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Abstract 

Background Yellow or stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is an important disease 
of wheat that threatens wheat production. Since developing resistant cultivars offers a viable solution for disease 
management, it is essential to understand the genetic basis of stripe rust resistance. In recent years, meta-QTL analysis 
of identified QTLs has gained popularity as a way to dissect the genetic architecture underpinning quantitative traits, 
including disease resistance.

Results Systematic meta-QTL analysis involving 505 QTLs from 101 linkage-based interval mapping studies was 
conducted for stripe rust resistance in wheat. For this purpose, publicly available high-quality genetic maps were used 
to create a consensus linkage map involving 138,574 markers. This map was used to project the QTLs and conduct 
meta-QTL analysis. A total of 67 important meta-QTLs (MQTLs) were identified which were refined to 29 high-confi-
dence MQTLs. The confidence interval (CI) of MQTLs ranged from 0 to 11.68 cM with a mean of 1.97 cM. The mean 
physical CI of MQTLs was 24.01 Mb, ranging from 0.0749 to 216.23 Mb per MQTL. As many as 44 MQTLs colocalized 
with marker–trait associations or SNP peaks associated with stripe rust resistance in wheat. Some MQTLs also included 
the following major genes- Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, Yr64, YrCH52, and YrH52. Candidate gene mining in high-
confidence MQTLs identified 1,562 gene models. Examining these gene models for differential expressions yielded 
123 differentially expressed genes, including the 59 most promising CGs. We also studied how these genes were 
expressed in wheat tissues at different phases of development.

Conclusion The most promising MQTLs identified in this study may facilitate marker-assisted breeding for stripe 
rust resistance in wheat. Information on markers flanking the MQTLs can be utilized in genomic selection models 
to increase the prediction accuracy for stripe rust resistance. The candidate genes identified can also be utilized for 
enhancing the wheat resistance against stripe rust after in vivo confirmation/validation using one or more of the fol-
lowing methods: gene cloning, reverse genetic methods, and omics approaches.
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Background
Stripe (or yellow) rust, caused by Puccinia striiformis f. 
sp. tritici (Pst), is a severe biotic stress that restricts wheat 
production and productivity on a global scale. The yellow 
rust epidemics are stirring in almost every wheat growing 
region in the world and may result in major (up to 70%) 
yield losses, mainly owing to the reduced grain filling 
duration under severe epidemic conditions [1]. When the 
infection occurs at the seedling stage and environmen-
tal conditions are favorable for the pathogen to persist 
till maturity, yield losses may even approach 100% [2, 3]. 
Stripe rust proliferates because the pathogen responsible 
is an excellent air traveler and, as a result of its reproduc-
ing ability, it can spread over large distances in favora-
ble climatic conditions [4, 5]. An earlier study estimated 
that 88% of the world’s wheat production is now prone to 
stripe rust infection, resulting in global losses of at least 5 
million tonnes annually [6].

The development of rust-resistant wheat varieties is the 
most cost-effective strategy being adopted throughout 
the world for managing most of the plant diseases includ-
ing wheat rusts [7, 8]. Therefore, it is important to map 
the target genes/QTLs for stripe rust in wheat followed 
by their introgressions into wheat varieties for enhanc-
ing their stripe rust resistance [9, 10]. The resistance to 
stripe rust can be divided into two categories based on 
the growth stage at which it appears: seeding (or all-
stage) resistance and adult-plant resistance (APR, includ-
ing high-temperature APR) [5, 11].

To date, eighty-three Yr genes for stripe rust resist-
ance have been formally designated in wheat, and they 
are positioned across all 21 wheat chromosomes [12]. 
More than 15 of these Yr genes have been derived from 
the wild  species [13]. In addition, several important Yr 
genes, including Yr5/Yrsp, Yr7, Yr10, Yr15, Yr18, Yr36, 
Yr46 and YrU1 have been successfully cloned using a 
variety of approaches and are now being used in wheat 
breeding programs world-wide [14–17]. Major epidem-
ics have occurred after the introduction and expansion of 
new virulent disease races because some of these genes 
have been extensively targeted in wheat breeding [18, 
19]. The lessons from these occurrences were the broad 
use of a single major resistance gene ultimately fails, with 
negative consequences inversely correlated with the dis-
tribution of wheat cultivars containing that gene. Sources 
with  improved  durability were typically deployed with 
the intention of preventing the overuse of individual 
resistance genes and  avoiding the deployment of com-
binations of effective major genes for disease resistance. 
Further, such resistant genotypes exhibit hypersensitivity 
or programmed cell death [19]. In contrast, quantitative 
resistance, which causes the reduction, but not absence 
of disease, is based on minor genes encoding various 

resistance responses that are not restricted to specific 
pathogen races.

QTL mapping is a powerful technique for the genetic 
dissection of complex traits, including quantitative dis-
ease resistance, in crop plants [20, 21]. Since the publi-
cation of the first study on QTL mapping for stripe rust 
resistance in wheat in 2000 [22], a large number of QTL 
mapping studies for stripe rust resistance in wheat have 
been published (http:// wheat qtldb. net/, [23]). However, 
the deployment of these resistance QTLs in wheat breed-
ing programs has been minimal for several reasons, a 
few of which are as follows: inconsistencies between the 
QTLs reported in different studies, use of different types 
of markers, population types and sizes, and phenotyp-
ing environments. Furthermore, as a result of the com-
plex genome of hexaploid wheat, the presence of highly 
repetitive sequences in the genome and the lack of high-
resolution linkage maps, less progress has been made in 
fine mapping and cloning of gene/QTLs. In recent years, 
a revolution in the QTL analysis of complex traits has 
occurred via the introduction of different high-through-
put sequencing and genotyping technologies, thus also 
facilitating the effective use of genome-wide association 
studies (GWAS) for trait dissection [24, 25]. GWAS is 
a powerful and simple way to fine map QTLs in a large 
population by deriving multi-allelic variations to help in 
identifying the most advantageous alleles of a target trait 
in a single analysis, and it is more powerful and simple 
to fine map QTLs due to higher resolution resulting from 
high genetic diversity [26–28].

An emerging and a relatively new method known as 
meta-analysis of QTLs or MQTL analysis has been able 
to produce more reliable QTLs for MAS and prediction 
of candidate genes (CGs) associated with the trait in 
question. The reliability, feasibility and utility of MQTL 
analysis has already been well established in different 
crop plants [29–36]. The software program BioMerca-
tor [37], generally used for MQTL analysis, allows the 
analysis of large number of QTLs from diverse sources 
and helps in the projection of QTLs to a consensus or 
reference map [38]. As a result, meta-analysis is able to 
identify the consensus QTLs associated with the targeted 
traits in multiple environments and diverse genetic back-
grounds [39]. For instance, meta-analysis has already 
been conducted in wheat for a number of different traits 
[40–44] including resistance to different diseases such as 
leaf rust [45, 46], stem rust [47], tanspot [48], Fusarium 
head blight [49–52] and powdery mildew [53]. Despite 
the fact that there are over 500 QTLs associated with 
stripe rust resistance, a recent study published in 2021 
conducted a meta-analysis using only 184 QTLs and 
identified 61 MQTLs [54]. Considering this, the cur-
rent study involving meta-analysis (based on almost all 
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QTL mapping studies available) was planned to provide 
more reliable MQTLs and candidate genes for stripe rust 
resistance.

