
Demidova et al. BMC Genomics           (2023) 24:212  
https://doi.org/10.1186/s12864-023-09310-8

RESEARCH Open Access

© The Author(s) 2023, corrected publication 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver 
(http://​creat​iveco​mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a 
credit line to the data.

BMC Genomics

Candidate variants in DNA replication 
and repair genes in early‑onset renal cell 
carcinoma patients referred for germline testing
Elena V. Demidova1,2, Ilya G. Serebriiskii2,3, Ramilia Vlasenkova2,3, Simon Kelow4, Mark D. Andrake3, 
Tiffiney R. Hartman1,5, Tatiana Kent6, James Virtucio7, Gail L. Rosen7, Richard T. Pomerantz6, 
Roland L. Dunbrack Jr.3, Erica A. Golemis3,8, Michael J. Hall1,9, David Y. T. Chen10, Mary B. Daly1,9* and 
Sanjeevani Arora1,11* 

Abstract 

Background  Early-onset renal cell carcinoma (eoRCC) is typically associated with pathogenic germline variants 
(PGVs) in RCC familial syndrome genes. However, most eoRCC patients lack PGVs in familial RCC genes and their 
genetic risk remains undefined.

Methods  Here, we analyzed biospecimens from 22 eoRCC patients that were seen at our institution for genetic 
counseling and tested negative for PGVs in RCC familial syndrome genes.

Results  Analysis of whole-exome sequencing (WES) data found enrichment of candidate pathogenic germline vari-
ants in DNA repair and replication genes, including multiple DNA polymerases. Induction of DNA damage in periph-
eral blood monocytes (PBMCs) significantly elevated numbers of γH2AX foci, a marker of double-stranded breaks, 
in PBMCs from eoRCC patients versus PBMCs from matched cancer-free controls. Knockdown of candidate variant 
genes in Caki RCC cells increased γH2AX foci. Immortalized patient-derived B cell lines bearing the candidate variants 
in DNA polymerase genes (POLD1, POLH, POLE, POLK) had DNA replication defects compared to control cells. Renal 
tumors carrying these DNA polymerase variants were microsatellite stable but had a high mutational burden. Direct 
biochemical analysis of the variant Pol δ and Pol η polymerases revealed defective enzymatic activities.

Conclusions  Together, these results suggest that constitutional defects in DNA repair underlie a subset of eoRCC 
cases. Screening patient lymphocytes to identify these defects may provide insight into mechanisms of carcinogen-
esis in a subset of genetically undefined eoRCCs. Evaluation of DNA repair defects may also provide insight into the 
cancer initiation mechanisms for subsets of eoRCCs and lay the foundation for targeting DNA repair vulnerabilities in 
eoRCC.
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Background
Early onset renal cell carcinoma (eoRCC) in patients 
under the age of 60 has been increasing in frequency 
over the past decade [1]. In the United States alone, 
the most recent analyses report a range of 3.0% annual 
increase in RCC incidence among individuals aged 
45–49 years to as high as a 6.2% increase in incidence 
among those aged 25–29 years [1]. EoRCC is in some 
cases linked to pathogenic germline variants (PGVs) in 
genes associated with RCC familial syndromes (VHL, 
MET, FLCN, TSC1, TSC2, FH, SDHx, PTEN, BAP1) 
[1–3]; these genes are also often somatically mutated 
in sporadic RCC cases [2–5]. Identification of a PGV 
in defined RCC familial syndrome genes guides clini-
cal recommendations for surveillance, often improv-
ing survival due to early diagnosis of eoRCC. However, 
in recent work we found that only ~ 3.7% of eoRCC 
patients undergoing cancer risk assessment report a 
PGV in the currently defined RCC familial syndrome 
genes [6], reflecting the fact that the majority of 
eoRCC cases remain genetically not well characterized. 
Currently, there are no National Comprehensive Can-
cer Network (NCCN) guidelines for detection, preven-
tion, or risk reduction in individuals who present with 
an eoRCC but lack a PGV in a familial RCC gene [7].

Recently, we reported that a significant subset of 
eoRCC patients undergoing cancer risk assessment 
carry PGVs in DNA damage response and repair genes 
(~ 8.55% vs. 3.7% in familial RCC genes) [6]. Similarly, 
Carlo et al. reported an increased prevalence of PGVs 
in DNA repair genes in advanced clear cell and non-
clear cell renal cancer patients [3, 8]. Although PGVs 
in DNA repair genes are not currently defined by clini-
cal testing guidelines as increasing risk of RCC, these 
recent studies suggest a potential role of defective 
DNA repair pathways in eoRCC carcinogenesis that 
could also lead to novel therapeutic options for RCC 
patients. Owing to the rising incidence of eoRCC and 
limited genetic data in younger RCC patients, we per-
formed germline and tumor whole exome sequencing 
(WES) and functional assays on biospecimens from 
high-risk eoRCC patients diagnosed before 60 years of 
age, who were negative for PGVs in familial RCC syn-
drome genes and had a family history of RCC and/or 
other familial cancers. Our results suggest that con-
stitutional defects in DNA repair underlie at least a 
subset of eoRCC cases. Screening patient lymphocytes 
to identify genotype–phenotype associations via func-
tional assays may provide insight into the mechanism 
of carcinogenesis for a subset of genetically undiag-
nosed eoRCCs.

Results
eoRCC patients at the Fox Chase Cancer Center (FCCC) 
and family history of cancer
We analyzed the personal and family history of the probands 
in a cohort of 22 eoRCC patients. Multiple probands (6/22, 
27%) had a second primary cancer, with breast cancer diag-
nosed in 3 probands (3/22, 14%) prior to diagnosis of RCC 
(Fig. 1A-E and Table 1). Here, 73% (n = 16/22) of probands 
had a family history of RCC, with 50% (n = 11/22) of 
probands having a first-degree relative with RCC. Intrigu-
ingly, 64% (n = 14/22) of probands had a family history of 
cancers of the prostate, bladder, and thyroid, and melanoma, 
which have been associated with an RCC diagnosis [9].

