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Abstract 

Background  Genomic complexity is a growing field of evolution, with case studies for comparative evolutionary 
analyses in model and emerging non-model systems. Understanding complexity and the functional components of 
the genome is an untapped wealth of knowledge ripe for exploration. With the “remarkable lack of correspondence” 
between genome size and complexity, there needs to be a way to quantify complexity across organisms. In this study, 
we use a set of complexity metrics that allow for evaluating changes in complexity using TranD.

Results  We ascertain if complexity is increasing or decreasing across transcriptomes and at what structural level, as 
complexity varies. In this study, we define three metrics – TpG, EpT, and EpG- to quantify the transcriptome’s com‑
plexity that encapsulates the dynamics of alternative splicing. Here we compare complexity metrics across 1) whole 
genome annotations, 2) a filtered subset of orthologs, and 3) novel genes to elucidate the impacts of orthologs and 
novel genes in transcript model analysis. Effective Exon Number (EEN) issued to compare the distribution of exon sizes 
within transcripts against random expectations of uniform exon placement. EEN accounts for differences in exon size, 
which is important because novel gene differences in complexity for orthologs and whole-transcriptome analyses are 
biased towards low-complexity genes with few exons and few alternative transcripts.

Conclusions  With our metric analyses, we are able to quantify changes in complexity across diverse lineages with 
greater precision and accuracy than previous cross-species comparisons under ortholog conditioning. These analyses 
represent a step toward whole-transcriptome analysis in the emerging field of non-model evolutionary genomics, 
with key insights for evolutionary inference of complexity changes on deep timescales across the tree of life. We 
suggest a means to quantify biases generated in ortholog calling and correct complexity analysis for lineage-specific 
effects. With these metrics, we directly assay the quantitative properties of newly formed lineage-specific genes as 
they lower complexity.

Keywords  OrthoDB, Transcriptome complexity, Evolutionary rates, Orthologs, Novel genes, Effective exon number, 
TranD, Transcript model

Background
Transcriptome complexity is the product of evolutionary, 
biophysical, and molecular constraints that depend on 
the environmental context of an organism [1]. Alternative 
splicing allows more diverse variations of proteins from 
a single DNA locus, increasing the number of structures 
that can arise from a given genomic region [2–4]. More-
over, the combination of different exons and splicing 
action may change regulatory profiles for transcripts and 
therefore proteins produced [5]. This isoform complexity 
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increases information content stored in a single genomic 
region [6] often with functional consequences [7, 8]. 
The ways that global genome-wide transcript structures 
change across species influence the scope and conse-
quences of genetic diversity and genetic architecture [9].

Alternative splicing is a distinct but pervasive prod-
uct of Eukaryotic evolution. Among different organisms, 
patterns of alternative splicing and transcriptome com-
plexity may shift, producing differences in exon/intron 
boundaries, length, and number [10]. Some of these 
changes are linked directly to genetic and biochemical 
changes in spliceosome machinery including U11 and 
U12 spliceosomes [11], long intron splicing dynamics 
[12], and specific tissue regulation [13, 14]. Others may be 
the product of selection for specific genetic features and 
functions within the cell [15–17]. Complexity is driven 
by many factors such as tissue type [18], sex-specificity 
[19, 20], development [9, 13, 21], phenotype [22], and 
biochemical constraints [23]. These factors are associ-
ated with multiple modes of genetic evolution across the 
tree of life including sex with reproduction, body forma-
tion and tissue complexity, and pathogens/symbioses [24, 
25]. Intron density and distribution can vary by orders of 
magnitude across unicellular and multicellular taxa [26, 
27], sometimes including complete spliceosome loss or 
reemergence of splicing function [28]. Modes of exon 
use, levels of alternative splicing, and isoforms generated 
may change as spliceosome structures evolve. Given the 
pervasiveness and consequences of alternative splicing, 
analysis of genome-wide patterns for alternative splicing 
may reveal biological variation that shapes molecular and 
evolutionary biology.

One of the challenges of comparative transcriptome 
and splicing analysis across the tree of life has been the 
(seemingly) “necessary evil” of assigning orthology across 
distantly related taxa [24, 28–31]. Over time, the evolu-
tion of novel genes results in lower concordance in gene 
content across organisms. Heterogeneity in gene con-
tent has been highlighted in phylogenetics as an analyti-
cal complication, but it is also a biological contributor to 
changes in species complexity [32, 33]. Novel genes are 
associated with fewer numbers of exons, shorter exons, 
and lower biochemical complexity, along with increas-
ing sequence ambiguity [34–36]. Failure to include 
novel genetic elements may therefore alter estimates 
of complexity as a genomic trait. Moreover, as genetic 
distance increases, sequence alignment and ortholog 
calling becomes more challenging when generating addi-
tional sources of uncertainty and potential bias [37]. As 
a result of these many analytical complications, studies 
of intron–exon placement, complexity, and splicing pat-
terns with ortholog conditioning may be more affected 
across vast evolutionary distance. Using subsets of 

constrained genome sequences may portray evolutionary 
processes for single genes that disagree with the  evolu-
tionary history of the species due to incomplete lineage 
sorting (ILS), introgression, and gene duplication and 
loss (GDL)  [38]. Sets of proteins that are highly con-
served across distantly related taxa may make inference 
simpler  [39–41], but selections of specific proteins may 
introduce biases against rapidly evolving genes [42–46].

Orthologous sequences are shared genetic code 
between species that share an ancestor, separated by a 
speciation event [39]. Orthologs are a central tenet of 
comparative studies including comparative genomics, 
phylogenetics, protein function annotation, genome rear-
rangement and structure. Using orthologs for compari-
sons are robust, and yield results that are applicable for 
one-to-one comparisons across evolutionary time scales. 
However, only focusing on orthologs limits understand-
ing of novel genetic elements and does not explain the 
whole evolutionary history. Given that novel genetic ele-
ments are important to a lineage’s genetic history and 
adaptability [35, 47–56], ortholog-only comparisons 
will miss important variation that generates gene turno-
ver and modifies transcriptome content and complexity 
over time. Complexity metrics from TranD are agnostic 
to orthology, as they present complexity independently 
from taxa being compared, using only within-species 
analysis on a single reference. Here, we compare the 
dynamics of conditioning on orthologs versus whole-
transcriptome complexity metrics.

In the face of these challenges, clear solutions for 
complexity analysis are needed that are robust and free 
from biases of ortholog conditioning. While single gene 
analysis on close evolutionary distance may be best 
served by the precision of cross-species alignment of 
introns and exons, whole-genome transcriptome splic-
ing may be assayed as a global phenotype that can shift 
across species. Comparing complexity within a single 
species’ transcriptome, we can estimate the proper-
ties of all genes at once in an ortholog-free framework. 
These global, whole-genome properties may pro-
vide more complete information about transcriptome 
architecture than previous approaches comparing 
gene-by-gene. A new program for transcript model 
analysis, TranD [57] (https://​doi.​org/​10.​1101/​2021.​09.​
28.​462251; https://​github.​com/​McInt​yre-​Lab/​TranD), 
enables comparisons of complexity across a wide array 
of genomes across the eukaryotic tree of life. We define 
complexity with these principles in mind and quan-
tify complexity metrics from TranD here as variation 
among genetic regions with respect to unique exons per 
gene (EpG), exons per transcript (EpT), and transcripts 
per gene (TpG). Additionally, we add one previously 
developed measure of transcript model complexity, 
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the effective exon number (EEN). In alternative splic-
ing, EpG defines the total number of genetic elements 
available to generate unique combinations, while TpG 
is the product of the total of these combinations. EpT 
governs the number of introns that must be spliced, 
influencing transcript regulation. Finally, EEN is the 
product of splice junction spacing reflecting biochemi-
cal constraints of splicing factors. Using these metrics, 
we quantify complexity across phylogenies for major 
metazoan taxa: Deuterostomes, Drosophila, Plants, and 
Fungi. A glossary of terms can be found in Table 1. We 
focus on these well-annotated taxa as examples for how 
evolutionary analysis of transcriptome complexity may 
guide inference of evolutionary processes.