Overall, the present study was conducted to investi-
gate the genetic architecture that drives resistance to 
stripe rust by finding intriguing candidate genes from the 
recently decoded wheat genome, integrating this infor-
mation with transcriptome data and GWAS, and inves-
tigating the function of the identified CGs in different 
wheat tissues. The outcome of this study will prove use-
ful for wheat breeding community and provide tools for 
improving stripe rust resistance in wheat cultivars.

Results
QTLs and their distribution on wheat chromosomes
In the present study, a total of 101 linkage based map-
ping studies were used, in which different types of 
mapping populations were utilized for mapping includ-
ing: recombinant inbred lines (RILs), doubled haploid 
(DH), and  F2:3 or  F3 populations. The information on as 
many as 505 QTLs was compiled from these 101 stud-
ies (Supplementary Table  1). The detailed information 
on these QTLs involving the chromosomes, flanking 

markers, genetic positions, PVE values and LOD scores 
for individual QTLs is presented in Supplementary 
Table  1. The important characteristics of the collected 
QTLs were: (i) whole genome distribution with num-
ber of QTLs mapped per chromosome varied from 5 
on chromosome 6D to 67 on chromosome 2B (Fig. 1a); 
(ii) differential distribution of QTLs among the three 
sub-genomes, with 142 (28.11% of total) QTLs on the A 
sub-genome, 288 QTLs (57.02%) on the B sub-genome 
and 75 QTLs (14.85%) on the D sub-genome; and (iii) 
the number of QTLs for twelve individual parameters 
relevant to stripe rust ranged from 1 QTL for IR to 216 
for DS. Furthermore, 186 QTLs were associated with 
more than two parameters each, and 18 QTLs with 
more than three parameters each (iv) LOD scores for 
individual QTLs ranged from 2.3 to 35.55, with as many 
as 268 QTLs (53.06% of the total) possessing LOD value 
of < 6 (Fig.  1b), (v) the PVE% by an individual QTLs 
varied from 1 to 88% and displaying a typical L-shaped 
distribution, with most (46.33%) QTLs showing a 
PVE < 10% and only a small fraction (9.10%) represent-
ing major QTLs/genes (PVE > 40%) (Fig. 1c).

Fig. 1 Basic characteristics of QTLs associated with yellow rust resistance (a) chromosome-wise distribution of QTLs, (b) LOD scores of QTLs, (c) PVE 
values of the QTLs
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Consensus map and projection of QTLs
The high density “WheatConsensusMap-2022” that was 
used during the present study showed huge variation 
for the genetic lengths of the maps of individual chro-
mosomes (the length varied from 294.84  cM for chro-
mosome 4D to 716.95 cM for chromosome 5A, with an 
average map length of 509.72 cM). The number of differ-
ent molecular markers mapped on an individual chromo-
some varied from few hundred (367 on 4D) to several 
thousands (18,990 on 3B), with an average of approxi-
mately 6,598 markers per chromosome. The total map 
length of all the chromosomes in the consensus map was 
10,704.2  cM covered by 138,574 markers. Because the 
consensus map was constructed using distinct genetic 
maps with various numbers and types of markers, the 
distribution of markers at the two ends differed signifi-
cantly, with higher marker density was found at the chro-
mosome fore-ends. The marker density on an individual 
wheat chromosome varied from 1.24 markers per cM on 
chromosome 4D to 30.41 markers per cM on the largest 
wheat chromosome 3B, with an average of 12.95 markers 
per cM across the whole genome.

Further, a total of 380 QTLs (75.24% of the total QTLs) 
collected from the literature were projected on to this 

newly developed highly dense consensus map. The 
remaining 101 QTLs could not be projected onto the 
consensus map owing to either of the reasons discussed 
in one of our earlier study [43].

MQTLs for stripe rust resistance
The Veyrieras approach [38] was used for meta-analysis 
of QTLs available on all wheat chromosomes except for 
1D, 4D, 5D, 6D and 7A as these chromosomes had < 10 
projected QTLs per chromosome and therefore the Goff-
inet and Gerber’s approach [39] was used for analyzing 
the QTLs on these chromosomes. Overall, a total of 67 
MQTLs were predicted for stripe rust resistance (Fig. 2a, 
Table  1, Supplementary Table  2), which were based on 
309 initial QTLs out of 380 projected QTLs. The remain-
ing 71 QTLs included 24 singletons (Supplementary 
Table  3), 43 QTLs with peaks outside the supporting 
intervals of MQTLs and 2 QTL hotspots (each involv-
ing 2 initial QTLs from a single study) (Supplementary 
Table 4). The 24 singletons were mapped on wheat chro-
mosomes 1A, 2A, 2B, 3A, 3B, 3D, 4A, 4B, 4D, 5D, 6A, 6D, 
and 7A, and 2 QTL hotspots were mapped on chromo-
somes 5D and 7A.

Fig. 2 Basic characteristics of MQTLs associated with yellow rust resistance (a) chromosome wise distribution of MQTLs, (b) the number of QTLs 
involved in different MQTLs, (c) the number of QTL studies involved in different MQTLs, (d) fold reduction in confidence intervals of QTLs after 
meta-analysis
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Table 1 MQTLs associated with stripe rust resistance detected during the present study

MQTL name CI (cM) Flanking markers N QTLs (N studies) LOD score (PVE, %) Component traits

MQTL1A.1 150.41–153.18 Kukri_rep_c81545_195/IAAV2838 3 (3) 5.3 (14.83) FDS, DS/IT, DS