Analysis of whole‑exome sequencing data reveals 
enrichment of germline variation in DNA repair 
and replication genes in eoRCC patients
We performed WES on lymphocyte DNA from the 22 
eoRCC probands, which we analyzed to detect candi-
date variants in genes included in a candidate gene list 
(n = 613) that was developed in our prior studies ([10]; 
see (Supplementary Table  1) and Supplementary Mate-
rials and Methods). Here, our intention was to analyze 
whole exomes of the probands with an expanded list of 
genes beyond the targeted set of genes on clinical ger-
mline panels with the following justification:

a)	 genes involved in genome stability (using Gene Ontol-
ogy terms such as DNA repair, DNA replication, DNA 
damage checkpoints, cell cycle, mitotic machinery, repli-
cation stress, DNA damage response, chromatin remod-
eling) would be important for hereditary cancer risk. 
This is in line with recent work from our group and oth-
ers in renal cancer [3, 6, 11, 12]. b) an expanded network 
of genes relevant to renal cell biology (such as cellular 
metabolism) and genes somatically mutated in RCC that 
might be relevant for eoRCC-predisposition [5, 13, 14]. 
For example, there are several genes that are relevant to 
RCC biology (e.g., PBRM1 [15, 16] SETD2 [15, 17] that 
are not tested as hereditary risk genes as there is cur-
rently no evidence to suggest they impact cancer risk.

Novel candidate variants were stringently defined as 
those that are predicted to disrupt protein function by 
the consensus of at least 4 protein predictor algorithms; 
are rare (gnomAD allele frequency < 0.01); and are non-
synonymous variants (frameshifts, stop gains, and 
splicing) (see Supplementary Methods for variant prior-
itization). After applying American College of Medical 
Genetics (ACMG) criteria [18], we identified candidate 
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Fig. 1  Select pedigrees from the eoRCC patient cohort and enrichment of predicted pathogenic variants in DNA repair genes in the cohort. 
A-E. Pedigrees of eoRCC patients with variants in: A—POLD1 and POLH; B—POLE; C—ATM; D—RRM2B and BCL2L1; E—OGG1, NEIL3 and UBR5. 
F. Summary of variants in genes and pathways, identified in the cohort. In color—number of variants identified for each gene. For detailed 
information, see Supplementary tables 1 and 2
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Table 1  eoRCC patient characteristics, genomic findings, and family history

Patient # Sex RCC Dx age Genetic 
variants (ACMG 
classification)

Other cancers Relatives/cancer (age)

1st degree 2nd degree 3rd degree other

Pt 1 M 48 POLD1 (LP)
POLH (LP)
MTOR (VUS)
PARP1 (VUS)
FH (VUS)
MCM2 (VUS)

sarcoma (58), thy-
roid (37), Hodgkins 
lymphoma (21)

MOTHER/
SKIN + PANCREAS 
(85) FATHER/
UNKNOWN

MATERNAL 
GRANDFATHER 
COLON/RECTUM 
(60)
MATERNAL AUNT/
COLON/RECTUM 
(49) MATERNAL 
AUNT/THYROID 
(65) + LUNG 
(66) MATERNAL 
UNCLE/COLON/
RECTUM + PROS-
TATE + LUNG 
(75) PATERNAL 
AUNT/BREAST(82) 
PATERNAL AUNT/
BREAST (79) 
PATERNAL UNCLE/
BONE + SKIN (6)

MATERNAL COUS-
ENE/SKIN (56)
PATERNAL COUS-
ENE/STOMACH 
(56)

Pt 2 F 44 POLE (VUS)
PDGFRA (VUS)
BRCA2 (VUS)

SISTER/COLON 
(41)

MATERNAL AUNT/
BREAST (52)
MATERNAL 
UNCLE/COLON 
(60)

MATERNAL COUS-
ENE/RCC (38)
MATERNAL COUS-
INE/BREAST (41)

Pt 3 F 52 MITF (P) breast (44) FATHER/RCC (57)
MOTHER/LUNG 
(75)

PATERNAL 
GRANDMOTHER/
BREAST (60)
MATERNAL 
GRANDFATHER/
STOMACH (62)

BLADDER (55) 
BLADDER (52) 
PANCREAS (65)

Pt 4 F 42 RRM2B (VUS)
BCL2L1 (VUS)

breast (30, 40) MOTHER/UTERUS 
(23)

MATERNAL 
GRANDMOTHER/
RCC (88)
PATERNAL UNCLE/
LEUKEMIA (5)

Pt 5 F 46 OGG1 (VUS)
NEIL3 (VUS)
UBR5 (VUS)

breast (42, 49) FATHER/SKIN (75) PATERNAL COUS-
ENE/PROSTATE 
(61)

Pt 6 F 36 RIF1 (VUS)
KDR (VUS)
XRCC1 (VUS)

neuroblastoma (2) MATERNAL 
GRANDFATHER/
MELANOMA 
(61) MATERNAL 
UNCLE/LUNG (66)

Pt 7 F 37 MK167 (VUS) 2 primary RCC (37) SISTER/COLON

Pt 8 F 49 RET (LP)
BCL2L1 (VUS)

SISTER/RCC​

Pt 9 F 53 AUNT/RCC​
GRANDFATHER/
BLADDER/TESTI-
CLE/LIVER

Pt 10 F 56 PBRM1 (VUS) SISTER/RCC​
MOTHER/BREAST 
FATHER/PROSTATE

OTHER/BREAST 
OTHER/COLON

Pt 11 F 58 SISTER/BREAST
FATHER/STOMACH

PATERNAL AUNT/
BREAST/BLAD-
DER/RCC​

Pt 12 M 35 SCARB1 (VUS) PATERNAL 
GRANDFATHER/
RCC​
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variants in 17/22 eoRCC patients in the study, yielding a 
total of 41 variants in 38 genes (Table 1, and Supplemen-
tary Table 2). Gene Ontology analysis confirmed that the 
candidate variants were enriched in DNA repair and rep-
lication pathway genes (Fig. 1F and Supplementary Fig. 1, 
WebGestalt) [19]. Here, 10 patients (46%; 10/22) had 17 
candidate variants in 14 genes currently associated with 
hereditary cancers across major organ systems (ATM, 
BRCA2, POLD1, POLE, FH, MITF, MSH3, MUTYH, 
PDGFRA, RET, SDHB, SMARCA4, SMARCE1, TSC2). 
Only 4 patients had candidate variants in RCC famil-
ial syndrome genes (4/22 – FH, MITF, SDHB, TSC2). 
Finally, a total of 14 patients (64%; 14/22) had candidate 
variants from our expanded candidate gene list, from 
genes not currently defined as RCC-predisposing.