The analyses presented here offer an important 
case study for comparative evolutionary analyses in 
model and emerging non-model systems. Quantify-
ing complexity as a set of metrics allows for evalua-
tion of changes in complexity, ascertain if complexity 
is increasing or decreasing across transcriptomes and 
at what structural level. Given that there are a vari-
ety of levels to complexity, one metric does not fit all, 
therefore, we present three distinct complexity metrics 
defined above. Here we compare results from 1) whole-
genome annotations, 2) a filtered subset of orthologs, 
and 3) novel genes to elucidate the impacts of orthology 
and novel genes in transcript model analysis. We sug-
gest a means to quantify biases generated in ortholog 
calling and correct complexity analysis for lineage-
specific effects. With these metrics, we directly assay 
the quantitative properties of newly formed lineage-
specific genes as they lower complexity in transcrip-
tomes. We implement evolutionary rate analyses from 
complexity changes across diverse lineages with greater 
precision and accuracy than previous cross-species 
comparisons under ortholog conditioning. These 
analyses represent a step forward toward whole-tran-
scriptome analysis in the emerging field of non-model 

evolutionary genomics, with key insights for evolution-
ary inference of complexity changes on deep timescales 
across the tree of life.

Results
Complexity metrics
TranD empirically estimates complexity by calculating 
metrics that are immediately comparable across spe-
cies with rigorous and repeatable analytical criteria [57] 
(https://​doi.​org/​10.​1101/​2021.​09.​28.​462251). Each spe-
cies is estimated independently from all others, gen-
erating complexity metrics for each annotation. These 
metrics offer complexity measures as genetic traits that 
can be compared across a phylogeny. Because each com-
plexity is derived from a single branch in the tree of 
life, there is breadth to compare deep-time divergence 
between and among distantly related species. We use four 
major clades as test cases to assay genome complexity 
across well annotated phylogenies: Deuterostomia, Dros-
ophila, Plantae, and Fungi. Each of these clades spans dif-
ferent timescales (from ~ 50 mya in the Drosophila group 
to ~ 1 billion years ago in the fungi group) and unique 
biological features. These examples show how analysis of 
transcript model complexity can clarify unique genetic 
properties of species within clades. We show how such 
inference is affected by orthology (and genetic novelty) 
across highly divergent phylogenetic groups.

Transcript model complexities vary across organ-
isms from distantly related lineages (Fig. 1). Among the 
deuterostome clade mean TpG is between 1.00–3-97. 
The means between EpT and EpG are more concordant 
with mean EpT 7.10–13.31 and mean EpG is 7.10–11.09. 
Drosophila have smaller transcript complexity metrics 
than those of deuterostome lineages. This is concordant 
with genome size disparities between the two groups. 
The range of EpT across  Drosophila species are 3.38–
6.08 and the means of EpG are 3.38–5.01, which do not 
overlap deuterostome EpT and EpG mean metrics. TpG 

Table 1  Glossary of complexity terms

Alternative Splicing (AS): Molecular mechanism that modifies pre-mRNA constructs prior to translation, which produces a diverse set of mRNA from a 
single gene.

Transcripts per Gene (TpG): The number of transcripts that can be constructed from a single gene that have been annotated.

Exons per Transcript (EpT): The exons that are annotated within single transcript produced from a single gene.

Exons per Gene (EpG): The union of unique exons annotated within a single gene.

Effective Exon Number (EEN): A distribution of exons across a complexity metric (or gene), given the relative length of the exon to the total length of 
the region (Le).

Ortholog: One of a set of homologous genes that have diverged from an ancestor as a consequence of speciation.

Novel Gene: Genes that have emerged inside a defined time frame are novel genes. Novel genes are will be classified by their age. The time frame is not 
fixed and needs to be defined for each study.

Evolutionary Rate: As defined through Rabosky et al. (2014) interpretation. A macroevolutionary rate dynamic that applies to some part of a phyloge‑
netic tree. All lineages that share a common regime have exactly the same macroevolutionary rate at a given point in time.

https://doi.org/10.1101/2021.09.28.462251
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means are lower too at 1.00–1.97 TpG. Among taxa in 
the Plantae division Viridiplantae the mean TpG range 
is 1.19–2.39, mean EpT range is 4.76–8.14, and mean 
EpG range is 4.32–8.25. Fungi lineages have a much 
lower distribution in complexity compared to the other 
higher-level taxonomic lineages. Fungi mean TpG range 
is 1.00–1.29. Fungi EpT mean ranges from 1.03–6.62. 
Finally, the Fungi mean EpG is of 1.03–6.63. Across all 
higher lineages: Deuterostomia, Drosophila, Plantae, and 
Fungi, mean TpG is significantly different across groups, 
KW Chi2 = 148.4, P = 5.777e-32. Both EpT and EpG too 
are significantly different across higher lineages, for EpT 
KW Chi2 = 160.9, P = 1.19e-34 and EpG KW Chi2 = 155.1, 
P = 2.08e-33 (Supp. Mat. Mean Complexity Metrics.pdf ). 
Hence, each clade portrays a characteristic complex-
ity that is the unique product of biochemical, molecular, 
and evolutionary properties of the organisms. See Supp. 
Figure 1 for a complete list of complexity metrics across 
each organism.

Complexity whole‑transcriptome and orthologs
Annotations partitioned by ortholog have higher com-
plexities across most metrics compared to the whole-
transcriptome (Fig. 2; Supp. Mat. Whole-Transcriptome 
Vs Ortholog Density Plots). In the Plantae group, for 
TpG, 36.4% (16/44) taxa have ortholog complexities 
lower than the whole-transcriptome complexity met-
rics and 4.5% (2/44) for EpT. Fungi have 3.9% (3/77) taxa 
where TpG complexity metrics are higher in whole-tran-
scriptomes than in the ortholog set. Finally, 9.1% (7/77) 
taxa across EpT and EpG in all the same taxa show the 
same complexity patterns above. The shift from higher 
complexity in ortholog datasets are due to exclusion of 

lineage-specific (non-orthologous) genes that are pre-
sent in the whole-transcriptome annotations. Novel 
gene complexities are substantially lower than genes 
with orthologs (Fig.  3; Supp. Mat. Novel Density Plots), 
consistent with prior work showing novel genes are less 
complex [35, 58–61]. This observation shows that many 
of the novel genetic elements are single-transcript and 
single-exon genes compared to that of the older ortholo-
gous genetic elements representing higher complexity 
transcripts. Whole transcriptome annotations contain 
both novel genetic elements and orthologous genetic ele-
ments. Hence, the less complex novel elements drive dif-
ferences in complexity compared with orthologs for all 
complexity metrics (EpT, EpG, TpG). Four well annotated 
species serve as examples for these trends (one species 
per clade). Distributions for Homo sapiens, Drosophila 
melanogaster, Zea mays, and Neocallimastix califor-
niae all show significant differences, with p-values zero 
or near zero, between whole-transcriptome and parti-
tioned orthologous annotations (Fig.  2). Interestingly, 
novel genetic elements across all taxa shift to lower EpT 
compared to orthologous genes as most new genetic 
elements have lower transcript model complexity than 
older orthologs (Fig. 3). An artifact observed in our data, 
between novel and orthologous datasets, is the propor-
tion of novel genes greater than 50% for Gorilla gorilla 
(western lowland gorilla) [GCF_008122165.1_Kami-
lah_GGO_v0], H. sapiens [GCF_000001405.39_GRCh38.
p13], and Musa acuminata (wild Malaysian banana) 
[GCF_000313855.2_ASM31385v2] (Supp. Figure  2). See 
Supp. Mat. Whole-Transcriptome Vs Ortholog Density 
Plots and Supp. Mat. Novel Density Plots for a list of all 
organisms used in this study.