MQTL1A.2 154.09–155.31 IAAV2838/IAAV2838 3 (3) 5.63 (8.43) DS, DS/IT, AUDPC/IT/SR/LAI

MQTL1A.3 177.32–181.96 wsnp_Ku_c34659_43981982/
IWB69234

2 (2) 6.35 (12.15) DS, IT/DS

MQTL1B.1 94.37–95.30 BS00095286_51/Kukri_c7393_285 5 (5) 12.65 (25.12) IT/DS (2), IT, DS, AUDPC/IT

MQTL1B.2 145.25–146.93 GENE-1756_115/wsnp_Ex_
c14273_22230844

5 (5) 11.08 (16.204) DS (3), IT, AUDPC/IT

MQTL1B.3 153.68–155.15 wsnp_Ex_c14273_22230844/
RFL_Contig4873_542

6 (4) 9.75 (11.18) DS/IT (2), DS (3), IT

MQTL1B.4 198.58–200.21 BobWhite_c4147_1351/
BS00066135_51

3 (3) 6 (10.43) SR, DS/AUDPC, DS

MQTL1B.5 233.79–235.01 IWB70151/Excalibur_rep_
c107001_320

4 (4) 11.81 (23.20) AUDPC/IT, DS (2), IT/DS

MQTL1D.1 35.08–37.54 wsnp_Ra_c48124_53475145/
AX-110276692

2 (2) 8 (21.25) DS, IT/DS

MQTL1D.2 72.05–72.75 Kukri_c46169_294/AX-109701841 2 (2) 2.94 (1.69) DS (2)

MQTL1D.3 74.97–77.75 Kukri_c20446_215/AX-110163017 2 (2) 8.55 (9.49) DS (2)

MQTL2A.1 185.38–185.53 BS00004724_51/wsnp_Ex_rep_
c103167_88181968

11 (9) 13.38 (21.18) AUDPC, DS (6), IT, IT/DS, RT/DS, SR

MQTL2A.2 210.34–214.06 D_GA8KES401BVP4P_43/IAAV2585 2 (2) 13.55 (21.15) DS (2)

MQTL2A.3 278.26–287.31 BobWhite_c1611_1685/
BS00078612_51

3 (3) 12.49 (34.63) DS/SR, DS/AUDPC, IT

MQTL2A.4 332.98–334.34 AX-110595053/IWB6967 2 (2) 15.525 (13.15) DS, IT/DS

MQTL2B.1 29.97–32.74 Ku_c2441_1342/BobWhite_
c20346_138

4 (4) 4.8975 (19.275) AUDPC/IT (2), IT, DS

MQTL2B.2 54.87–60.28 RAC875_c8069_1709/Excalibur_
c4372_262

2 (2) 4.82 (10.17) IT, DS/SR

MQTL2B.3 60.96–63.43 BS00066389_51/Excalibur_
c39493_251

2 (2) 35.55 (56.9) DS/IT, DS

MQTL2B.4 100.57–101.86 Kukri_c94792_127/Jagger_
c10188_98

11 (9) 12.26 (26.26) DS/IT, AUDPC/IT/SR/LAI, DS (7), 
AUDPC/IT, IT/SN

MQTL2B.5 102.84–103.56 RAC875_c16993_196/
BS00070050_51

11 (9) 12.43 (26.95) DS (4), DS/IT, IT/SN (2), RT/DS, AUDPC, 
FDS/NDVI, DS/RT/NDVI

MQTL2B.6 110.17–110.90 BS00049876_51/Ku_c68139_836 4 (4) 25.16 (36.19) AUDPC, DS/AUDPC, AUDPC/IT, IT/DS

MQTL2B.7 120.49–122.42 IWB8416/BS00072620_51 2 (2) 8.10 (13.85) DS, AUDPC/DS

MQTL2B.8 140.21–143.45 AX-94718406/IWB67084 5 (3) 4.61 (7.822) DS (5)

MQTL2B.9 199.06–201.96 IWB62599/BobWhite_c31708_99 2 (2) 8.33 (18.9) DS, IT

MQTL2D.1 75.42–78.47 AX-94898597/AX-95176044 2 (2) 13.45 (38.4) IT, LP/IT

MQTL2D.2 98.67–98.98 RAC875_c11911_431/D_con-
tig28346_467

9 (6) 5.98 (13.75) IT, DS (5), AUDPC/DS, AUDPC

MQTL3A.1 49.57–51.12 Excalibur_c32653_553/
BS00109084_51

2 (2) 4.66 (14.325) DS/IT, AUDPC/IT

MQTL3A.2 125.99–128.88 3A_s3948706//wsnp_Ra_
c9738_16174002/Tdurum_con-
tig75764_146

4 (3) 5.08 (12.27) SR (2), DS (2)

MQTL3A.3 142.47–143.43 Excalibur_c20448_318/Excalibur_
c98205_83

3 (3) 4.53 (8.33) LP/IT, DS (2)

MQTL3B.1 17.01–18.19 Excalibur_c20277_436/RAC875_
rep_c111781_146

3 (3) 8.3 (14.37) IT/AUDPC, AUDPC/DS, DS

MQTL3B.2 29.78–34.05 BS00011904_51/RAC875_
c30148_90

4 (4) 6.1 (10.025) SR, DS (2), IT/AUDPC

MQTL3B.3 73.84–74.22 BS00075373_51/Tdurum_con-
tig14251_431

16 (11) 8.13 (13.10) IT (3), SR, DS/IT (5), DS (4), DS/SR (2), 
AUDPC

MQTL3B.4 74.53–75.31 BS00075373_51/Tdurum_con-
tig14251_431

4 (4) 22.47 (29.18) RT/DS, IT/DS, DS, IT/DS/AUDPC
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Table 1 (continued)

MQTL name CI (cM) Flanking markers N QTLs (N studies) LOD score (PVE, %) Component traits

MQTL3B.5 92.80–92.83 IWB47273/AX-111655083 9 (7) 6.57 (18.11) IT/DS/AUDPC, DS (3), DS/SR (2)

MQTL3D.1 77.87–83.56 BS00021930_51 /wPt-3815//
AX-108885897

3 (2) 6.4 (10.4) IT/DS, DS (2)

MQTL3D.2 117.24–119.28 IAAV5635/wPt-666738//IAAV2827 2 (2) 9.2 (12.2) IT/DS

MQTL4A.1 133.66–134.57 wsnp_Ex_c4752_8482625/
AX-108737352

5 (4) 5.65 ((12.18) DS (3), DS/AUDPC, IT

MQTL4A.2 181.44–182.59 Xiwa2606//IWB27365/
SBG_177633//IWA3068

5 (4) 18.18 (16.44) AUDPC/IT/SR/LAI (2), DS/RT/NDVI, SR, 
LAI/RT

MQTL4B.1 32.7–34.42 Tdurum_contig61142_146/
Ra_c26080_461

4 (4) 4.65 (7.54) DS (3), DS/IT

MQTL4B.2 52.99–53.38 Tdurum_contig94552_326/Tdu-
rum_contig13165_443

4 (4) 5.13 (6.51) DS/IR, DS (2), AUDPC

MQTL4B.3 59.74–60.63 Tdurum_contig29989_132/
BS00067786_51

4 (4) 11.72 (27.25) DS (3), DS/IT

MQTL4B.4 62.63–64.06 BS00063804_51/IAAV5175 3 (3) 7.57 (16.77) DS/IT (2), DS

MQTL4B.5 83.5–86.3 AX-109899078/IWB7491 2 (2) 4.35 (19.85) DS, AUDPC

MQTL4B.6 104.8–105.74 CAP12_c4704_232/RAC875_
c6694_906

2 (2) 15.03 (27.11) DS, IT/DS/AUDPC

MQTL4B.7 116.01–117.44 IWB46525/Kukri_c18722_425 3 (3) 8.67 (21.87) DS/SR (2), AUDPC/IT