Among the DNA repair-associated genes, candidate 
variants were found in BRCA2 (Pt #2, Table  1, Sup-
plementary Table  2) and in ATM (2 variants in Pt #14, 
Table 1, Supplementary Table 2). In addition, 5 candidate 
variants in DNA replication-repair genes (4/22 patients; 

18%, Table 1, Supplementary Table 2, POLD1 and POLH 
(Pt #1), POLE (Pt #2), POLK (Pt #16), and RRM2B (Pt 
#4)). Pt #1 had candidate missense variants in PolD1, a 
catalytic subunit of the replicative DNA polymerase, 
Pol δ, and in the translesion synthesis DNA polymerase, 
Pol η. POLD1 G2275A p.V759I is in a highly conserved 
region of PolD1 subunit of the Pol δ (coded by POLD1 
gene) [20] and occurs at a high allele frequency in the 
Ashkenazi Jewish population (0.0213) reported in gno-
mAD (versus 0.0018 in the complete gnomAD dataset 
[21]). POLH G626T (p.G209V) is in the Pol η catalytic 
core [22, 23]. Pt #2 has a candidate stop-gain G4872A 
(p.W1624X) variant in the POLE gene, coding replica-
tive DNA polymerase Pol ε, in the conserved C-terminal 
domain [24]. Pt #4 had a splice site (intronic) variant in 
RRM2B, coding a subunit of p53-inducible ribonucleo-
tide reductase, which performs de novo  conversion of 
ribonucleotide diphosphates into the corresponding 
deoxyribonucleotide diphosphates for DNA synthesis 
[25], in genome position #103,237,248 (chromosome 

Table 1  (continued)

Patient # Sex RCC Dx age Genetic 
variants (ACMG 
classification)

Other cancers Relatives/cancer (age)

1st degree 2nd degree 3rd degree other

Pt 13 M 49 TSC2 (P) MOTHER/LUNG
FATHER/PANCREAS
SISTER/SKIN

Pt 14 M 45 ATM (2, VUS)
FLT3 (VUS)
SMARCA4 (VUS)

MOTHER/RCC/
BLADDER
FATHER/LUNG

Pt 15 M 46 EGF (VUS) FATHER/RCC/
BLADDER/LIVER/
PROSTATE

Pt 16 M 48 POLK (VUS)
EXO1 (VUS)
MUTYH (VUS)

FATHER/BLADDER UNKNOWN/RCC​

Pt 17 M 48 SISTER/RCC​

Pt 18 M 52 FATHER/RCC​
BROTHER/PROS-
TATE

Pt 19 M 54 SDHB (VUS)
NDUFA13 (VUS)
MMP9 (LP)

MOTHER/RCC/
BLADDER/COL.
POLYPS

MOTHER/BLAD-
DER

Pt 20 M 57 MMP9 (VUS)
MSH3 (VUS)
LTK (LP)
POLR2A (VUS)

MOTHER/RCC (76)
BROTHER/
RCC + LUNG (61)
BROTHER/NON-
HODGKINS LYMPH 
(45)

Pt 21 M 57 SISTER/BREAST
MOTHER/BREAST
BROTHER/RCC​

Pt 22 M 59 FLT4 (VUS)
SMARCE1 (VUS)

MOTHER/RCC​ MATERNAL 
GRANDMOTHER/
LUNG

ACMG The American College of Medical Genetics and Genomics, F female, M male, Dx age age of diagnosis, LP likely pathogenic, P pathogenic, Pt patient, RCC​ renal 
cell carcinoma, VUS variant of uncertain significance
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8q23). Pt #16 had a missense variant in the highly con-
served N-terminus domain of another translesion syn-
thesis polymerase, POLK G85A (p.E29K); this variant 
has been described previously as compromising enzyme 
activity [26]. ACMG classification and ClinVar evidence 
are presented in Supplementary Table 2, with most vari-
ants currently classified as variants of uncertain signifi-
cance (VUS).

Primary lymphocytes from eoRCC patients have reduced 
capacity to suppress DNA double strand breaks (DSBs)
To begin to assess the functional effect of candidate 
variants in genes linked to DNA replication and repair, 
we assessed the numbers of γ  (phospho)-H2AX foci (a 
marker of DSBs, [27]) in patient peripheral blood mono-
cytes (PBMCs) at baseline and after treatment with the 
DNA polymerase inhibitor aphidicolin (Fig.  2A). In 
PBMCs from both matched cancer-free controls (by 
age and gender) and eoRCC patients, aphidicolin sig-
nificantly elevated the number of γH2AX foci; however, 
aphidicolin-treated cells from eoRCC patients had mark-
edly higher numbers of γH2AX foci than those from sim-
ilarly treated controls on treatment, indicating reduced 
DSB repair mechanism in eoRCC patient cells (Fig.  2A, 
P < 0.001). In complementary work, we tested whether 
the genes bearing candidate variants were specifically 
needed to suppress DNA DSBs in RCC cells. For this, we 
used siRNA to deplete the POLD1, POLE, POLH, POLK, 
RRM2B, and ATM genes in the Caki RCC cell line. For 
each gene, knockdown significantly increased γH2AX 
foci relative to control (Supplementary Fig.  2) further 
supporting a role for these proteins in DSB repair in renal 
cells.

Patient‑derived cell lines with candidate PGVs in DNA 
polymerases exhibit DNA replication defects
We prepared EBV-transformed cell lines from the pri-
mary lymphocytes of 3 patients bearing candidate vari-
ants (henceforth referred to as the POLD1/POLH cell 

line, POLE cell line, and POLK cell line) and from sev-
eral age-and gender-matched cancer-free controls. The 
POLD1/POLH cell line had significantly reduced levels 
of the Pol η; for the other candidate variants, the level 
of the polymerase bearing the candidate variant was 
not affected (Fig.  2B). Cell Titer Blue (CTB) cellular 
assays showed significantly better viability than con-
trol-derived cell lines when treated with aphidicolin, 
or with ultraviolet light (which causes bulky adducts 
in DNA), suggesting that cell lines from patients had 
better ability to tolerate DNA damage (Figs.  2C-E). 
Such increased viability in the context of alterations in 
polymerases has been reported in a number of studies 
[28–30].

Analysis of cell cycle did not show any significant dif-
ferences in patients and matched control cell lines (Sup-
plementary Fig. 3A).