Fig. 1  Box and whisker plots showing complexity metrics for TpG, EpT, and EpG for broad taxonomic groupings. Black lines indicate median metrics 
with the first and third quartiles at the borders of the box. The minimum and maximum range indicated by black lines. Taxonomic groups consist of 
Deuterostomia, Drosophila, Plantae, and Fungi
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Across the Deuterostomia, mean TpG metrics between 
whole-transcriptome and ortholog annotations are sig-
nificantly different in 66 of the 68 evaluated species. Only 
the Crested Ibis [GCF_000708225.1_ ASM70822v1] and 
the Florida lancelet [GCF_000003815.1_Version_2] have 
no significant differences for TpG metrics. When meas-
uring complexity with mean EpT and mean EpG, all spe-
cies showed significant differences between orthologs 
and whole-transcriptomes.

Across Drosophila, we observe a parallel pattern in 
complexity between ortholog and whole-transcriptome 
data. Of the 11 species evaluated, three do not show 
significant differences for TpG under ortholog condi-
tioning. These include D. grimshawi [dgri − all − r1.3], 
D. persimilis [dper − all − r1.3], and D. sechellia 
[dsec − all − r1.3]. These results could be an artifact of 
annotation performance and quality compared to more 
well-assembled species with molecular support for 
gene features, as many Drosophila lineages from the 

Fig. 2  Density plots between whole genome (red) and orthologs (light blue) for Exons per Transcript (EpT) complexity metrics with densities 
on the y-axis and the number of exons per transcript (EpT) on x-axis. Panels are truncated to 30 exons for purposes of visualization. We observe a 
significant difference in EpT for whole -transcriptome annotations and partitioned by ortholog annotations in each of four example species using 
Wilcoxon rank sum test. A) H. sapiens (GCF_000001405.39_GRCh38.p13), W = 1.448 × 1010, P = 0, B) Drosophila melanogaster (dmel-all-r6.07), 
W = 5.654 × 109, P = 6.9676 × 10–106, C) Zea mays (GCF_902167145.1_Zm-B73-REFERENCE-NAM-5.0), W = 2.391 × 109, P = 0, and D) Neocallimastix 
californiae (GCA_002104975.1_Neocallimastix_sp._G1_v1.0_genomic), W = 1.721 × 1010, P = 7.166 × 10–118. Across all taxa, ortholog conditioning 
results in data that are less likely to include low complexity transcripts
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12 Genomes Consortium were annotated by identify-
ing ORFs not tuned to a specific lineage [62]. Lineages 
that are not significantly different between whole-tran-
scriptome and conditioning on orthologs vary in anno-
tation completeness compared with other taxa, with a 
maximum TpG = 2. This is a noticeable departure from 
the other lineages that range from 45 maximum TpG, 
D. simulans [dsim − all − r2.01] to 75 maximum TpG in 
D. melanogaster [dmel − all − r6.07]. In these instances, 
we suggest that the robustness of annotations varies 
between lineages and collapsed annotations combin-
ing exons from multiple transcripts have artificially 
skewed apparent transcript model complexity [63]. 
In contrast, EpT and EpG metrics are all significantly 

different between whole-transcriptome and orthologs 
for all taxa.

In Plantae, across both EpT and EpG metrics, all sam-
ples (44/44 species) are significantly different when 
conditioning on orthologous. For TpG, 34/44 spe-
cies show significant differences between whole-tran-
scriptome complexity and complexity for orthologous 
sequences.

Only 1 fungus of 77 shows a significant difference 
between whole-transcriptome and ortholog TpG, Bac-
trachochytrium salamandrivorans [GCA_002006685.1_
Batr_sala_BS_V1]. All other fungi either do not deviate 
between whole-transcriptome and ortholog TpG or only 
have TpG metrics that equal one for all genes in whole-
transcriptomes and subsequent ortholog partitions, i.e., 

Fig. 3  Density plots of EpT complexity metrics for novel lineage specific genes with densities on the y-axis and number of exons plotted on x-axis. 
Panels are truncated to 30 exons for visualization. Each panel A) H. sapiens (GCF_000001405.39_GRCh38.p13) show a shift in the number of exons 
where most new genes have fewer than 10 exons per transcript with a mean EpT of 3.431. B) D. melanogaster (dmel-all-r6.07) concentrates most 
novel genes between one (~ 61.2%) and two (~ 24.7%) exons per transcript with a mean EpT of 1.863. EpT has few transcripts with complexity 
higher than two exons per transcript. C) Z. mays (GCF_902167145.1_Zm-B73-REFERENCE-NAM-5.0) follows a similar pattern with a shift left to lower 
numbers of exons per transcripts with a mean EpT at 3.822. Only ~ 27.7% of novel genes in maize are five EpT and higher, while under five is ~ 72.3% 
of all novel genes. Finally, D) Neocallimastix californiae (GCA_002104975.1_Neocallimastix_sp._G1_v1.0_genomic) novel genes show exon per 
transcript counts have a mean EpT of 2.321. Most of the distribution is concentrated in below five EpT (~ 88.4%). Values are substantially lower than 
observed for Orthologs and Whole-Transcriptome
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no differences to compare. There are significant differ-
ences in EpT between orthologs and whole-transcrip-
tome annotations for n = 53/77, with EpG having the 
same dynamics as EpT, where the same taxa (53/77) are 
significantly different between orthologs and whole-tran-
scriptome annotations.

Conditioning on orthologs yields transcript model 
complexity that deviates from the whole-transcriptome 
complexity. Of the 200 species used in this project 
185/200 had significant differences under ortholog con-
ditioning for TpG and 176/200 for EpT and EpG. These 
lower numbers are driven by fungi EpT and EpG having 
nearly identical mean EpT and EpG metrics. Across all 
lineages from each taxonomic group, a significant impact 
on complexity when orthology is required under all three 
metrics, except for mean TpG for fungi (|T|= 47.333, 
Fisher’s combined P = 0.840, Supp. Table 1).

From our Jackknife cross-validation, 197/200 samples 
validate. Only 3 plant species differ with Musa acumi-
nata (wild Malaysian banana) [GCF_000313855.2_
ASM31385v2] not validating for EpT, and TpG not 
validating for Pyrus x bretschneideri (Chinese white pear) 
[GCF_000315295.1_Pbr_v1.0] and Oryza sativa, Japonica 
Group, (Japanese rice) [GCF_001433935.1_IRGSP-1.0].

Across lineages, we expect there to be some transcript 
overlap within an GTF as polycistronic mRNA exists in 
eukaryotes. We calculated the transcript overlap between 
genes of an organism’s GTF to see if there is any elevation 
for a complexity metric given an overlapping transcript. 
In most taxa from deuterostomes, flies, and plants, fewer 
than 2.6% of transcripts are overlapping. Exceptions are 
the tunicate Ciona (4.9%), Club Moss (6.4%), and Bras-
sica rapa (3.7%). Fungi, however, have fewer genes and 
fewer isoforms, generally speaking. Schizosaccharomyces 
octosporus yFS286 (GCF_000150505.1_SO6) have up to 
11.1% of exons overlapping. With 29/77 having no over-
lapping transcripts (Supp. Table 2). We reiterate that care 
should be taken in the annotation quality when conduct-
ing these analyses.