MQTL4D 93.32–93.67 Kukri_rep_c68594_530/RFL_Con-
tig2917_500

3 (3) 4.19 (5.66) DS (3)

MQTL5A.1 230.77–232.75 IAAV2080/GENE-3572_70 5 (5) 5.22 (7.46) AUDPC/IT (2), DS (3)

MQTL5A.2 243–243.86 BobWhite_c17440_130/
BS00022110_51

2 (2) 8.9 (4.25) IT/DS, DS/AUDPC

MQTL5A.3 252.68–254.08 Ex_c6161_335/IWB56891 2 (2) 3.29 (1.88) DS (2)

MQTL5A.4 262.77–263.05 Xbarc100/IWB31441 4 (4) 9.92 (6.89) AUDPC/DS, DS, SR, IT/DS

MQTL5A.5 314.26–317.34 BS00085826_51/CRA-4160//
IWB14724

4 (4) 4.27 (6.49) DS (3), IT/DS/AUDPC

MQTL5A.6 372.08–373.41 wsnp_Ex_c18941_27840933/
Kukri_c34193_102

2 (2) 22.82 (35.52) DS, AUDPC/IT

MQTL5B.1 3.165–5.375 IWB65830/wsnp_Ex_
c6100_10676217

7 (6) 8.27 (7.99) DS (4), IT (3)

MQTL5B.2 46.86–47.9 Xgwm544//IWB21416/IWB32919 7 (7) 5.61 (13.68) SR, DS (3), AUDPC/IT, AUDPC, IT

MQTL5B.3 106.37–108.11 Tdurum_contig5522_455/Bob-
White_c15406_510

6 (5) 12.01 (12.96) DS (4), DS/IT (2)

MQTL5B.4 138.72–138.92 BS00024829_51/RAC875_
c14078_202

4 (3) 4.5 (12.02) SR, AUDPC/IT (2), IT/DS

MQTL5D 301.76–303.55 Excalibur_rep_c73156_287/
BS00021911_51

2 (2) 4.62 (8.37) IT/DS, AUDPC/IT

MQTL6A.1 176.27–178.23 Kukri_c4606_620/BS00084846_51 7 (6) 7.20 (9.03) DS (4), AUDPC/IT/SR/LAI, IT, LP/IT

MQTL6A.2 186.3–188.46 BS00041481_51/BS00072146_51 2 (2) 8.97 (27.39) IT/DS, IT

MQTL6A.3 199.27–199.95 BS00064548_51/BS00037006_51 3 (3) 4.47 (7.47) AUDPC, AUDPC/DS, DS/IT

MQTL6A.4 219.29–222.16 wsnp_RFL_Contig3136_3092151/
Kukri_c62719_188

2 (2) 8.25 (19.45) IT/AUDPC, DS/IT

MQTL6B 106.76–106.76 wPt-5176/Xgwm193 24 (20) 9.23 (17.24) IT/DS (4), AUDPC/IT/SR/LAI, DS (6), IT/
AUDPC (3), IT/DS/AUDPC, DS/AUDPC, 
SR (3), AUDPC (4), IT

MQTL6D 164.26–175.94 D_GDRF1KQ02FFPXT_243/Xpsr8//
Kukri_c25717_133

2 (2) 2.43 (13.1) AUDPC/IT

MQTL7B.1 116.89–119.52 Excalibur_c12500_116/Ra_
c39042_935

14 (12) 3.82 (6.86) LP/IT, DS (5), SR, AUDPC (2), DS/SR, IT 
(2), FDS

MQTL7B.2 139.91–140.09 IAAV5530/BobWhite_c44404_312 3 (3) 3.34 (9.81) IT, DS/SR, IT

MQTL7D.1 55.24–56.97 Excalibur_c30913_512/
BS00027514_51

6 (5) 11.46 (23.43) DS (4), DS/IT, DS/AUDPC
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A total of 22 MQTLs were predicted on sub-genome 
A, with the highest number of MQTLs (6) on chromo-
some 5A and 4 MQTLs each on chromosomes 2A and 
6A, while chromosomes 1A and 3A each harbored 3 
MQTLs, and chromosome 4A contained only 2 MQTLs. 
For B sub-genome, a total of 33 MQTLs were predicted, 
representing the sub-genome with the highest num-
ber of MQTLs. Chromosome 2B was observed to have 
9 MQTLs which is the highest number of MQTLs on a 
chromosome of this sub-genome, followed by 7 MQTLs 
on chromosomes 4B, 5 MQTLs each on chromosomes 
1B and 3B, and 4 MQTLs on 5B, whereas, chromo-
somes 6B and 7B had the lowest number of MQTLs 
(1 and 2 MQTLs, respectively). Similarly, a total of 12 
MQTLs were predicted on sub-genome D, with chro-
mosome 1D harboring the maximum 3 MQTLs, fol-
lowed by 2 MQTLs each on chromosomes 2D, 3D, and 
7D, whereas each of the chromosomes 4D, 5D, and 6D 
contained only a single MQTL (Fig. 2a). The number of 
QTLs per MQTL varied from ≤ 3 in 34 MQTLs to > 10 
QTLs in the six MQTLs (viz., MQTL2A.1, MQTL2B.4, 
MQTL2B.5, MQTL3B.3, MQTL6B, and  MQTL7B.1) 
(Fig. 2b), whereas the number of QTL studies involved in 
individual MQTLs ranged from ≤ 3 in 37 MQTLs to ≥ 5 
in 17 MQTLs (Fig. 2c).

For the reported MQTLs and QTL hotspots, the CI 
varied from 0 to 11.68  cM, with an average of 1.97  cM 
(Fig.  2d). The average CI of MQTLs and QTL hotspots 
was 6.89-fold less than that of original QTLs, and there 
were substantial differences in the CI reduction among 
different wheat chromosomes. The average CI on chro-
mosomes 4D and 5B was reduced by 35.62 and 19.21-
fold, respectively, followed by 18.99 and 12.78-fold on 
chromosomes 7B and 3A, respectively. The available 
67 MQTLs were also physically anchored on the wheat 
reference genome. The mean physical CI of the MQTLs 
was 24.01  Mb, which ranged from 0.0749 (MQTL2A.2) 
to 216.23  Mb (MQTL5B.2). The PVE (%) of reported 
MQTLs ranged from a minimum of 1.69 to a maximum 
of 56.90, and the LOD score ranged from 2.43 to 35.55. 
The average PVE and the LOD score of the MQTLs were 
16.28% and 9.11, respectively. Salient characteristics 
exhibited by the initial QTLs, MQTLs and their distri-
bution on different wheat chromosomes are shown in 
(Figs. 3 and 4), respectively.