To further expand on these cell-based findings, we 
used a DNA fiber assay (see Supplementary Methods) 
and directly compared DNA replication in patient-
derived versus control cells, either untreated or follow-
ing treatment with aphidicolin or with a DNA-alkylating 
agent, 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG) 
(Fig. 2F-G Supplementary Fig. 4A-D). The POLD1/POLH 
cell line and the POLE cell line exhibited a significantly 
lower rate of DNA replication in untreated cells (~ 1.4-
fold decrease, p < 0.001 for the POLD1/POLH cell line, 
and ~ 1.9-fold decrease, p < 0.05 for the POLE cell line ver-
sus controls). We also observed a significantly lower rep-
lication fork recovery after 2 h treatment with aphidicolin 
(~ 1.44-fold decrease, p < 0.001 for the POLD1/POLH cell 
line, and ~ 1.88-fold decrease, p < 0.01 for the POLE 
cell line versus controls) (Fig.  2G-H). Intriguingly, the 
POLD1/POLH cell line showed defective replication fork 
restoration (~ 1.2-fold decrease, p < 0.001 versus con-
trol line) 2 h post-treatment with MNNG (Fig. 2G). The 
POLK cell line did not show any defects in DNA replica-
tion and replication recovery under the conditions tested 
(Supplementary Fig. 4A). A complete summary of results 

(See figure on next page.)
Fig. 2  Cell-based functional analysis revealed defects in DNA repair and DNA replication in lymphocytes from eoRCC patients. A. γH2AX foci 
immune fluorescence staining in primary PBMCs from eoRCC patients versus matched controls, at baseline or post treatment with aphidicolin 
(2 h). PBMCs from patients showed statistically significant elevation of γH2AX foci post treatment with aphidicolin. Data were normalized and are 
presented as percent of positive γH2AX foci. B. Representative Western blots showing expression of PolD1, Pol η, Pol ε and Pol κ in EBV-transformed 
cell lines carrying variants versus matched controls (without the variants). Data quantification was performed based on 3 independent biological 
repeats, technical repeats are presented on gels. C-E. Relative viability of EBV-transformed cell lines was assessed by CTB assay at baseline or after 
treatment with aphidicolin or UV. Data were normalized to CTB values for controls and are presented as percent cellular viability for POLD1/POLH 
(C), POLE (D), and POLK (E) cell lines. Data from 3 independent biological repeats are presented. F-G. Difference in DNA replication fork elongation/
restoration in EBV-transformed cell lines (F—POLD1, POLH; G—POLE lines) at the baseline and post replications stress was assessed using DNA fiber 
assay. At baseline the EBV-transformed cells were labeled with IdU for 20 min, for fork restoration cells then were treated with 100 µM aphidicolin 
or 1 uM MNNG for 2 h, and then labeled with CldU for 40 min. For all conditions, post labeling, cells were lysed, and DNA fibers stretched onto 
glass-slides, fixed, denatured, blocked, and stained with corresponding antibodies. Fiber images were captured using the Nikon TS2R Inverted 
Microscope and analyzed in ImageJ software. Data for 3 independent repeats are presented as IdU tract length or CldU/IdU tract length ratio. For all 
graphs: *** for p < 0.001, ** for p < 0.01, * for p < 0.05 and NS for p > 0.05, unpaired, non-parametric t-test, Mann–Whitney criteria
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Fig. 2  (See legend on previous page.)
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for the DNA polymerase variants is provided in Supple-
mentary Table 3.

Altered enzymatic activity of Pol δ and Pol η variant 
proteins
Among the candidate variants detected in polymerases, 
the Pol κ variant E29K has previously been biochemically 
shown to possess not only a significantly reduced cata-
lytic efficiency but also reduced replication fidelity [26]. 
E29K is in a conserved region of the Pol κ N-terminus, 
the N-clasp subdomain (1–32 aa), which is essential to 
maintaining the stability of the open conformation of 
the Pol κ active site [31]. Intriguingly, a previous study 
showed that deletion of the first 67 amino acids reduces 
Pol κ activity during translesion synthesis (TLS, i.e., rep-
lication by efficient bypass of bulky lesions in DNA) [32].

To directly test effects of the other candidate variants 
on polymerase activity, we first purified the polymerase 
delta (Pol δ) protein complex, with the PolD1 (POLD1), 
PolD2 (POLD2), PolD3 (POLD3), and PolD4 (POLD4) 
subunits from recombinant protein co-expressed in E. 
coli, and with preparations containing either wild type 
(wt) PolD1 or PolD1 V759I variant (Fig. 3). Both the wt 
and the variant-containing Pol δ complexes extended a 
Cy3-labeled DNA primer-template; however, the V579I 
variant complex had significantly less robust polymer-
ase activity than the wt complex (Fig. 3A, p < 0.001). Fur-
thermore, when Pol δ complexes containing PolD1 wt or 
PolD1 V759I proteins were mixed in a ratio of 1:1, the 
appearance of the extended primer-template was sig-
nificantly more robust than the variant alone but signifi-
cantly less robust than the wt alone. This result suggests 
that the variant is not only impaired for function but has 
a partial dominance over the wt in this assay (Supple-
mentary Fig. 5, p < 0.001).

Pol η is a low fidelity polymerase, which contributes 
to its ability to perform TLS [33]. Hence, G209V variant 
and wt Pol η prepared in E. coli were assessed for their 
ability to extend labeled DNA primer-template duplexes 
(Figs.  3B-C). In the absence of DNA damage (e.g., in a 

normally base-paired template), the wt and variant pro-
teins both extended the template (Fig.  3B, p > 0.05), but 
the observed bands suggest higher processivity for the 
variant on template without lesions compared to wt 
(Fig. 3B). To evaluate repair of DNA damage, TLS activ-
ity was also tested using a template containing an 8-oxo-
Guanine (8-oxoG) DNA lesion [33]. Pol η wt bypassed 
the 8-oxoG lesion robustly compared to the Pol η variant 
(p < 0.05, Fig.  3C), suggesting better processivity for the 
wt protein on template with DNA lesion [33].

Finally, biochemical analysis of a purified Pol ε variant, 
W1624X, was not performed as it is a stopgain variant in 
the C-terminal domain or CTD, truncating 662 amino 
acids of the protein. The CTD region is not well-studied, 
but is thought to be essential for stability of the Pol ε hol-
oenzyme [34].

Structural modeling of DNA polymerase variants in eoRCC 
suggests impact on polymerase function
The PolD1 V759I variant is located two amino acids away 
from residue D757 (Fig. 3D, in dark green). In the PolD1 
active site, D757 coordinates the Mg2+ ions (neon green 
spheres) required for DNA synthesis and plays a direct 
role in the catalytic mechanism and binding of DNA 
[20]. Structural modeling indicates that a substitution of 
the valine (V) 759 to isoleucine (I) could plausibly alter 
the position of D757 and disrupt the efficiency of DNA 
polymerization. To further understand the structural 
changes that each polymerase variant might induce, we 
calculated the change in stability of each amino acid sub-
stitution as described in Supplemental Methods and Sup-
plementary Table 4. Interestingly, the PolD1 I759 yielded 
a mild stabilization (ΔΔG of -1.36  kcal/mole) relative 
to the wildtype V759. The I759 residue makes twice the 
number of hydrophobic contacts as the wildtype V759 
with the long helix below. The variant could lock this 
strand in an overly rigid position that compromises DNA 
polymerization steps that involve flexibility [35, 36], con-
sistent with the biochemical results observed in Fig. 3A.