Relative performance of complexity statistics
All correlations are significant and positive (Fig. 4). TpG 
has the highest residuals from the regression line (R2) 
when compared to the EpT and EpG metrics. While EpT 
and EpG metrics are more closely correlated. R2 values 
are nearly one for both Drosophila (R2 = 0.962, P < 0.01) 
and Plantae (R2 = 0.911, P < 0.01). Deuterostomes show 
more moderate correlations for EpT vs EpG (R2 = 0.572, 
P < 0.01), however, it is the highest R2 value for the group. 
Deuterostomes have the largest variance between plot-
ted metrics with TpG vs EpT (R2 = 0.370, P < 0.01) and 
TpG vs EpG (R2 = 0.0964, P < 0.01). Drosophila also show 
a significant correlation TpG vs EpT (R2 = 0.741, P < 0.01) 

and TpG vs EpG (R2 = 0.831, P < 0.01). Plants are mod-
erately aligned closer to one in the R2 values: TpG vs 
EpT (R2 = 0.603, P < 0.01) and TpG vs EpG (R2 = 0.582, 
P < 0.01). One non-vascular plant constituent, (Bryophta, 
Physcomitrium patens) the spreading earthmoss, is not 
clustered with our vascular plants, having the highest 
values for all metrics comparison within the group (See 
Supp. Figure 3).

Most fungi annotations are single transcript genes and 
are therefore not amenable for similar analysis (Supp. 
Figure 4). In current annotations, given that a significant 
majority of genes are single transcript, EpT and EpT met-
rics are highly correlated (R2 = 0.999).

Comparison to broken stick is robust to orthology
Differences in complexity for orthologs and whole-tran-
scriptome analyses are driven largely by a bias in novel 
genes toward low complexity genes with few exons and 
few alternative transcripts. The Effective Exon Number 
(EEN) offers a metric that can compare the distribution 
of exon sizes within transcripts against random expecta-
tions of uniform exon placement, and accounts for differ-
ences in exon sizes [64]. If EEN = EpT, splice junctions are 
evenly spaced, with all exons of equal size. Where EEN is 
far less than EpT, splice junctions are more uneven than 
expected under a uniform distribution, with over-dis-
persed exon sizes. While absolute patterns of EEN may be 
informative, comparisons of EEN to EpT characterize the 
deviation from a Broken Stick Model (Supp. Figure 17) of 
randomly scattered intron positions. Across all species 
of chordates, Drosophila, and plants, EEN comparisons 
with the Broken Stick Model remain robust to condition-
ing on orthology and exclusion of lineage specific genes. 
We observe no difference in deviations from the Broken 
Stick Model when considering orthologs compared with 
whole-transcriptome data. Only a minor shift upward 
is apparent in the lowest EpT values for Deuterostomes, 
Drosophila, Plants, and most Fungi (Supp. Figure  18). 
Because the Broken Stick Model conditions on EpT, the 
effects of removing less complex lineage specific genes 
are largely mitigated so long as the remaining genes fol-
low similar patterns of exon sizes.

Out of 68 deuterostome species, 62 have mean ± 2SE 
EEN below the bound of the Broken Stick Model (Fig. 5). 
Humans, whose annotations are extensively validated and 
supported by abundant molecular evidence, lie among 
some of the lowest values suggesting more clustered 
intron breakpoints than the Broken Stick Model. These 
results suggest that molecular or evolutionary constraints 
on splicing processes or differences in annotation models 
are producing more tightly spaced intron breaks than one 
would expect based on random intron placement drawn 
from a uniform distribution. Human annotations are 
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supported by exceptional molecular evidence and more 
well-developed curation efforts.

The remaining six species of chordates that show 
elevated EEN encompass diverse species that are not 
related phylogenetically (duck, turtle, lancelet, hedge-
hogs). Results do not shift significantly when condition-
ing on orthologs and excluding lineage specific genes. 
Hence, these metrics, unlike EpT, EpG, and TpG, appear 
to be robust in the face of phylogenetic comparisons 

that require orthology. However, EEN conditions on the 
exon number and compares to expectations for randomly 
placed junctions. These are not sensitive to the subset 
of lineage specific genes that orthology excludes, which 
have few introns.

Drosophila show a different pattern. Transcripts with 
7 exons or less show EEN greater than or equal to a 
Broken Stick model across all species. However, when 
transcripts have 12 exons or more, we begin to observe 

Fig. 4  Pair plots comparing complexity metrics. Metrics are compared among TpG, EpT, and EpG. The P-value and R2 derived from calculating the 
Pearson correlation coefficient. Taxonomic groups consist of Deuterostomes, Drosophila, and Plantae
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a departure with significantly lower EEN in 5/11 Dros-
ophila transcript models. Such metrics indicate more 
tightly clustered intron breaks than expected if intron 
breaks are randomly chosen from a uniform distribu-
tion. This pattern holds true even in the well validated 
model organism Drosophila melanogaster. Such results 

suggest that there may be different biochemical or evo-
lutionary constraints on exon junction placement and 
associated splicing processes for genes with large EpT. 
There are 4/11 Drosophila that show elevated EEN, 
suggesting a more even distribution of intron breaks 
than expected from a random uniform distribution. 

Fig. 5  Effective Exon Number (EEN) vs Exons per Transcript (EpT) (mean EEN ± 2*SE) in 4 species of animals and three species of plants. A/C) 
Whole-Transcriptome data and B/D) after conditioning on Orthologs being present in at least one species in the phylogeny. Ortholog data excludes 
lineage specific genes. EEN is expected to follow a Broken Stick model if intron bounds are randomly drawn from a uniform distribution. Humans 
and D. melanogaster show lower EEN with a bigger effect at transcripts with high EpT values. Whale sharks show EEN fully consistent with the null 
expectation. Lancelets show elevated EEN, the highest of any Deuterostome, suggesting more evenly distributed exon sizes than random. While 
orthologs show a nominal shift in the smallest EpT values, requiring orthology does not alter comparisons to a broken stick model. Hence, Broken 
Stick Model comparisons are likely to be robust to effects of orthologs and exclusion of lineage specific genes in evolutionary analysis
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Conversely, D. sechellia, only 0.5  million  years diver-
gent from D. simulans, shows elevated EEN compared 
to the null model. D. sechellia annotations showed a 
lower density of transcripts with higher EpT values 
(Supp. Mat. Whole-Transcriptome Vs Ortholog Density 
Plots), and often are annotated with only one transcript 
per gene. Annotations that collapse isoforms with alter-
nate exons into a single transcript will obscure the true 
distribution of EEN, biasing statistics toward higher 
values. Whole genome divergence in transcriptome 
complexity across such short timescales would be sur-
prising. Whether the ultimate variation of EEN reflect 
biology or artifacts, these results suggest that cross-
species comparisons of complexity require normaliza-
tion for whole genome differences (Supp. Figure 19).

The majority of plant transcript models lies above the 
Broken Stick model, with the highest EEN values in a 
club moss, Selaginella moellendorffii. Maize (Z. mays) 
aligns well with the Broken Stick model, but Arabidop-
sis thaliana lies well above. Sorghum agrees with maize 
(with overlapping error bars), except at the highest val-
ues of EpT (between 17–20 EpT) where it converges with 
Arapbidopsis.

Fungi show unusual variation in EEN compared with 
other clades. Most species show distributions of EEN 
centered above the Broken Stick model when EpT < 10. 
However, above 15 EpT, EEN increases toward more 
uniform spacing. These results appear more similar to 
patterns of exon distribution in plants than in animals. 
However, some fungi show atypical patterns as clear out-
liers in comparison with the Broken Stick model. A few 
unicellular fungi such as S. cerevisiae have few exons per 
transcript genome-wide, resulting in low variation in 
EEN, with little information via this metric. Fungi remain 
less well annotated in comparison with other clades, a 
gap that can now be addressed as cost and infrastructure 
for genome sequencing improves.

These results portray yet another class of variation 
among transcript model complexity across taxa, which 
is fortunately robust to the effects of ortholog calling. 
Analysis of splicing patterns using EEN and comparison 
to models like the Broken Stick may be informative as 
annotation projects assess quality and compare molecu-
lar evolutionary variation (Supp. Figure 20).

