effects and for 
the assignment of the affected traits.

The reference-guided imputation to whole-genome 
sequence level assigned genotypes to 22 million variants 
with high accuracy. Putative causal variants found in lit-
erature were among the top variants in the fine-mapped 
QTL. Our analyses provide overview of the QTL affect-
ing economically important traits in Swiss Large White 
and might serve as catalogue for future research examin-
ing the causal variants for complex traits.

Methods
Animals and phenotypes
Deregressed estimated breeding values (drEBV) with 
their corresponding degrees of determination  (r2

drEBV) 
and weights  (wdrEBV) for 24 traits were provided by the 
Swiss breeding company SUISAG for 5,753 pigs of the 
SLW breed. Breeding values were estimated using BLUP 
multiple trait animal models neglecting genomic infor-
mation and subsequently deregressed according to Gar-
rick et al. [56]. For all our analyses, we considered drEBV 
which had  r2

drEBV > 0.3 and were within five standard 
deviations from the mean values. We considered only 
traits for which at least 2,000 genotyped animals had 
records. The final number of animals with phenotypes 
was between 2,025 for gait (GAIT) and 5,419 for number 
of teats (NT). Up to 37% of the pigs had missing records 
for at least one trait. The traits were assembled in four 
trait groups (Table 1): reproduction (4 traits), conforma-
tion (10 traits), production (10 traits) and all (24 traits).

Genotypes
Microarray-derived genotypes were available for 17,006 
pigs from different breeds. The genotypes were obtained 
with five SNP panels with medium density. There were 
2,970 pigs genotyped with the Illumina PorcineSNP60 
Bead Chip comprising either 62,163 (v. 1) or 61,565 (v. 

2) SNPs; 13,342 pigs were genotyped using customized 
60 K Bead Chips comprising either 62,549 (v. 1) or 77,119 
(v. 2) SNPs; and 546 pigs had genotypes at 68,528 SNPs 
obtained with the GeneSeek Genomic Profiler (GGP) 
Porcine 80 K array.

We used PLINK (v. 1.9; [57]) to merge the genotypes 
from the five SNP panels based on the physical positions 
of the SNPs according to the Sscrofa11.1 assembly [58] of 
the porcine genome. Then, we performed a quality con-
trol for the combined dataset. We retained unique auto-
somal SNPs that did not deviate from Hardy–Weinberg 
proportions (P < 0.00001), had SNP- and individual-level 
genotyping rates above 80%, and minor allele frequency 
(MAF) greater than 0.5%. Finally, sporadically missing 
genotypes for the resulting 44,733 variants were imputed 
for 14,292 animals using Beagle (v. 5.0; [59]).

For the array-based GWAS and for the comparison of 
the multi-trait GWAS methods, we considered 40,382 
SNPs that had MAF greater than 5% in 5,753 animals of 
the SLW breed.

Genomic heritability
We used the Fisher-scoring algorithm implemented in 
the GREML module of GCTA (v. 1.92.1; [60]) to estimate 
variance components while considering the inversed 
weight of drEBV  (wdrEBV). The genomic relationship 
matrix was built for 14,292 individuals with 44,733 SNPs, 
but only up to 5,753 SLW animals were used to estimate 
genomic heritability.

Imputation to whole‑genome sequence level
Whole-genome sequence (WGS) data were available for 
421 SLW pigs that had been sequenced at an average read 
depth of 7.1x, ranging between 2.35 × and 37.5x. This 
panel also included 32 key ancestors of the genotyped 
SLW pigs that explained a large fraction of the genetic 
diversity of the current breeding population [19].