Fig. 3  Structural and biochemical assays revealed altered enzymatic activities of the PolD1 and Pol η variants. A. Pol δ complex and primer 
extension assay. On the left—representative gel image of purified wt and variant Pol δ protein complexes, containing 4 subunits: PolD1 (125 kDa), 
PolD2 (50 kDa), PolD3 (66 kDa) and PolD4 (12.5 kDa). Center and right – Pol δ complex primer extension assay with quantification. Representative 
gel image showing reactions performed with 20 nM Cy-3 labeled DNA-duplex template (SA#1), 20 nM of indicated proteins and 500 uM dNTPs. 
PolD1 V759I complex extended DNA-template less efficiently comparing to wt protein complex. Data for 3 independent repeats are presented. B. 
Pol η and primer extension assay. On the left—representative gel image of purified wt and variant Pol η catalytic cores (432 amino acids), molecular 
weight ~ 56 kDa. Center and right – Pol η primer extension assay with quantification. Representative gel image showing reactions performed with 
20 nM Cy-3 labeled DNA-duplex template (SA#1), 20 nM of indicated proteins and 500 uM dNTPs. Data for 3 independent repeats is presented. 
C. Pol η lesion (8-oxoG) bypass assay with quantification. Representative gel image showing reactions performed with 20 nM Cy-3 labeled 
DNA-duplex template with 8-oxoG in the position, opposite to 3`-OH group (SA#4), and template of the same sequence without lesion (SA#3), 
20 nM of indicated proteins and 500 uM dNTPs. Data for 3 independent repeats are presented. For A-C: *** for p < 0.001, ** for p < 0.01, * for p < 0.05 
and NS for p > 0.05, unpaired, non-parametric t-test, Mann–Whitney criteria. All template sequences may be found in Supplementary Table 4. D-E. 
Homology modeling structures using yeast protein templates for human PolD1 V759I (D) and for human Pol η G209V (E)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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The Pol η G209 residue is in the catalytic core of the 
polymerase (Fig.  3E, residues 1–432, colored green) at 
a position often called the C-cap, i.e. the residue in this 
position is proximal to the C-terminal end of the α-helix 
(in orange) [37]. Typically, valine, threonine, and isoleu-
cine residues are not preferred in the C-cap, due to poor 
solvation at the C-terminus of the helix when the side 
chains are bulky [37]. Structural modeling of the G209V 
substitution showed that the valine with a bulkier side 
chain could not only alter the stability of the α-helix, 
but also the nearby β-strands of the catalytic active site 
(in pink). Rosetta modeling shows the variant G209V 
is capable of making 5 hydrophobic contacts across the 
cleft with R24, which is just downstream from the key 
residue D13, which coordinates active site metals that are 
central to the catalytic mechanism and the binding of the 
incoming NTP. The predicted change in stability of the 
Pol η G209V variant revealed a significant destabilization 
(ΔΔG of 5.67  kcal/mole) relative to the wildtype G209, 
consistent with lower levels observed in protein (Fig. 2B, 
Fig.  3B (left gel), and Supplementary Table  4). Thus, a 
significant destabilization in a relatively rigid region may 
impact enzyme function, as supported by [35, 36]. Inter-
estingly, the activity of the G209V compares well with wt 
for a normal primer template and might even be more 
processive (Fig.  3B, middle gel). However, the variant 
appears defective for TLS when the template contains 
an 8oxoG (Fig. 3C). Consideration of these data together 
shows that changes in stability and conformation may 
be subtle and even result in an alteration of substrate 
preference. Thus, a careful combination of both compu-
tational and biochemical methods is required to gain a 
clear understanding of the role a given polymerase vari-
ant might have in DNA replication, repair, and possibly 
cancer initiation and/or progression.

EoRCCs carrying candidate PGVs in DNA polymerases are 
hypermutant and microsatellite stable (MSS)
To extend these functional tests, we next explored tumor 
mutation burden (TMB) in tumors from RCC patients 
in TCGA and from the FCCC eoRCC patients. Previ-
ous studies have shown that colorectal and endometrial 
tumors carrying mutations in POLE exonuclease domain 
(ExoD) and in POLD1 exhibit a high burden of muta-
tions, are typically MSS but few cases with microsatellite 
instability (MSI) have been reported, and do not exhibit 
loss of heterozygosity (LOH) [20, 38–46]. RCCs are typi-
cally non-hypermutated, with an average TMB of ~ 1 
mut/Mb [47]; however, rare hypermutated (≥ 10 mut/
Mb) and rarer ultra-hypermutated (> 100 mut/Mb) RCCs 
carrying polymerase mutations, with or without MSI, 
have been reported [47]. Analysis of TCGA renal tumor 
data found that several genes that were mutated in our 

study (Fig.  4A), including DNA polymerase genes, were 
somatically mutated in TCGA hypermutant clear cell 
RCCs (ccRCCs) (Fig. 4A). We analyzed the MSI/MSS and 
TMB status of tumors from the FCCC eoRCC patients. 
Both tumors were reported as MSS from clinical testing 
and were hypermutated (POLD1/POLH tumor- 12.85 
mut/Mb, POLE tumor- 14.44 mut/Mb) (Fig.  4B). We 
analyzed mutational signatures from the POLD1/POLH 
tumor and the POLE tumor. In single-base substitutions 
(SBS), signatures SBS5 (clock-like aging signature) was 
the dominant signature in both tumors; this signature is 
typically observed in all tissues in the body, normal and 
tumor, and not associated with polymerase exonucle-
ase defects. Notably, we did not observe SBS signatures 
(SBS10 subtypes) associated with exonuclease domain 
mutations, which was expected as the candidate vari-
ants in POLE and POLD1 are not within the exonuclease 
domain. Intriguingly, analysis of doublet-base substitu-
tions (DBS) revealed presence of signature DBS3; DBS3 
is typically associated with SBS10 signature but is not 
always observed in tumors with SBS10 signatures and/
or exonuclease domain mutations [48, 49]. We also con-
firmed that the tumors from the FCCC eoRCC patients 
did not exhibit LOH of the polymerase genes, as has 
been observed in other polymerase-mutated tumors [47, 
50] (Fig. 4C).