Evolutionary rate analysis
Understanding genetic complexity across the tree of life 
is essential to understand the processes that influence 
form and function of life. Analyzing genetic complexity in 
a phylogenetic context is important because biased esti-
mation can lead to conceptually flawed interpretations of 
genetic function [65–67]. Furthermore, understanding 
the rate shift dynamics of complexities between orthologs 

and whole-transcriptomes gives empirical estimations 
to observe the variation between lineages’ annotations 
containing novel genetic elements or shared genetic ele-
ments (orthologs). Here, we perform evolutionary analy-
sis using transcript model complexity as a genetic trait to 
identify shifts in complexity across taxa and to explore 
biases introduced in ortholog conditioning.

When estimating rates of evolutionary complexity 
across phylogenies, we find that in some cases condi-
tioning on orthologs causes a significant shift in rate 
estimates, depending on the taxonomic group and 
metric being used. Here we used Phytools to perform 
posthoc tests of evolutionary rate changes between 
whole-transcriptome and orthologous rates. All metrics 
in the deuterostome group are significantly different: 
TpG (t = -3.89, P = 2.00E-04), EpT (t = -2.60, P = 0.0108), 
and EpG (t = 4.48, P = 0). We find no significant difference 
in the Drosophila group between complexity metrics: 
TpG (t = -0.564, P = 0.580), EpT (t = -0.123, P = 0.904), 
and EpG (t = -0.314, P = 0.7577). While in other groups, 
we find some metrics are significantly different while 
others are not. Plantae orthologs compared to whole-
transcriptome metrics are as follows TpG (t = -2.18, 
P = 0.0335), EpT (t = 0.423, P = 0.667), and EpG (t = -1.68, 
P = 0.0972). Where mean TpG is significantly different 
between ortholog and whole-transcriptome metrics, 
but non-significant for EpT and EpG. The fungi group, 
among classes, had no significant differences between 
orthologs and whole-transcriptome for all metrics: TpG 
(t = -0.0161, P = 0.9872), EpT (t = -0.461, P = 0.648), and 
EpG (t = -0.463, P = 0.647).

By estimating credible rate shifts (each defined as an 
event) from the posterior probabilities (PP), we observe 
how rates differ between whole-transcriptome and 
ortholog complexities across a phylogeny for EpT (Fig. 6; 
See Supp. Figs.  21,  22,  23,  24 for MCMC convergence). 
In deuterostomes we identify a shift (e.g., warmer heat 
color) for taxa related to humans. At the simian node 
[from Callithrix jacchus (common marmoset) to Homo 
spaiens] in the phylogeny containing whole-transcrip-
tome EpT, we observe an elevated evolutionary rate 
[PP = 0.0972]. While the ortholog EpT evolutionary rate 
is also elevated at crown primates [PP = 0.149] There is 
also an elevated rate for the branch of Branchiostoma 
floridae. The rate is lower in whole-transcriptome EpT 
[PP = 0.0679] but higher, given the edge taxa, in the 
orthologous dataset [PP = 0.108]. Outside of Branchi-
ostoma floridae, the rates on the phylogeny illustrates 
that all chordates have similar rates, outside of primates. 
Some of these rate shifts may be due to the artifact of 
human and primate genomes having more complete 
annotation with greater molecular evidence to support 
isoform detection.
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Drosophila have an elevated rate of EpT at the node 
between D. sechellia and D. simulans for both whole-
transcriptome [PP = 0.643] and orthologs [PP = 0.649], 
consistent with the D. sechellia annotation containing 
transcript models with a union of exons from multi-
ple transcripts within a gene [63]. Elevated rate shifts 
within plants and deuterostomes occur at single branches 
of organisms that are highly annotated. Phylogenetic 
branch tips that have high-rate shifts include Arabadop-
sis thalana and Camelina sativa (false flax) [PP = 0.0592], 
and Quercus suber (cork oak) [PP = 0.110]. These plants 

are highly studied cash crops or, in the case of Araba-
dopsis, a genetic model system. While orthologous genes 
have a rate shift in Z. mays (maize) [PP = 0.278] with a 
higher mean EpT than other Potales, no shift is observed 
in whole-transcriptome annotations. There is a rate shift 
at the basal portion of the tree between vascular and 
non-vascular plants. This rate shift is lower in ortholog 
genes (PP = 0.00852), than it is whole-transcriptomes 
(PP = 0.0162). With larger genome size, plants contain 
more genes and a plethora of extra functions evolved in 

Fig. 6  Evolutionary rates of EpT complexities across phylogenies for A) Deuterostomia, B) Drosophila, C) Plantae, and D) Fungi. Fungi phylogenies 
are collapsed to classes. Phylogenies were generated from the TimeTree portal. Rates were calculated in BAMM with 10,000,000 generations with 
a 10% burn-in. Viridis color pallet illustrates higher marginal rate-shift probabilities, with warm colors signifying higher rates shift and cooler colors 
being closer to no rate-shift toward zero. Each facet is analyzed independently and not relative to each other. Plots were generated in BAMMTools 
R package. Evolutionary rates compare whole-transcriptomes (left trees) to orthologous genes (right trees). We observe a significant difference in 
evolutionary rates for Deuterostomia when conditioning on orthology, but not in other clades. Phylogenetic trees are scaled within each clade, with 
yellow being higher and blue being lower rates
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vascular plants compared to that of mosses [68]. Hence, 
we suggest these differences are likely biological.

There are rate shifts within fungi lineages, including a 
split between Chytridiomycota and all other fungi phyla 
(Basidiomycota and Ascomycota), PP = 0.0301 in whole-
transcriptomes and PP = 0.0427 in orthologs. Another 
shift is observed in the class branch Pneumocystidomy-
cetes, PP = 0.396 in whole-transcriptomes and PP = 0.570 
in orthologs. The rate shifts are higher in orthologous 
genes than in whole-transcriptomic genes.

Biologically, complexity rate shifts are relatively rare 
across the tree of life (Fig.  6). We only observe high 
shifts in deep time or shift among highly studied biologi-
cal systems. Shifts in complexity among branches may 
stem from annotation quality or vigor, given the specific 
taxa where shifts occur. The difference between whole-
transcriptomes and orthologs have higher probabilities 
in rate shifts among orthologous dataset than of whole-
transcriptomes. Overall, these observations suggest that 
analysis of evolutionary rates is not severely impacted by 
ortholog conditioning, unlike species-level complexity 
analyses.

Discussion
Analysis of transcript complexity
Over 95% of multi-exon genes are subject to alterna-
tive splicing in eukaryotes [69, 70]. As the genomic field 
expands, we have found that a tremendous amount of 
complexity is not simply found in how many single genes 
a genome possesses, but instead of driven by genetic 
machinery “cutting” and arranging genetic units for spe-
cific tasks. These dynamics are observed in the human 
genome with only ~ 25 k genes coding upwards of ~ 90 k 
proteins [71, 72]. These genetic mechanisms and genomic 
dynamics add extra layers to understand organismal 
complexity. Understanding complexity is a central tenet 
to evolutionary biology. As mutations accumulate, novel 
genes form and gain function, where speciation events 
occur, yielding new species. Understanding the processes 
that drive complexity across the tree of life, inherently, 
has the potential to illuminate biological diversity that we 
observe in nature.

Transcriptome complexity is influenced by many bio-
logical factors. Previous work has observed exceptional 
splicing patterns in the testes and heads of Drosophila, 
mice, and humans (reviewed in [73–76]. Alternative 
splicing in males and females produces functional differ-
ences in sex determination pathways (reviewed in [77]). 
The use of different transcripts across timepoints and tis-
sues influences animal development and complexity of 
body forms [78]. Changes in alternative splicing and the 
addition of complex combinations in isoforms can allow 
for greater functional diversity and drive evolutionary 

innovation [2]. Genes expressed at different times, in 
different tissues, and developmental stages could have 
complexity bias as well [21], especially given the differ-
ence in U11/U12 spliceosome use. In taxa with many dif-
ferentiated cell types, separate sexes, or life stages, total 
complexity among annotations may be amplified com-
pared with taxa that exhibit uniformity with fewer cell 
types. Moreover, whole organism isoform use may be 
dynamic in comparison with the transcript diversity pre-
sent in any single cell. We also find that the quality of the 
assembly has a small effect on transcript diversity (Supp. 
Figs. 25 and 26).