Validation of MQTLs through genome‑wide association 
studies
The physical coordinates of the 67 MQTLs were also 
compared with marker-trait associations (MTAs) 
reported in 20 earlier GWAS conducted for stripe rust 
resistance. Out of these 67 MQTLs, 44 could be validated 
(Fig.  4), in at least one GWAS (involving a total of 297 
MTAs) (Supplementary Table  5). In addition, 11 and 5 
MQTLs could also be verified using MTAs associated 
with leaf and stem rust resistance, respectively, in addi-
tion to stripe rust resistance. The number of MTAs co-
localized with an individual MQTL also varied. It was 
noticed that as many as 15 MQTLs could found corre-
spondence with at least 2 MTAs; of these, MQTL1B.4 
matched with 40 MTAs detected in 3 GWAS, followed 
by MQTL1B.2 and 1B.3 each with 36 MTAs identified 
in 3 GWAS and MQTL1B.1 with 14 MTAs detected in 4 
GWAS.

Yr gene co‑localization with MQTLs
The study of the association of Yr genes with individual 
MQTLs revealed that a total of ten stripe rust resistance 
genes, including Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, 
YrCH52, YrH52 and Yr64, were found to be co-localized 
with fourteen MQTLs predicted in this study (Supple-
mentary Table  6). For instance, MQTL1B.5 co-localized 
with YrH52, and MQTL2D.2 co-localized with Yr16. 
Due to the overlapping nature of a few MQTLs, some 
genes were co-localized with more than one MQTL; 
for instance, MQTL3B.1, MQTL3B.2, MQTL3B.3, and 
MQTL3B.4 each co-localized with Yr30 and MQTL1B.2 
and MQTL1B.3 each co-localized with Yr64. On the other 
hand, there were also a few MQTLs that co-localized 
with more than one Yr genes. For instance, MQTL2B.6 
co-localized with both Yr5 and Yr7, MQTL2B.9 co-local-
ized with both Yr43 and Yr44, and MQTL1B.4 co-local-
ized with both Yr26 and YrCH52, conferring adult plant 
resistance.

Candidate genes identified from the high confidence 
MQTLs (hcMQTLs) and their expression in different wheat 
tissues
To further improve the quality of the MQTLs predicted, 
they were further refined to regions termed as high-con-
fidence MQTLs (hcMQTLs). The hcMQTLs consist of 29 

Table 1 (continued)

MQTL name CI (cM) Flanking markers N QTLs (N studies) LOD score (PVE, %) Component traits

MQTL7D.2 67.54–67.87 D_contig66049_34/Kukri_
c37802_1215

7 (7) 16.71 (23.43) AUDPC, SR, AUDPC/IT/SR/LAI, DS (3), 
AUDPC/IT

IR Infection rate, DS Disease severity, FDS Final disease severity, AUDPC Area under disease progress curve, IT Infection type, SR Stripe rust response, NDVI Normalized 
difference vegetation index, LP Latency period, RT Reaction type, IR Infection response, LAI Leaf area infected, SN Number of stripes per 10  cm2 leaf area
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consensus regions with an average genetic CI and physi-
cal CI of 1.26 cM and 3.51 Mb, respectively. Overall, each 
hcMQTL cluster contained at least three initial QTLs. 
The B genome had 17 hcMQTLs which is the high-
est number of hcMQTLs in a sub-genome. Within the 
B sub-genome, chromosome 3B contained the highest 
5hcMQTLs. In addition, hcMQTL2B.5 had the smallest 
physical interval (0.12 Mb), while hcMQTL3B.1 had the 
largest interval, covering 13.28  Mb. Subsequently, (CG) 

mining within hcMQTLs revealed 1,562 unique gene 
models (299 duplicated genes available from overlap-
ping regions were removed), with hcMQTL3B.1 possess-
ing the highest number of genes (269) and hcMQTL3A.2 
possessing the lowest number (4) of genes (Supplemen-
tary Table 7).

Further, the expression analysis with ERP009837 data-
set revealed 30 differentially expressed candidate genes 
(DECGs), whereas, with the second dataset, ERP013983, 

Fig. 3 Circular diagram representing the features of QTLs and MQTLs associated with yellow rust resistance. The information projected includes, 
(moving inwards) the outermost ring represents consensus map, the positions of MQTLs on the chromosomes, and the innermost ring represents 
the frequency of QTLs involved in each identified MQTL
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revealed a total of 103 DECGs. Overall, a total of 123 
genes were found to be differentially expressed across 
the two expression datasets utilized (Supplementary 
Table  8). Fifty-nine most promising CGs were chosen 
from the 123 DECGs, which encode proteins belonging 
to different classes, such as (i) R-domain containing pro-
teins including protein kinases, (ii) transcription factors 
(TFs) such as WRKY-TF and zinc finger TF, (iii) pro-
teins that participate in oxidation–reduction reactions 
such as cytochrome P450, (iv) cupin superfamily pro-
teins such as germin-like protein, (v) glycosyltransferase 
enzymes such as UDP-glucuronosyl/UDP-glucosyl-
transferase, and (vi) WD40 repeat containing proteins.

In addition, the expression profiles of all 59 DECGs 
could be examined in various wheat tissues and during 
various development stages. The 59 DECGs could be clus-
tered into two classes based on their patterns of expres-
sions in various tissues (Supplementary Fig.  1). Genes in 
Class I exhibited moderate to high expression in the fifth 
leaf blade and flag leaf blade at the flowering stage in com-
parison to the other stages of plant development. Some 

of the Class I genes are as follows: TraesCS1B02G020600 
(hcMQTL1B.1), TraesCS1B02G020700 (hcMQTL1B.1), 
and TraesCS3B02G024500 (hcMQTL3B.1). In addition, 
some genes were significantly expressed in the first leaf 
sheath at the tillering stage. Some of the Class II genes are 
as follows: TraesCS3A02G046000 (hcMQTL3A.3), TraesC-
S3A02G046100 (hcMQTL3A.3), TraesCS3B02G037000 
(hcMQTL3B.1), TraesCS3B02G023700 (hcMQTL3B.1), 
TraesCS4B02G041100 (hcMQTL4B.1), and TraesC-
S4D02G031800 (hcMQTL4D.1).