To expand the analysis of DNA polymerases in RCC, 
we next modeled the structural consequences of somatic 
PolD1 and Pol ε variants in hypermutated ccRCCs from 
TCGA. Supplementary Table  5 shows the predicted 
changes in stability for 20 different PolD1 variants and 
23 Pol ε variants from hypermutated ccRCCs in TCGA. 
A broad range of both stabilizing and destabilizing vari-
ants was found in all domains of each of these polymer-
ases. Figure 5 shows these variants in relation to known 
pathogenic variants in POLD1 (Fig.  5A-E) and POLE 
(Fig. 5F-I). PolD1 R823G/L is in a β-sheet of the polymer-
ase domain close to the DNA (Fig. 5C). The substitution 
of a positively charged arginine (R) to a hydrophobic gly-
cine (G) or leucine (L) could destabilize the β-sheet and 
impact DNA binding. PolD1 D893N is positioned close 
to the DNA and a variant in this region may destabilize 
DNA binding or position for DNA–protein interactions 
(Fig.  5D). PolD1 P151S is in a β-sheet in the ExoD and 
the change from proline (P) to serine (S) could destabilize 
the β-sheet geometry (Fig. 5E). P151 is close to a known 
cancer driver mutation [47, 51], E245K, in the unfolded 
region of the ExoD (Fig. 5A).

Pol ε P696R is in the palm region of the polymer-
ase domain, which is highly conserved among repli-
cative polymerases (Fig.  5G). Arginine (R) has a very 
large positively charged side chain when compared to 
smaller proline (P), suggesting this variant may disrupt 
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the polymerase structure and impact DNA synthesis. 
Pol ε S803L and F753L are in the flexible region of the 
polymerase domain or the fingers (in cyan, Fig. 5I). This 
finger region shifts (27° tilt) on DNA binding [52], and 
thus plays an essential role in polymerase function. S803 
is close to the positively charged lysine (K) 431 in the 
ExoD, and serine (S) is polar and a smaller residue than 
the hydrophobic leucine (L). Pol ε S803L is near a site of 
known cancer driving mutations, C810 [47], suggesting 
that specific alterations in this α-helix could impact poly-
merase functioning. F753L is on the border of the fingers 
and the polymerase domain, close to the ExoD and could 
be important in the coordination of these regions with 
or without DNA binding. Finally, several variants were 

found in the C-terminal domain (Fig. 5H, in light grey), 
which is currently not well-studied, but is known for sta-
bilizing the Pol2 (human Pol ε) complex in yeast [34].

Discussion
In this study, we focus on analysis of candidate variants 
in DNA repair and replication genes in probands with 
RCC diagnosed prior to 60 years of age who were under-
going cancer risk assessment at our cancer center and 
who tested negative for RCC familial syndrome genes. 
We applied a well-curated pipeline of candidate genes 
in genome stability, metabolism, metabolic stress, nor-
mal renal function, RCC biology, and chromatin remod-
eling to germline WES data from eoRCC patients. Gene 

Fig. 4  Renal tumors carrying polymerase variants showed high TMB, MSS, and no LOH. A. Percent alteration frequency in 897 tumors from TCGA in 
different histological types of RCC: chromophobe (n = 66), ccRCC—clear cell renal cell carcinoma (n = 538), ccRCC (hyper)—hypermutated samples 
(n = 12), papillary (n = 293). B. TMB and MSS data are presented for Pt #1 (POLD1 V759I, POLH G209V) and Pt #2 (POLE W1624X). C. Tumor and normal 
Sanger sequencing for variants in Pt #1 (POLD1 V759I, POLH G209V) and Pt #2 (POLE W1624X) showing no LOH. Arrows show variants of interest on 
sequencing tracks
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Ontology analysis confirmed that the identified candidate 
variants were enriched in DNA repair and replication 
genes. Intriguingly, we found that many eoRCC patients 
exhibit defects in suppression of DSBs in their primary 
PBMCs, with PBMCs from eoRCC patients exhibiting 

higher γH2AX foci than matched cancer-free controls 
in response to DNA damage. Direct knockdown of some 
of these candidate variant genes in Caki RCC cell line 
also led to increased γH2AX foci. Genes with candidate 
variants were found to be mutated in sporadic RCCs, 

Fig. 5  Structure mapping of the novel PolD1 and Pol ε variants from hypermutated ccRCCs in TCGA. A-E. DNA-bound PolD1 3D-model was refined 
from PDB:3IAY. The colored functional domains are exonuclease (light blue, residues 131–477) and polymerase (green, residues 550–978). A. Red 
spheres represent known cancer drivers. B. Blue spheres represent variants of uncertain significance in ccRCC. C-E. Fragments of PolD1 model 
showing variants: A810S and R823G (C), D893N, A810S, and R978C (D), P151S and E245K (E). F. DNA-bound N-terminal domain of Pol ε was refined 
from PDB: 4M8O. The colored functional domains are N-terminal subdomain (dark grey, residues 31–281), exonuclease (wheat, residues 282–527), 
polymerase (light pink, palm: 528–950; cyan, fingers: 769–833; lime, thumb: 951–1186). Red spheres represent known cancer drivers (structure 
above). Blue spheres represent variants of uncertain significance in ccRCC (structure below). G. A fragment of Pol ε model showing variant P696L. H. 
3D-model of whole-length Pol ε (without DNA). Structure was refined as described in Methods based on [34]. The colored functional domains are 
N-terminal subdomain (dark grey, residues 31–281), exonuclease (wheat, residues 282–527), polymerase (light pink, palm: 528–950; cyan, fingers: 
769–833; lime, thumb: 951–1186), C-terminal domain (light grey, residues 1308–2222). Blue spheres represent variants of uncertain significance in 
ccRCC. I. Fragments of Pol ε model showing variants S803L and F753
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with specific enrichment of alterations in DNA polymer-
ases (POLE, POLD1, POLH1, and POLK) and BRCA2 
in hypermutant RCCs in TCGA. Importantly, detailed 
analysis of candidate variants in DNA polymerase genes 
from the FCCC eoRCC patients confirmed the dam-
aging nature of the candidate variants and suggested a 
mechanistic basis for association of these variants with 
observed defects in DNA repair and replication. Several 
PolD1 and Pol ε variants from the hypermutant RCCs in 
TCGA were proximal to the catalytic center or substrate 
binding regions and will benefit from similar future bio-
chemistry experiments shown in this study.