We observe different dynamics with fungi from other 
groups in regards to TpG being collapsed on single tran-
script genes. Fungal genome sequencing and annotation 
is a burgeoning field and still has artifacts as genomic 
sequencing remains challenging [79] and annotation of 
isoforms in many species appears incomplete [80] (Supp. 
Information, Supp. Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 
and 16). Hence, a clear need exists for metrics that eluci-
date whether and how evolution has reshaped transcrip-
tome complexity in different organisms. Furthermore, 
polycistronic gene express is a dynamic known to occur 
in eukaryotes, even though its potentially rare [81]. It is 
unclear how many of these might be candidates for com-
bination into the same gene, but we expect that, overall, 
the numbers are not high enough to skew results in any 
meaningful way. Along with ways to improve annotation 
across the tree of life. Here, we use new metrics generated 
by TranD to measure trends of complexity accurately and 
precisely across taxa. Understanding complexity is quite 
important to understanding the dynamics that facilitate 
the machinery of life [82, 83].

These metrics, presented here, are robust since they 
are agnostic in the way they are generated from the data. 
These metrics also allow for independent diagnosis of 
complexity for a single organism along with the ability 
to compare each metric. Caveats for use cases are largely 
driven by the quality of annotation input data. TranD will 
collapse and collate transcript model complexity across 
genes only as accurately as the annotation data at hand. 
We observe such effects in a few constituents, such as in 
Deuterostomia, the primate group has higher than aver-
age metrics. This is likely a product of more thorough 
annotation of isoforms in the human genome based on 
extensive molecular data. In such a case, homology-
based annotation in primates may use human genomes as 
a resource for more complete annotation than more dis-
tantly related organisms. However, it is also possible that 
real biological rate-shifts exist in primates, in addition to 
methodological factors. In contrast, Drosophila sechellia, 
B. floridae and whale sharks may show signs of col-
lapsed isoforms among annotations, which yield unusual 
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complexity results (Supplementary Information). How-
ever, this is not to say that these are not biological results. 
Do be aware that evolutionary inference is dependent on 
the completeness and accuracy of an annotation for an 
organism.

Ortholog‑free complexity comparisons capture genetic 
novelty
Estimating complexity metrics that are conditioned on 
orthologous genetic elements, in our findings, induces 
bias for more complexity in older more studied genetic 
elements. Which do not take into account the novel 
gene formations that are found in whole-transcriptome 
annotations. This bias of older genetic elements will 
have complexity metrics that capture more well devel-
oped AS schemes, in turn, being more complex from 
the whole-transcriptome complexities that also take into 
account all the less complex novel elements. Inducing a 
shift in a higher frequency of lower complexity. These 
novel genetic elements arise from either re-organization 
of pre-existing genes or are de novo [35, 84]. Since novel 
genetic elements are, indeed, “new” less time has allowed 
for genes to accumulate more AS schema yielding more 
isoforms, hence more complexity in this study’s metrics. 
Using orthologous genes in phylogenetic comparisons 
allows for one-to-one comparisons given a speciation 
event [85, 86] dubbed the “ortholog conjecture” [87]. This 
methodology is a “necessary evil” in the genomic age, 
because much of the data generated may not adhere to 
all data being of orthologous origins. Even in relatively 
recent studies, across multiple taxa using many genomes, 
have lacked the resolution for concordance of a single 
gene copy [88]. This is also not a unique occurrence in 
whole-genome phylogenetic studies as more taxa are 
incorporated [33, 89].

Annotations can be facilitated by homology from better 
studied species, where the differences in metrics between 
orthologous partitions and whole-transcriptome data 
are not significant. From the novel genetic element con-
ditioning, we see that the variation of almost all species, 
is that ortholog metrics shift to higher complexities, 
while novel lineage specific genes have lower complex-
ity. Hence, whole-transcriptome data will show different 
values than either of these subsets. Future phylogenetic 
analysis must be aware that there will be biases from 
annotations, whether from highly rigorously annotated 
species or annotations from understudied organisms. 
Studies should consider how their data performs, and 
potentially correct for ortholog bias based on the ques-
tions and aims that are at hand.

More studies have tested the notion if discarding para-
logs is indeed the best practice [33, 86, 90]. Stamboulian 
et al. (2020) observed that paralogs still aid in functional 

prediction and throwing away huge swaths of data can 
often lead to the lack of predictions because no orthologs 
are available. Recent work has demonstrated that paral-
ogous data should not be as feared as once thought for 
phylogenomic inference [33, 91]. Of course, this paper 
uses EEN to normalize complexity discrepancy between 
whole-transcriptome and orthologous complexity met-
rics. Using Hong et  al.’s (2006) effective exon lengths 
model [64], EEN allows for whole-transcriptome and 
orthologous metrics to me normalized by the same scale. 
Thus, making a more concordant comparison between 
various datasets without the need to discard non-orthol-
ogous data (See Results: Comparison to broken stick 
is robust to orthology). Even with corrections to miti-
gate biases and loss of potentially informative data, we 
still recommend researchers use best practices for their 
experimental designs be it including whole-transcrip-
tomes, condition on orthologs, or incorporate the EEN 
correction.

Novel lineage specific genes frequently appear with 
fewer exons and lower protein complexity than back-
ground genomic properties [92]. As new genes are 
added to the transcriptome, these sources of innovation 
may therefore add sequences that have unusual com-
plexity compared with long-standing sequences. Our 
analysis confirms this hypothesis, and these effects are 
observed in comparisons of orthologs and ortholog-
free whole-transcriptome analysis. We find that novel 
genes have lower complexity with respect to every met-
ric for analysis. If complexity analysis only uses ortholo-
gous sequences, the unique properties of these novel 
sequences will be obscured. Moreover, bias in complex-
ity may offer a false portrait of whole-transcriptome 
complexity in different organisms. However, in other use 
cases, such as comparisons of EEN to Broken Stick, novel 
genes do not alter results significantly as they condition 
on baseline complexity metrics of EpT. In future applica-
tions, users will undoubtedly wish to assess the impact of 
ortholog conditioning on the questions at hand, poten-
tially with analytical corrections for biases. With quan-
titative, precise descriptions of complexity biases for 
orthologs and new genes, we can move forward with evo-
lutionary analysis with greater power than if accepting 
orthologs solely as a “necessary evil.” The working exam-
ples from analyses presented here show how transcript 
model analysis can be implemented for future insights 
as the number of successfully sequenced and annotated 
organisms expands, especially in previously non-model 
systems.

Metrics and use cases for future evolutionary analysis
Understanding how metrics perform in whole-tran-
scriptome data is essential to compare performance 
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in evolutionary analysis of transcript model complex-
ity for analytical applications. If the number of isoforms 
depends on the number of exons, then we may expect 
correlations between EpT, EpG, and TpG. However, if 
isoform combinatorics decouple the number of exons 
and the number of isoforms, then we may expect distinct 
patterns from each metric as species diverge. In such a 
case, analysis with one metric could suggest evolutionary 
stability, masking real variation that could be apparent 
using alternative metrics. To diagnose these differences 
between our complexity metrics we estimated Pearson R 
correlation coefficients among each group.

This study offers examples for how metrics of transcript 
model complexity may reveal differences in genomes for 
divergent taxa. These complexity metrics can be utilized 
further than this current study to analyze newly anno-
tated genomes in emerging systems. With the appearance 
of well annotated genomic datasets, it may soon be possi-
ble to determine how biological factors influence isoform 
variation and alternative splicing patterns. TranD is not 
only limited to publicly available annotations but can cal-
culate complexity metrics on de novo annotations with 
a pipeline of choice like BRAKER, MAKER, or Augus-
tus and validation with a BUSCO analysis [93–96]. It is, 
however, advised to pay close attention to annotation 
quality and completeness when using TranD to estimate 
complexity metrics, since the results are highly sensi-
tive to the data given. We have observed markedly dif-
ferent modes of transcript model complexity among and 
between lineages across the tree of life.