Raw sequence data were trimmed and pruned for low-
quality bases and reads with default parameter settings 
of the fastp software (v. 0.20.0; [61]) and subsequently 
mapped to the Sscrofa11.1 reference genome using the 
mem-algorithm of the BWA software (v. 0.7.17; [62]). 
Duplicated reads were marked with the Picard tools soft-
ware suite (v. 2.25.2; [63]), followed by sorting the align-
ments by coordinates with Sambamba tool (v. 0.6.6; [64]). 
The read depth at each genomic position was calculated 
with the mosdepth software (v. 0.2.2; [65]), consider-
ing reads with mapping quality > 10. Variant calling and 
filtering followed Genome Analysis Toolkit (GATK—v. 
4.1.0; [66]) best practice recommendations. Base quality 
scores were adjusted using the BaseRecalibrator module 
while considering 63,881,592 unique positions from the 
porcine dbSNP (v. 150) as known variants. The discovery, 
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genotyping, and filtering of SNPs and INDELs in the 421 
pigs was done using the HaplotypeCaller, GenomicsD-
BImport, GenotypeGVCFs and VariantFiltration mod-
ules of the GATK.

The filtered WGS dataset containing 421 pigs and 
22,018,148 variants (18,839,630 SNPs and 3,178,518 
INDELs) with MAF greater than 0.01 was used for 
the imputation of sequence variant genotypes into the 
array dataset. The reference panel was pre-phased using 
SHAPEIT4 (v. 4.2; [67]) using the –sequencing param-
eter. The target array dataset was pre-phased with SHA-
PEIT4 using the phased sequence data as the reference. 
Sequence variant genotypes were imputed with Beagle 
(v. 5.2; [59]) with an effective population size of 50. The 
effective population size was estimated using SneP [68].

The accuracy of imputation was assessed empirically 
by five-fold cross-validation in the 421 animals as fol-
lows: 40 animals which were sequenced at high cover-
age (> 10x), were used as target panel. The remaining 381 
animals served as the reference panel. The SNP density in 
the target panel was reduced to 44,733 SNP chip geno-
types and subsequently imputed to the sequence level 
based on 381 reference animals as described above. The 
imputed and actual genotypes of the target samples were 
compared to derive concordance ratio (CR; proportion 
of correctly imputed genotypes) and squared correlation 
 (R2) between imputed and true genotypes.

Relationship between the animals included in the ref-
erence panel and the target animals was assessed with 
a principal components (PC) analysis. First, a genomic 
relationship matrix (GRM) was built among 14,629 pigs 
that had 16,387,582 (partially) imputed biallelic SNPs 
with MAF > 5% (421 reference animals and 14,208 ani-
mals with imputed sequence variant genotypes) using 
GCTA [60]. Then, the first 10 principal components (PC) 
of the GRM were obtained with PLINK (v. 1.9).

Post-imputation quality control excluded SNPs with 
MAF < 5%, model-based accuracy of imputation (Beagle 
DR2) < 0.6, and deviations from Hardy–Weinberg pro-
portions (P <  10–8), resulting in a total of 16,051,635 bial-
lelic variants (13,773,179 SNPs and 2,278,456 INDELs) 
which were used for association analyses and the fine-
mapping of QTL in 5,753 SLW pigs.

Single‑trait genome‑wide association analysis (stGWAS)
Single marker-based GWAS were conducted between 24 
traits (see Table 1 for more information about the traits 
and the number of individuals with records) and either 
40,382 array-derived or 16,051,635 imputed sequence 
variant genotypes using the mixed model-based approach 
implemented in the GEMMA software (v.0.98.5; [69]).

The linear mixed model fitted to the data was in the 
following form: y = Wα + xβ + u + ǫ , where y is a 

vector of phenotypes of n animals; W is a vector of ones; 
α is a vector of corresponding coefficients; x is a vec-
tor of marker genotypes, coded as 0, 1 and 2 for geno-
type  A1A1,  A1A2 and  A2A2; β is the effect of the  A2 allele; 
u ∼ MVNn(0, Gσ

2
a) is a random polygenetic effect with 

G representing the n × n -dimensional genomic relation-
ship matrix (GRM); σ2a is the additive genetic variance; 
ǫ ∼ MVNn(0, Iσ

2
e) is a vector of errors, with I represent-

ing an identity matrix; and σ2e is the residual variance. 
MVNn denotes the n-dimensional multivariate normal 
distribution.