Discussion
The genetics of quantitative resistance to stripe rust has 
been explored in numerous cultivars of wheat using 
improved QTL mapping methodologies (http:// www. 
wheat qtldb. net/). This has led to the identification of 
a large number of QTLs (> 500 QTLs) associated with 
stripe rust resistance in wheat (Supplementary Table 1). It 
is a normal phenomenon that QTLs discovered using one 
mapping population does not truly work well in a breed-
ing program that involves a different population/parental 

Fig. 4 Distribution of MQTLs on different wheat chromosomes; MQTLs: green, GWAS validated MQTLs: purple, and QTL hotspots: black

http://www.wheatqtldb.net/
http://www.wheatqtldb.net/
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lines [55]. Hence, there was an urgent need to reanalyze 
the already identified QTLs through meta-analysis of 
QTLs, which is one of the most promising methodologies 
for the integration of QTLs and the prediction of stable 
and robust MQTLs that are frequently involved in trait 
variation and can addresses the heterogeneity that exists 
between studies [37, 43].

Overall, meta-analysis combines data from several 
QTL mapping studies in diverse environments and dif-
ferent genetic backgrounds to identify stable, major and 
reliable MQTLs with reduced CIs [56]. MQTL analysis 
has already been conducted for a large number of traits, 
including disease resistance, in different crops, such as 
rice [57, 58], wheat [45, 51, 52, 59, 60], and maize [61]. 
Most recently, MQTLs were predicted for multiple dis-
ease resistance [59], where MQTLs were predicted for all 
three rusts utilizing a comparatively small number of ini-
tial QTLs associated with stripe rust resistance, and very 
few MQTLs associated with only stripe rust resistance 
were identified. The accuracy of the results of the meta-
analysis is generally positively correlated with the num-
ber of initial QTLs utilized.

Therefore, during the present investigation, MQTL 
analysis was performed based on QTLs (published so far) 
conferring stripe rust resistance collected from various 
independent experiments to acquire a better understand-
ing of the regulation of stripe rust resistance in wheat. 
The projection of the original QTLs onto a consensus 
map is the first stage in determining consensus regions 
using meta-analysis. The B sub-genome showed the high-
est marker saturation and thus carried the maximum 
number of QTLs, which is consistent with earlier stud-
ies characterizing genetic diversity and unraveling com-
plex genetic architecture of disease resistance in wheat 
[45, 46, 59, 60]. The low level of polymorphism associ-
ated with sub-genome D could be one explanation for the 
small number of QTLs found on sub-genome D across 
the different QTL mapping studies which is in accord-
ance of previous meta-analyses for disease resistance in 
wheat showing smaller number of QTLs on sub-genome 
D [48, 51, 52, 59, 60]

We believe that this is the most comprehensive col-
lection and meta-analysis of QTL for stripe resistance 
in wheat to date. The entirety of the QTLs here ana-
lyzed can be referred to as the “QTLome” [62] of stripe 
rust resistance in wheat, as it brings together most of the 
loci mapped in the crop until now  in a global analysis. 
In the present study, a larger number of QTLs (75.24%) 
were projected onto the consensus map compared with 
the fewer number of QTLs projected in the previous 
MQTL analyses for leaf rust [45, 46]. A possible reason 
could be the utilization of a dense consensus map dur-
ing the present study. The identification of 67 MQTLs 

from 380 QTLs resulted in a 5.67-fold (380/67) reduction 
in the number of genomic regions or QTLs associated 
with stripe rust resistance in wheat. However, the reduc-
tions of 4.11-fold and 4.27-fold were observed in previ-
ous studies while conducting MQTL analyses for leaf rust 
resistance in wheat [45, 46].

Our study is far more updated and comprehensive, 
and it differs from the previous meta-analysis study con-
ducted for stripe rust resistance [54] in several aspects. 
Some of the major differences between the previous 
study and the current study in terms of data used and 
results obtained are as follows- (i) the current study used 
505 QTLs that were collected from 101 mapping stud-
ies, in contrast to the earlier study [54], which used only 
353 QTLs that were collected from just 75 studies. The 
number of initial QTLs utilized for meta-QTL analysis 
has been found to be significantly and positively cor-
related with the accuracy of the statistical findings [43, 
44]; (ii) in contrast to the earlier study, where a consen-
sus map was created using only 76,753 markers [54], the 
current study involved a dense consensus map involving 
138,574 markers; (iii) in contrast to the previous study, 
where only 184 QTLs could be grouped into the MQTLs, 
the use of a dense consensus map during the present 
study enabled the inclusion of an increased number of 
QTLs (309 QTLs) into MQTLs; (iv) further, as many as 
44 MQTLs predicted during the present study were vali-
dated with MTAs available from GWAS in contrast to the 
earlier study where no such efforts for validating MQTLs 
were made [54]. Validation of MQTLs with GWAS-based 
MTAs suggests that the impact of these genomic regions 
on stripe rust resistance  may be less limited by genetic 
background; (v) we observed an average CI of MQTLs 
of 1.97  cM and a 6.89-fold reduction in CI of initial 
QTLs after meta-analysis in the current study; no such 
statistics were reported in the previous study [54]; (vi) 
we observed significant reduction (i.e., 5.67 fold) in the 
number of genomic regions associated with stripe rust 
resistance after meta-analysis, this is in contrast to earlier 
study [54], where only 3.5-fold reduction was observed; 
(vii) rather than analyzing all available MQTLs (irre-
spective of their importance) for CGs as done in previ-
ous study [54], we used a set of criteria to prioritize some 
hcMQTLs for CG mining, which enabled the identifica-
tion of  promising CGs; and (viii) in the current study, 
we examined the patterns of important genes (showing 
differential expression under disease infection) in wheat 
tissues at various developmental stages. This analysis 
allowed us to distinguish CGs predicted to be associated 
with seedling and adult plant resistance. A detailed com-
parison of both studies is provided in the Supplementary 
Table 9.
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Even after several years of research in the search for 
QTLs related to stripe resistance in wheat, the reports 
continue to publish at an astounding rate. For example, 
11 new mapping studies have been published during 
the final writing and the peer-review period of this arti-
cle [63–73] reporting the identification of as many as 
83 QTLs associated with different parameters of stripe 
rust resistance in wheat. These studies could not be 
included in the main analysis, but we compiled infor-
mation on these new QTLs (Supplementary Table  10) 
to provide researchers with up-to-date information on 
QTLs associated with stripe rust resistance for use in 
other genetic and basic studies, such as QTL fine map-
ping and cloning. Furthermore, to determine whether 
they are novel QTLs or just parts of MQTLs identified 
in this study, we performed a preliminary analysis by 
comparing the physical positions of the QTLs with the 
physical coordinates of MQTLs. As many as 13 QTLs 
were found to overlap with 19 MQTLs on the following 
six chromosomes: 2B, 3B, 4B, 5A, 5B, and 6A (Supple-
mentary Table 10).