From high complexity in model systems compared 
to their sister taxa as seen in Z. mays and humans to 
the simpler transcript model forms identified in many 
fungi, Arabidopsis, and Drosophila, potentials for biases 
in annotation of highly studied organisms compared to 
those less studied. Furthermore, the ploidy of an organ-
ism may have a role on these transcript complexity mod-
els. The ploidy levels of plants vary tremendously among 
the group, and annotation comparisons may not directly 
be comparable. Understanding the molecular and cellu-
lar underpinnings for such variation may reveal insights 
into fundamental biology in future studies. Similarly, new 
analyses similar to our current study may help us charac-
terize observable phenomena in transcriptome evolution, 
with potential to illuminate processes, mechanisms, and 
dynamics of evolution in the tree of life.

As fields of biology continue to progress and gener-
ate more precise and accurate genomic sequences, these 
metrics will hold even more power to understand the 
role complexity has on the tree of life. These metrics are 
broad in nature, being able to be applied to any organism 
that possess a genome. For example, multicellular organ-
isms are assumed to be more complex than unicellular 

representatives. Multicellular organisms have larger sizes 
and tissue types likely a caused by novel adaptation giv-
ing rise to new functional outlets for the transcriptome to 
evolve [18, 97]. Our metrics can be used to guide further 
research to understand the phenomenon of why lineages 
with less complex body plans and traits may have more 
complex genomes. As future genomic resources emerge, 
it may be possible to compare single celled and multi-
cellular relatives to infer how transcriptomes evolve as 
novel body forms emerge. Similarly, we may ask whether 
genomic complexity correlates with transcriptome com-
plexity, or how sexual reproduction compared to asexu-
ality influences complexity fluctuations. Understanding 
complexity systematically can help to expound patterns 
in evolutionary tracts across the tree of life where differ-
ent dynamics have a role in evolution.

Conclusions
This study illustrates the power and utility using TranD 
transcript model complexity metrics as both a compara-
tive method and to independently validate transcriptome 
complexity across any and all lineage of life and viruses 
given an annotation file. Care must be conducted on the 
annotation data being fed into TranD, because any errors 
will be incorporated into the results. This work is a first 
step to elucidate complexity patterns and validate using 
whole-transcriptome sequences versus conditioning on 
orthologous genetic elements across the tree of life.

Throughout our observations and analyses of transcrip-
tomes, using TranD’s transcript models, we found some 
interesting phenomena. First is that complexity metrics 
for Fungi, in regards to transcripts per gene (TpG), were 
mainly single transcript genes across the entire group. 
Prompting us to ask, is this a biological phenomenon 
in how the group’s translational machinery works, or is 
this an artifact in how fungus is annotated? Maybe more 
care needs to be taken in uncovering AS dynamics in the 
group. This study cannot say either way, just that this pat-
tern is seen. We also find that in our early analyses that 
the chicken (Gallus gallus) annotation was missing a 
well annotated gene Titin [TTN] in the previous RefSeq 
annotation, GCF_000002315.5_GRCg6a. This annotation 
was indeed updated over the course of writing this manu-
script and is updated here, GCF_016699485.2_bGalGal1.
mat.broiler.GRCg7b. This new annotation does include 
Titin, showing that TranD can illuminate potential errors 
in annotation. Given that Titin is a highly studied and 
well-known gene, being the largest gene in vertebrates, 
and being present across the deuterostome phylogeny, it 
was obviously missed. This is luckily rectified in updated 
annotations.

Mosses are also a curious case. Given that over evo-
lutionary time and structurally, Bryophta is considered 
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some the least complex group of contemporary plants. 
However, in our study we found them to have the high-
est complexities within the Viridiplantae group. The club 
moss also has a high rate of transcript overlap compared 
to other eukaryotes ate 6.4%. Club moss being higher 
than expected may not be unexpected as green algae has 
high rights of polcistronic gene expression [98].

Observations of evolutionary rate shifts in EpT (Fig. 6) 
show patterns of elevated shifts among model organisms 
within their respective groups. Plants have elevated rates 
for whole-transcriptomes in the model system Arabidop-
sis and elevated rates in orthologs in Z. mays. This trend 
is also seen within the primate groups. One hypothesis 
is that rates here are driven by annotations being driven 
by homology from model systems, especially in the pri-
mates given our sampling. In Arabidopsis, being a highly 
studied genetic system, may simply have more resources 
poured into annotation compared to other plants. Z. 
mays has a high-rate shift within the orthologous annota-
tion filters. This may be attributed to its extensive domes-
tication of traits and genes. The consistency of rate shift 
appearing in model systems requires future investigation.

Further research should be conducted on complexity 
to understand the tempo of evolution. Co-evolutionary 
patterns between host and parasite genomes, tempo of 
evolution in specific groups, wild-type vs domesticated 
genome complexity, and unicellular verses multicel-
lular dynamics are all interesting questions that can be 
addressed using these metrics of transcriptome complex-
ity. Furthermore, the ability to validate annotation files 
for specific studies has utility downstream. The crea-
tivity of the scientific question at hand and the annota-
tion available are the only bottlenecks when using these 
agnostic transcriptome complexity metrics.

Methods
TranD complexity calculations
We used the new transcript model analysis software TranD 
to calculate three metrics of transcript model complexity 
within species: TpG, EpT, and EpG [57] (https://​doi.​org/​10.​
1101/​2021.​09.​28.​462251; https://​github.​com/​McInt​yre-​Lab/​
TranD/​wiki). The exons per gene (EpG) metric was initially 
derived from Spieth & Lawson (2005) [99]. These three 
generalized metrics describe the global phenotypic struc-
ture of transcriptomes and are used to quantify transcript 
complexity, from annotations, of lineages across the tree 
of life. TranD derives these metrics by consolidating exons 
and transcripts into their parent genes (for both exons and 
transcripts) and into specific transcripts (for exons only) 
to illustrate the dynamics between various coordinate sys-
tems, transcriptome structure, and alternative splicing (AS) 
among and between lineages. We used describe_transcrip-
tome_complexity_GTF.py script to quantify transcript 

model complexity for each organism using GTF files 
obtained from NCBI RefSeq and GeneBank. Each organism 
was then consolidated to one file, per each group of inter-
est [Deuterostome, Drosophila, Plantae, and Fungi], using 
merge_species_transcriptome_info_counts.py script. Com-
plexities were described for partitions for orthologs filters 
and novel gene filters (see ortholog identification).

First we tested for normality using the Shapiro–Wilk 
Normality Test using the shapiro.test() function in R 
[100]. To evaluate the interdependence between our met-
rics in the data we present, we used the Pearson correla-
tion statistic using the lm() function in R [101, 102]. If the 
data set was normally distributed, we used the Pearson 
correlation, if it was not the Spearman’s rank correlation 
coefficient was used for nonparametric data (Supplemen-
tary Information).

Effective exon number
We estimated the “Effective Exon Number” for each 
transcript according to models previously developed by 
Hong et al. (2006) [64]. For each transcript, the Effective 
Exon Number (EEN, formerly reported as Ne) is given 
by EEN = 1/(

EpT
i=1

1/ L2e  where i goes from one to 
EpT, the total number of Exon per Transcript, and Le is 
the exon length scaled to a proportion of total transcript 
length. EEN is naturally bounded by [0, EpT].