The centred GRM was calculated with GEMMA (–nk 
1) using either array-based or imputed sequence variant 
genotypes. The P-value of each SNP was estimated by the 
score test implemented in GEMMA (-lmm 3).

The stGWAS was run with either all available individu-
als or considering only preselected individuals that had 
non-missing phenotypes within a group of traits. The 
markers were separately filtered for MAF > 5%. Thus, in 
the latter run, the stGWAS for the reproduction traits 
included 41,242 variants typed in 2,553 samples; the stG-
WAS for the production traits included 40,557 variants 
typed in 2,689 samples; the stGWAS for the conforma-
tion traits included 41,168 variants typed in 1,927 sam-
ples, and the stGWAS for the 24 traits together included 
41,152 variants typed in 1,074 samples with non-missing 
records.

Multi‑trait genome‑wide association analyses (mtGWAS)
Multi-trait association tests (mtGWAS) were conducted 
using a multivariate mixed model-based approach imple-
mented in the GEMMA software (v.0.98.5; [41]). The 
multivariate linear mixed model was parameterised 
similar to the stGWAS model ( y = Wα + xβ + u + ǫ ), 
except that y,α, u, ǫ are matrices with d (number of traits) 
columns, and β is a vector with length d. σ2a and σ2e are 
d × d symmetric matrices of genetic and environmental 
variance components, respectively. Because multivariate 
association testing as implemented in GEMMA requires 
phenotype data for all individuals and traits, we con-
sidered only 2,553, 1,927, 2,689 and 1,074 individuals, 
respectively, for the reproduction (4 traits), conformation 
(10 traits), production (10 traits), and all-trait (24 traits) 
mtGWAS. The GRM, used during the mtGWAS, was the 
one from the stGWAS.

Meta‑analyses multi‑trait genome‑wide association 
(metaGWAS)
A multi-trait meta-analysis (metaGWAS) was conducted 
with the summary statistics from stGWAS as suggested 
by Bolormaa et  al. [1]. Briefly, the t-values for each 
marker-trait combination were calculated based on the 
allele substitution effect and corresponding standard 



Page 11 of 14Nosková et al. BMC Genomics          (2023) 24:192  

error obtained from the stGWAS. The multi-trait χ2 sta-
tistic was subsequently calculated as χ2

df=d = tdj V
−1tj , 

where t is a j × d matrix of signed t-values at the jth 
marker across d traits, and  V−1 is the inversed d × d vari-
ance–covariance matrix.
P-values for the j markers were calculated with pchisq 

function with d-1 degrees of freedom, as implemented 
in R. We carried out the meta-analyses with the 24 traits 
classified into the same four trait categories as in mtG-
WAS (reproduction, production, conformation, and 
all). First, to enable unbiased comparison between the 
metaGWAS and the mtGWAS results, we considered 
summary statistics obtained from stGWAS based on indi-
viduals with complete records within the respective trait-
group. Second, to increase the power of the association 
tests through maximizing the volume of entering infor-
mation, hence exploiting the benefit of the metaGWAS 
approach, we used the stGWAS summary statistics based 
on all available individuals for the trait (the first run). For 
clarity we denote the first and second meta-analyses as 
 metaGWAS1 and  metaGWAS2, respectively. The latter 
approach was repeated for the fine-mapping of the QTL 
with imputed sequence variant genotypes.

Comparison of the association methods
We used a 5% Bonferroni-corrected significance thresh-
old (1.24 ×  10−6 and 3.11 ×  10−9 for array and imputed 
sequence variant genotypes, respectively) to consider 
multiple testing. Genomic inflation factors were calcu-
lated to compare the distributions of the expected and 
observed test statistics.

The statistical power was assessed using false discovery 
rate (FDR). Following Bolormaa et al. [70], the FDR was 
calculated as P∗(1−

A
T )

A
T ∗(1−P)

 , where P is the significance thresh-

old (e.g., 1.24 ×  10−6 or 3.11 ×  10−9), A  is the number of 
significant variants and T is the total number of variants 
tested.