This work complements a number of recent studies 
indicating inherited defects in DNA replication machin-
ery may increase cancer risk. Candidate variants in the 
ExoD of POLE and POLD1 predispose to cancer and 
exhibit a strong mutagenic effect, however, the role of 
non-ExoD variants in mutagenesis and cancer risk has 
been controversial [39, 41, 53]. A recent study reported 
that the POLD1 candidate variant (p.V759I, in Pt #1) is 
frequently present in the Ashkenazi Jewish population 
and proposed this gene as a founder mutation [2]. Mertz 
et. al. have demonstrated a strong mutator effect of the 
PolD1 polymerase domain variant R689W in human 
cells [54]. Barbari et. al have recently shown that defec-
tive proofreading is not the only important determinant 
of variant pathogenicity; polymerase fitness is also a 
key factor [55]. Several TLS polymerases including Pol 
η and Pol κ, are important for preventing accumulation 
of single strand DNA gaps, and the replication of DNA 
fragile sites. Owing to their high error-propensity, TLS 
polymerases are likely to contribute to oncogene-induced 
mutagenesis [56, 57].

It is likely that the candidate variants in DNA rep-
lication and repair genes detected here interact with 
other germline variants to impact eoRCC risk. In this 
study, Pt #1 also harbored candidate variants in MTOR, 
PARP1, FH, MCM2, suggesting the POLD1 and POLH 
variants assessed here may act together with other vari-
ants to augment the DNA repair defects observed. Pt 
#2 with a POLE variant also harbored candidate vari-
ants in BRCA2, PDGFRA. In other studies, hypermutant 
ccRCCs also carried mutations in TP53, PTEN, VHL, and 
UNC5C  [58, 59]. POLE and POLD1 are currently not 
considered classical tumor suppressor genes, and LOH 
is typically not observed in tumors. Increased muta-
tion frequency is observed with a heterozygous muta-
tion in these replicative DNA polymerases, but only the 
homozygous mice have increased susceptibility to can-
cer; suggesting that there are other additional factors 
important for carcinogenesis [38, 39, 41, 60]. It is possi-
ble that defects in polymerase genes impact cancer risk 

by affecting biological processes beyond DNA replication 
and repair. Conversely, some familial RCC genes (such as 
FH, VHL, PBMR1, and SDHx) have also been implicated 
in suppression of DSBs and in replication stress [16, 61–
63], based on mechanisms that are not well understood.

It is important to note that while the family history 
of the high-risk probands in this study is suggestive of 
underlying genetics [64], clinical testing for RCC famil-
ial syndrome genes did not yield any actionable PGVs 
according to current NCCN recommended guide-
lines. Our results suggest that in the absence of PGVs 
in RCC familial syndrome genes or phenotypic features 
of familial RCC or family history of RCC, a comprehen-
sive assessment of general cancer predisposition genes, 
including DNA repair genes, may be beneficial. RCC may 
be one type of cancer induced by mutations, rather than 
the sole type of cancer. This is supported by the pedigree 
data in this study as multiple probands (27%) had at least 
one additional primary cancer with breast cancer being 
the most common additional primary cancer (14%). 
Here, 64% of probands had an extensive family history of 
cancers of the prostate, bladder, and thyroid, and mela-
noma, all of which have previously been associated with 
RCC diagnosis [9]. In fact, PGVs in DNA repair genes 
have been reported as risk factors for bladder, skin, thy-
roid, and prostate cancers [65–70]. A recent retrospec-
tive analysis of the Swedish Cancer Registry showed 
that ~ 10% of RCC patients develop another second pri-
mary cancer, and this is currently thought to be inde-
pendent of the primary RCC, suggesting broader cancer 
predisposition [71], compatible with PGVs in genes 
affecting DNA repair.

Besides genetic screening, these data suggest the value 
of functional assessment for the families of individuals 
with eoRCC. In this study, the majority of eoRCC PBMC 
biospecimens samples exhibited elevated γH2AX levels 
and candidate variants in DNA repair genes. Our data 
supports a potential role of germline variation in DNA 
repair/replication leading to suboptimal encoding pro-
tein activity, and genome instability. Overall, these data 
suggest that assays of γH2AX foci in normal cells, sup-
porting germline variation in DNA repair/replication 
genes, could be a potential tool for the identification of 
individuals with genetically unexplained eoRCC. As 
these defects could be detected in normal cells, it could 
lead to the identification of individuals in need of can-
cer risk assessment. This is especially relevant because 
case–control studies suggest that an elevated familial 
RCC risk may be multifactorial, and or due to an interac-
tion of the heritable genetics and the shared environment 
[64]. It is possible that defective DNA repair in the het-
erozygous state could be a recessive heritable factor that 
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when combined with other RCC risk factors may jointly 
increase the risk of eoRCC.

Currently, the therapeutic significance of DNA repair 
genes is not clinically defined for RCC. Evidence is 
emerging that PARP inhibitors could be therapeutics of 
choice in RCCs that may not carry mutations in the clas-
sical BRCA​ genes, but which have other defects in DNA 
repair, with recent clinical trials assessing the use of PARP 
inhibitors in RCC [72, 73]. Hence, there is a critical need 
to not only understand the biological impact of defective 
DNA repair in renal tissue but to also define risk of RCC 
due to a germline defect in DNA repair genes. A limita-
tion of this study is a relatively small cohort which is not 
representative of all individuals with eoRCC (i.e. as the 
cohort subjects had clinical characteristics and/or family 
history to support germline testing). The candidate vari-
ants identified, and the functional assays suggest a mech-
anistic basis, but more studies are needed to conclude 
impact on RCC risk. Further work in a larger and more 
diverse (by race/ethnicity) patient population is clearly of 
interest for the future.

Conclusions
The results presented here suggest that constitutional 
defects in DNA repair such as DNA replication repair 
underlie a subset of eoRCC cases. Screening patient lym-
phocytes to identify these defects may provide insight 
into mechanisms of carcinogenesis in a subset of geneti-
cally undefined eoRCCs. Evaluation of DNA repair 
defects may also provide insight into the cancer initiation 
mechanisms for subsets of eoRCCs and lay the founda-
tion for targeting DNA repair vulnerabilities in eoRCC.