EEN depends directly on the distribution of exon 
lengths and the dispersion or clustering of intron posi-
tions in cDNA transcripts. EEN is equal to the num-
ber of exons (EEN = EpT) if a transcript contains evenly 
spaced introns (overdispersion) with equal exon lengths 
throughout the transcript. Lower values (EEN << EpT) 
represent more clustered intron positions and under dis-
persed distribution of exon lengths [64]. Theoretical pre-
dictions would suggest that exon fragment lengths should 
follow a Broken Stick model [103]. Where the model 
takes unit of length and randomly (and simultaneously) 
selecting break points from a uniform distribution break-
ing it into N pieces. Values above the Broken Stick model 
suggest biological or analytical factors that create more 
evenly spaced intron breaks than the null. Values below 
this null model suggest factors that create more tightly 
clustered distributions of intron breakpoints across the 
transcript.

Ortholog identification
We used TranD to analyze genomic annotations from 
clades of eukaryotes where reference genomes and 
whole-transcriptome annotations were available in 
RefSeq and OrthoDB. Organism annotation data was 
selected by covering tractable data from well-studied 
phylogenetic lineages in the Eukarya tree of life, where 
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possible. Reference files were procured from the Refseq 
database in GTF format (http://​www.​ncbi.​nlm.​nih.​gov/​
refseq/). Guidelines for proper annotation acquisition are 
as follows:

i) Annotations must be available on RefSeq and 
OrthoDB 10v1 (or v9.1 for Drosophila only). Ref-
Seq is a standardized public database that is actively 
curated providing the most comprehensive and rich 
annotations of the tree life available. This allows for 
the highest quality annotation among lineages to pull 
from in our analyses.
ii) The reference organisms must be annotated and 
have an assembled and annotated reference genome. 
Again, to facilitate the best annotated sequence 
products available within lineages.
iii) The reference must have an NCBI release. All 
RefSeq genome annotations have an NCBI release, 
meaning they were processed by biological experts 
using the RefSeq processing pipeline [104, 105].

Complete references were gathered where available. 
Some key lineages are not available on RefSeq at high 
quality (at the time of publication) and so were omitted, 
e.g., Myxini, Tardigrada, Onychophora, etc. For some 
organisms the Fungi group only GenBank (GCA) refer-
ence (n = 16/77) were available. To have the adequate 
phylogenetic representation required, in the fungi group, 
for robust estimation, we choose to use GCA references 
for some constituents with n = 61/77 having RefSeq 
releases (GCF).

Orthologs were gathered from the OrthoDB v10.1 portal, 
where taxon organism IDs were collected. Orthologs were 
considered by selecting the most recent common ances-
tor (MRCA) for the groups (level on OrthoDB) and follow 
a 1:Multiple selection of orthologs, which are genes in one 
species that have multiple orthologs in another species 
due to gene duplication events. Input files needed to parse 
novel and orthologous genes, downloaded from OrthoDB’s 
data section (https://​www.​ortho​db.​org/?​page=​filel​ist), 
include < odb10v1_OG2genes.tab.gz > and < odb10v1_gene_
xrefs.tab.gz >. Our code translates ortholog group IDs from 
OrthoDB to xrefs and parses NCBI reference GTFs generat-
ing a total of three GTF files – [original] whole-transcrip-
tome GTF, ortholog GTF, and novel gene GTF. Ortholog 
selection was conducted through a series of python scripts 
to filter OrthoDB orthologs from novel lineage specific 
genes NCBI GTF files. Full descriptions with examples for 
using code can be found in on GitHub: https://​github.​com/​
jemcq​uillan/​Ortho​DB_​Parser.

To estimate whether there are significant differ-
ences between the whole-transcriptome, orthologous, 
and novel genetic data we ran a two-sample Wilcoxon 

Rank Sum (Mann-Whittney Test) using the wilcoxon.
test() function in R [106, 107]. Estimated P-values were 
adjusted with Bonferroni using the p.adjust() function in 
R [108]. We estimated if there are biases in complexity 
metric variances between orthologs and whole-transcrip-
tomes by cross-validating with a Jackknife resampling 
with 10,000 replicates to ensure that differences ortholog 
subsets of the transcriptome are not biased by lack of 
independence. Given that the distributions of EpT, EpG, 
and TpG are independent per organism, a Fisher’s com-
bined probability test was conducted for each complex-
ity metric using the R package poolr’s fisher() function 
[109–112].

Evolutionary rate analysis
If complexity metrics differ for genes that have orthologs 
across phylogenies compared with complex datasets that 
include lineage specific genes, conditioning on orthol-
ogy could introduce biases in evolutionary rate analysis 
of transcriptomes [26, 28]. To understand how ortholog 
complexities behave compared to whole-transcriptome 
complexities in downstream analyses, we ran evolution-
ary rates on complexity traits estimated using whole-
transcriptome data and conditioning on genes with 
orthologs across the entire phylogeny. We compare evo-
lutionary rates using PhyTools [113] and BAMM [114] to 
determine whether there are significant differences when 
conditioning on the presence of orthologs across taxa. 
We used PhyTools ratebytree() function [113, 115–117] 
to ascertain if the evolutionary rate between orthologs 
and whole-transcriptome data has any bearing on which 
dataset to use for a specific group. BAMM was used to 
find mean phylorate shifts across both whole-transcrip-
tome complexity metrics and orthologous gene complex-
ity metrics to compare variation in complexity rate shifts 
across the phylogeny. This was conducted to understand 
the dynamics between complexity between whole-tran-
scriptome annotations vs. annotations conditioned on 
orthologous genes.

Phylogenetic analysis was calibrated using divergence 
times from the Time Tree of Life (TToL) [118, 119]. The 
TToL constructs phylogenetic relationships through 
meta-analysis of currently published time-calibrated 
phylogenies. Each broad group (Deuterostomia, Dros-
ophila, Plantae, and Fungi) had a phylogeny constructed 
from the TimeTree portal. If the TimeTree database did 
not have a specific individual that had criteria for anno-
tation for selection, we picked closely related sister taxa 
present in the tree as comparable divergence times at the 
same relative tip placement of the phylogeny. For Fungi, 
phylogenies are still ongoing for proper placement of 
many taxa, so metrics were consolidated by class, the 
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taxonomic grouping currently offered in the TimeTree 
database.

We used Phytools ratebytree() function for continuous 
traits, using the "OU" model of trait evolution to see if 
the rate is equal among all trees, or if the rates or regimes 
can differ between trees. The phylogenies were identical 
for each group. We used mean TpG, EpT, and EpG inde-
pendently as traits. Then having the evolutionary rate 
estimated by complexity trait for ortholog metrics and 
whole-transcriptome complexities. The posthoc() func-
tion [113] in PhyTools was then conducted to test if there 
was a significant difference between orthologous parti-
tioned complexity metrics compared to whole-transcrip-
tome complexity metrics.

BAMM was run across 10,000,000 generations with a 
sampling frequency every 1000 Markov Chains. Burnins, 
for all groups, were set to a 10% burnin (a total of 1000 
Markov Chains). Plotting of the BAMM and down-
stream analyses were conducting using BAMMTools 
R package [120]. We checked effective sampling sizes 
(ESS) and convergence of MCMC runs. All our runs 
ran to convergence, with ESS > 200 in most cases. To 
assess if the ESS numbers could be higher, we ran multi-
ple runs with longer generate time, and combined runs. 
Here the ESS numbers did not change, yet still ran to 
convergence. Given our analysis did converge and ESS 
numbers did not dramatically change, we proceeded 
given the data at hand. Mean phylorate shift was calcu-
lated from the getEventData() function in BAMMTools 
R package. Rate shift probabilities were gathered using 
BAMMTools built-in functions to extract posterior-
probabilities of a species [getTipRates()], a monophyletic 
gorup [getCladeRates()], or a branch in the phylogeny 
[getMarginalBranchRateMatrix()].

Data acquisition and code
All data, links to data used, and code can be found at 
https://​github.​com/​jemcq​uillan/​Trans​cript​ome_​Compl​
exity and https://​github.​com/​jemcq​uillan/​Ortho​DB_​
Parser.
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