Fine mapping of detected QTL
We defined QTL as a region of 1  Mb non-overlapping 
windows, containing at least one significantly associated 
marker. The marker with the smallest  P-value within a 
QTL was defined as lead variant. Linkage disequilibrium 
(LD) between the lead variant and all other variants was 
calculated with the PLINK (v. 1.9) –r2 command. Vari-
ants within QTL were annotated with Ensembl’s Variant 
Effect Predictor (VEP; [71]) tool using local cache files 
from the Ensembl (release 104) annotation of the porcine 
genome. The deleteriousness of missense variants was 
predicted with the SIFT scoring algorithm [72] imple-
mented in VEP.

The proportion of drEBV variance explained by a 
QTL was estimated with 2p(1−p)β2

σ 2  , where p is the fre-
quency of the minor allele of the lead SNP and σ 2 is 
the drEBV variance; β is the regression coefficient of 
the lead SNP. To avoid overestimating the variance 
explained by a lead variant, we followed the approach 
described in Kadri et al. [73] and estimated the regres-
sion coefficients jointly for all QTL from the stG-
WAS, i.e., the lead variants of those QTL, that were 
significantly associated in the stGWAS, were fitted as 
covariates.
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associated variants within the QTL and the single‑trait abbreviation.
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analyses GWAS (bottom) based on array genotypes. Suggestive line is at 
5.9.

Additional file 5. Results of multi‑trait GWAS based on array genotypes. 
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tions of the QTL, lowest P‑value, top SNP with MAF, number of significantly 
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single‑trait GWAS, meta‑analyses GWAS with complete datasets and multi‑
trait GWAS.

Additional file 8. Results of meta‑analyses GWAS based on array geno‑
types and dataset including missing phenotypic records. Table contains 
numbered QTL regions, chromosome, start and stop positions of the QTL, 
lowest P‑value, top SNP with MAF, number of significantly associated vari‑
ants within the QTL and the trait‑group.

Additional file 9. Number of significantly associated pleiotropic variants 
in the meta‑analyses GWAS within groups using all possible samples 
and stGWAS of individual traits. The groups are denoted as $ (production 
group) and ¥ (conformation group). The single traits are: BFL ‑ Bent to 
pre‑bent curve of forelegs; NUT ‑ Number of underdeveloped teats; IMF 
‑ Intramuscular fat content in MAS; BFT ‑ Back fat thickness; NT ‑ Number 
of teats (both sides); LMC ‑ Lean meat content; CL ‑ Carcass length; LDWG 
‑ Lifetime daily weight gain; DWG ‑ Daily weight gain on test; ADFI ‑ Aver‑
age daily feed intake.

Additional file 10. PCA plot of reference panel samples (red and blue) 
and the target samples with array‑genotypes (black +). First and second 
principal components captured 7.55 and 0.83% of the genomic variation.

Additional file 11. Accuracy of imputation to whole‑genome sequence 
versus minor allele frequency. Dosage R2 values from Beagle, and empiri‑
cal measures of concordance and accuracy  (R2 ) derived in 5 cross‑valida‑
tion sets, were assessed in 421 animals based on 44,733 downsampled 
chip genotypes.

Additional file 12. Results of single‑trait GWAS based on imputed 
sequence variants. Table contains numbered QTL regions, chromosome, 
start and stop positions of the QTL, lowest P‑value, top SNP with MAF, 
number of significantly associated variants within the QTL and the single‑
trait abbreviation.

Additional file 13. Manhattan plot of multi‑trait meta‑analyses GWAS of 
all 24 traits after fitting the 6 QTL as covariates, which resulted in loss of 
the peaks. Suggestive line is at 8.5.

Additional file 14. Results of meta‑analyses GWAS based on imputed 
sequence variants and dataset including missing phenotypic records. 
Table contains numbered QTL regions, chromosome, start and stop posi‑
tions of the QTL, lowest P‑value, top SNP with MAF, number of significantly 
associated variants within the QTL and the trait‑group.

Additional file 15. List of genes ID and genes symbols within the 6 
pleiotropic QTL.
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