Further, most of the MQTLs identified in the present 
study governed numerous component traits/param-
eters indicating either the existence of pleiotropic genes 
or a close interaction between genes for distinct param-
eters. This may be attributable to a bias in the detection 
of stripe rust resistance due to the inclusion of associ-
ated traits, as previously demonstrated in the MQTL 
study of leaf rust resistance in wheat [46]. In the present 
study, 65.67% of the MQTLs could be validated with ear-
lier GWAS reports. Furthermore, the earlier reports of 
validation of MQTLs with GWAS include results that are 
similar to the results of the present study, with 60.31% 
and 62.79% MQTLs validated with GWAS [59, 60]. These 
widely different results may be attributed to the nature 
of materials used for interval mapping (subsequently uti-
lized for meta-analysis) and GWAS [28].

Co‑localization of MQTLs with stripe rust resistance genes
A search for co-localization of stripe rust resistance 
genes and MQTLs was conducted to support the loca-
tion of MQTLs discovered in the present investigation. 
As per the literature, 83 stripe rust resistance genes 
have been mapped and documented in wheat (https:// 
shigen. nig. ac. jp/ wheat/ komugi/ genes/ symbo lClas 
sList Action. do? geneC lassi ficat ionId= 222), and a few of 
them have also been cloned and identified to  encodes 
proteins for NBS-LRR and represents “R genes” [74, 
75]. A total of ten stripe rust resistance genes (viz., 
Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, YrCH52, YrH52 
and Yr64) were found to be co-localized with fourteen 
MQTLs; for instance, Yr26, Yr5 and Yr30 co-local-
ized with MQTL1B.4, MQTL2B.6 and MQTL3B.1 on 

chromosomes 1B, 2B, and 3B, respectively. Occasion-
ally, a single Yr gene is linked to multiple MQTLs, nota-
bly on chromosomes 1B and 3B due to overlapping of 
physical intervals of a few MQTLs. Further, MQTL1B.4, 
co-localized with two stripe rust genes (Yr26 and 
YrCH52) conferring all-stage resistance to stripe rust in 
wheat, thus confirming the usefulness of using saturated 
consensus maps for MQTL analysis.

Law [76] reported the location of Yr7 on chromosome 
2BL, and McIntosh [77] showed its close association with 
the stem rust resistance gene Sr9g. In addition, linkage 
studies on the stripe rust resistance gene YrSp [78], which 
is also located on the long arm of chromosome 2B, with 
Yr5 and Yr7 demonstrated that YrSp is also allelic to both 
Yr5 and Yr7 [79]. Both genes confer all-stage resistance 
or seedling resistance and are thought to have evolved 
from Triticum aestivum L. subsp. spelt a (L.). However, in 
this study, MQTL2B.6 co-localized with both the genes 
Yr5 and Yr7. Additionally, the gene Yr43 resistance is 
race specific, located on chromosome 2BL, and should be 
used in combination with other genes or QTLs for either 
all-stage resistance or durable HTAP resistance. Cheng 
and Chen [80] reported that Yr43 is linked to another 
stripe rust resistance gene, previously identified as YrZak, 
in cultivar Zak, later designated as Yr44. In this study, 
MQTL2B.9 was found to be co-localized with both genes 
(Yr43 and Yr44), indicating an association between them.

Candidate genes within the hcMQTLs and their association 
with stripe rust resistance
Candidate gene mining within 29 hcMQTLs revealed 
1,562 unique gene models, which also included 123 
DECGs. Fifty-nine promising CGs were chosen from 
these 123 DECGs based on the information available 
from the literature (Table 2). The roles of some of these 
genes in providing resistance to stripe rust may be dis-
cussed as follows: (i) NBS-LRR domain-containing genes 
encode the proteins that are also encoded by cloned Yr 
genes, such as  Yr5 and Yr10, as mentioned earlier [74, 
75]. (ii) Protein kinase family proteins play a crucial role 
in enhancing disease resistance in wheat. Receptor-like 
kinases (RLKs) and plant protection kinases regulate the 
detection and activation of a wide range of developmen-
tal and physiological signals, including those related to 
defense and symbiosis [81, 82]. (iii) The wheat WRKY 
TFs, TaWRKY49 and TaWRKY62 are responsible for dif-
ferential HT seedling-plant resistance to  stripe rust in 
wheat. (iv) Roles of different zinc finger-containing pro-
teins have been widely discussed in the literature [83]; 
furthermore, it has also been inferred that the presence 
of zinc finger domains, in combination with NBS-LRR 
domains in resistance proteins, can reflect a major func-
tion of these domains in host–pathogen interactions [83]. 

https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassListAction.do?geneClassificationId=222
https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassListAction.do?geneClassificationId=222
https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassListAction.do?geneClassificationId=222
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Table 2 Most promising candidate genes associated with stripe rust resistance

hcMQTL Gene Position (bp) Function description

MQTL1A.1 TraesCS1A02G040400 22,287,727–22,291,553 RNA recognition motif domain

MQTL1A.1 TraesCS1A02G041400 22,656,561–22,657,221 Proteinase inhibitor I13, potato inhibitor I

MQTL1B.1 TraesCS1B02G020600 9,592,538–9,599,744 Protein kinase domain

MQTL1B.1 TraesCS1B02G020700 9,592,944–9,596,685 Protein kinase domain

MQTL2B.1 TraesCS2B02G010500 5,684,671–5,689,444 WRKY domain

MQTL2B.1 TraesCS2B02G012000 6,178,676–6,180,145 UDP-glucuronosyl/UDP-glucosyltransferase

MQTL2B.4 TraesCS2B02G603800 785,885,897–785,899,606 Pentatricopeptide repeat

MQTL2B.5 TraesCS2B02G605000 786,229,219–786,233,560 C2 domain

MQTL3A.2 TraesCS3A02G043800 23,830,054–23,831,765 ABA DEFICIENT 4-like

MQTL3A.3 TraesCS3A02G046000 24,611,605–24,612,579 Proteinase inhibitor I12, Bowman-Birk

MQTL3A.3 TraesCS3A02G046100 24,678,221–24,679,061 Proteinase inhibitor I12, Bowman-Birk

MQTL3A.3 TraesCS3A02G046300 24,748,236–24,748,973 Proteinase inhibitor I12, Bowman-Birk

MQTL3B.1 TraesCS3B02G012700 5,789,746–5,790,925 Protein kinase domain

MQTL3B.1 TraesCS3B02G015000 6,294,081–6,303,451 WD40 repeat

MQTL3B.1 TraesCS3B02G015400 6,390,297–6,393,323 Protein kinase domain

MQTL3B.1 TraesCS3B02G016800 6,956,995–6,958,436 Transferase

MQTL3B.1 TraesCS3B02G017200 7,073,390–7,077,378 Glycosyl transferase, family 14

MQTL3B.1 TraesCS3B02G017800 7,371,289–7,375,600 Pentatricopeptide repeat

MQTL3B.1 TraesCS3B02G018800 8,024,553–8,030,703 Transmembrane protein DDB_G0292058-like