Materials and methods
eoRCC patient population, and peripheral blood DNA 
analysis
Case-only eoRCC probands that underwent clinical ger-
mline genetic testing between 2010–2016 were included 
in this study (n = 22). Patients were followed by the Geni-
tourinary Program at the Fox Chase Cancer Center and 
had undergone evaluation for inherited cancer risk at the 
FCCC Family Risk Assessment Program (RAP). Blood 
samples were banked in the FCCC Biosample Reposi-
tory Facility under broad informed consent for research 
and deidentified. Each participant had a strong family 
cancer history as shown in Table 1, with either multiple 
first-degree or second-degree relatives with RC, RC-asso-
ciated cancers, or other cancers. The mean age at eoRCC 
diagnosis was 48  years (range 36–59  years). No patho-
genic mutations were identified from sequencing the 
following RC-specific genes: VHL, MET, FLCN, TSC1, 

TSC2, FH, SDHx, PTEN and BAP1. The patients reported 
here were self-reported white, non-Hispanic. Family his-
tories were obtained by trained licensed genetic coun-
selors and verified by attending physicians. All patient 
data obtained were de-identified and included family 
history of cancer, genetic test results, personal history 
of cancer(s), presence of multifocal tumors, cancer sub-
type/stage. Any de-identified personal or family history 
information including sex, ethnicity/race, age of cancer 
diagnosis, tumor histology, history of additional per-
sonal cancer, and history of family cancer and types was 
reported first as summarized data and later as de-identi-
fied individual case reports. See Supplementary Methods 
for more methods.
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A. siRNA depletion of POLD1, POLE, POLH, POLK, RRM2B and ATM genes 
in Caki RCC cell line. A. Cells were transfected with the designated siRNAs 
(two per gene), or GL2 control or WRN positive control. Cells were fixed, 
permeabilized, blocked and stained for γH2AX antibody. Cells were scored 
for γH2AX foci and the data are plotted as relative induction of γH2AX 
to GL2 control from 2 independent experiments. *** for p<0.001, ** for 
p<0.01, * for p<0.05 and NS for p>0.05, Wilcoxon signed rank test. Sup-
plementary Figure 3. Representative cell cycle data from immortalized 
B-cell lines from Pt #1 (POLD1, POLH), Pt#2 (POLE), Pt#16 (POLK) PBMCs 
and corresponding immortalized B-cell lines from matched control. A. 
Percent positive gated cells is presented for each cell cycle phase for 
each cell line (controls on the left in blue, cases on the right in red). Data 
for 3 independent repeats are presented. *** for p<0.001, ** for p<0.01, 
* for p<0.05, NS for p>0.05, Wilcoxon signed rank test. Supplementary 
Figure 4. Difference in DNA replication fork elongation/restoration in 
EBV-transformed cell line with POLK (Pt #16) variant, and representative 
pictures of DNA fibers for the main figures 2E and 2F. For all graphs: *** 
for p<0.001, ** for p<0.01, * for p<0.05 and NS for p>0.05, unpaired, non-
parametric t-test, Mann-Whitney criteria. Means with SD are plotted. Data 
for 3 independent repeats are presented as IdU tract length or CldU/IdU 
tract length ratio. A. Difference in DNA replication fork elongation/restora-
tion in EBV-transformed cell line with POLK E29K variant at the baseline 
and replication stress was assessed using DNA fiber assay. At baseline the 
EBV-transformed cells were labeled with IdU for 20 min, for fork restoration 
cells then were treated with 100 μM aphidicolin and then labeled with 
CldU for 40 min. For all conditions, after labeling, cells were lysed, and 
DNA fibers stretched onto glass-slides, fixed, denatured, blocked, and 
stained with corresponding antibodies. Fiber images were captured using 
the Nikon TS2R Inverted Microscope and analyzed in ImageJ software. 
B-D. Additional representative pictures for each DNA fiber experiment: B 
for IdU 20 min labeling (main figures 2E, 2F, current figure A); C for short 
aphidicolin treatment (main figures 2E, 2F, current figure A); D for treat-
ment with MNNG (main figure 2E). Scale bar = 5 μm. Supplementary 
Figure 5. Pol δ complex primer extension competition assay with quanti-
fication. Representative gel image showing reactions performed with 20 
nM Cy-3 labeled DNA-duplex template (SA#1), 20 nM of indicated proteins 
(wild type complex, V759I complex and both wild type + V759 variant 
complexes in ratio 1:1) and 500 uM dNTPs. Under presence of the both 
wild type and PolD1 V759I Pol δ complexes, DNA-template was extended 
less efficiently compared to wild type and more efficiently compared to 
V759I complexes alone. Data for 3 independent repeats are presented. 
*** for p<0.001, ** for p<0.01, * for p<0.05 and NS for p>0.05, unpaired, 
non-parametric t-test, Mann-Whitney criteria. Supplementary Figure 6. 
Raw uncropped gel images, corresponding to sub-figures in Figure 2B: A, 
B and C for PolD1, Pol η and loading control exposures used to generate 
the main figure, D for Pol ε, E for Pol κ. Supplementary Figure 7. Raw 
uncropped gel images, corresponding to sub-figures in Figure 3 and Sup-
plementary Figure 5. A for Figure 3A for Pol δ complex purification, B for 
Figure 3B Pol η purification, C for Figure 3A on right- Pol δ complex primer 
extension assay, D for 3B on right- Pol η primer extension assay, E for 3C - 
Pol η lesion bypass assay, F for Supplementary Figure 5. Supplementary 
Figure 8. Mutational signature analysis in tumors from Pts 1 and 2. A. 
SBS signatures are reported in tumors from Pts 1 and 2. B. DBS signatures 
are reported in tumors from Pts 1 and 2. Supplementary table 1. List 
of candidate genes for WES analysis (Excel file). Supplementary table 2. 
Annotation of candidate variants identified in the 22 eoRCC patients 
(Excel file). Supplementary table 3. Complete summary of results for the 
DNA polymerase variants identified in the eoRCC patients. Supplemen-
tary table 4. Protein stability or ddG values for the PolD1 V759I and Pol 
η G209V variant proteins that were assessed biochemically in the study. 
Supplementary table 5. POLE and POLD1 variants in hypermutated 
ccRCC in TCGA. The table shows the variants from TCGA with allele counts 
typically observed in the GnomAD database, TMBs observed in association 
with these variants in other studies [60], and finally protein stability or ddG 
values for the variant proteins. Supplementary table 6. DNA substrates 
used in biochemical assays. The following are the references for the DNA 
substrates [47, 49, 50]. Supplementary table 7. ddG application file. 
Supplementary Table 8. Results from analysis of CNVs, SNVs and Indels using 
tumor sequencing data from Pt #1 (POLD1, POLH), and Pt #2 (POLE) (Excel file).
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