MQTL3B.1 TraesCS3B02G019300 8,133,504–8,137,586 Methyltransferase domain

MQTL3B.1 TraesCS3B02G021900 9,396,614–9,400,783 Glycosyltransferase 61

MQTL3B.1 TraesCS3B02G023700 10,198,656–10,202,090 Glycosyltransferase 61

MQTL3B.1 TraesCS3B02G024400 10,406,614–10,407,459 Gnk2-homologous domain

MQTL3B.1 TraesCS3B02G024500 10,562,122–10,573,523 Protein kinase domain

MQTL3B.1 TraesCS3B02G030500 13,961,374–13,964,727 Protein kinase domain

MQTL3B.1 TraesCS3B02G035200 17,187,124–17,190,917 Cupredoxin

MQTL3B.1 TraesCS3B02G036700 17,974,582–17,975,037 Proteinase inhibitor I12, Bowman-Birk

MQTL3B.1 TraesCS3B02G037000 18,000,322–18,001,131 Proteinase inhibitor I12, Bowman-Birk

MQTL3B.5 TraesCS3B02G158300 153,606,441–153,609,620 Protein kinase domain

MQTL4A.1 TraesCS4A02G025300 17,387,070–17,390,451 Very-long-chain 3-ketoacyl-CoA synthase

MQTL4A.1 TraesCS4A02G026300 18,115,053–18,124,734 Protein kinase domain

MQTL4A.1 TraesCS4A02G026600 18,265,541–18,269,206 Major sperm protein (MSP) domain

MQTL4A.1 TraesCS4A02G026700 18,271,858–18,272,388 Protein kinase domain

MQTL4A.1 TraesCS4A02G029400 21,624,588–21,629,530 P-loop containing nucleoside triphosphate hydrolase

MQTL4A.2 TraesCS4A02G382700 660,790,453–660,795,726 Protein kinase domain

MQTL4A.2 TraesCS4A02G382900 660,916,337–660,921,619 Protein kinase domain

MQTL4B.1 TraesCS4B02G041100 28,414,426–28,418,170 Glycoside hydrolase family 1

MQTL4B.1 TraesCS4B02G042300 28,949,360–28,960,436 Oxysterol-binding protein

MQTL4B.1 TraesCS4B02G042600 29,709,859–29,715,180 AAA + ATPase domain

MQTL4B.1 TraesCS4B02G047100 34,275,331–34,278,683 Protein kinase domain

MQTL4B.7 TraesCS4B02G359300 649,602,163–649,607,404 WD40 repeat

MQTL4D.1 TraesCS4D02G030800 14,514,652–14,515,326 Germin

MQTL4D.1 TraesCS4D02G031600 14,842,844–14,843,518 Germin

MQTL4D.1 TraesCS4D02G031800 14,851,339–14,852,013 Germin

MQTL4D.1 TraesCS4D02G031900 14,857,918–14,858,592 Germin

MQTL4D.1 TraesCS4D02G032000 14,862,810–14,863,484 Germin

MQTL4D.1 TraesCS4D02G032200 14,914,628–14,915,302 Germin

MQTL5A.5 TraesCS5A02G305000 513,959,128–513,961,326 UDP-glucuronosyl/UDP-glucosyltransferase

MQTL5A.5 TraesCS5A02G305100 514,003,067–514,005,001 UDP-glucuronosyl/UDP-glucosyltransferase



Page 13 of 19Kumar et al. BMC Genomics          (2023) 24:259  

(v) The gene TaCYP72A encoding cytochrome P450 was 
found to contribute to host resistance against Fusarium 
head blight in wheat [84]. (vi) Plant glycoproteins known 
as germin-like proteins (GLPs) are water-soluble and are 
members of the cupin superfamily. It is well known that 
GLPs play a significant role in how plants react to vari-
ous abiotic and biotic stresses, including pathogens [85]. 
(vii) A gene encoding WD40-repeat protein was reported 
to function in a histone deacetylase complex to fine-tune 
defense responses to powdery mildew in wheat [86].

Seedling resistance (SR) and adult plant resistance (APR) 
are the two basic types of disease resistance employed in 
breeding programs and examining the expression of CGs 
in various tissues and developmental stages can help us to 
identify whether these CGs have a role in SR and/or APR. 
During the present study, some genes showed significant 
expression at the seedling stage. Some of these genes 
(viz., TraesCS3A02G046000, TraesCS3A02G046100, and 
TraesCS3B02G037000) encode proteinase inhibitor pro-
teins that are known to confer resistance against several 
biotic stresses, including fungal pathogens [87]. Another 
gene, TraesCS4D02G031800, encodes a germin-like pro-
tein that is supposed to play important roles in the regu-
lation of resistance (by regulating superoxide dismutase 
activity and the ability to activate the jasmonic acid path-
way) to different diseases in plants [85]. The importance 
of plant secondary metabolite such as glycosyltransferases 
(e.g., TraesCS3B02G023700) in plant–pathogen interac-
tions  has also been reported. Glycosyltransferases are 
known to mediate the hypersensitive responses of plants 
against fungal infection [88]. Similarly, some genes exhib-
ited significant expression at the reproductive stage, 
such as TraesCS1B02G020600, TraesCS1B02G020700, 
and TraesCS3B02G024500. All three genes, viz., 
TraesCS1B02G020600, TraesCS1B02G020700 and 
TraesCS3B02G024500 encode protein kinases that help 
plants sense various pathogens and activate immunity 
responses and are also known to be involved in massive 

transduction pathways upon perception of a pathogen 
[89]. Using various techniques, including over-expres-
sion, gene editing, knockout procedures, or CG-based 
association mapping, some of the significant CGs discov-
ered in the current study may be validated or functionally 
characterized.

MQTL‑assisted breeding for stripe rust resistance
The major application of MQTL-assisted breeding is 
the development of better cultivars with increased dis-
ease resistance. Furthermore, major breeding initiatives 
seek to breed for long-term resistance. MQTLs with 
reduced CIs and each with multiple QTLs have been 
recommended for breeding in several earlier studies for 
different traits such as grain yield and component traits 
in rice [24], disease resistance in maize [90], anthesis 
date in wheat [91], and seed quality in soybean [92, 93]. 
Among the hcMQTLs selected for functional charac-
terization, some MQTLs were also chosen for possible 
utilization in breeding based on the following criteria: 
(i) CI < 2  cM, (ii) involvement of at least 5 initial 
QTLs, (iii) PVE > 12%, and (iv) LOD score > 5. These 
selected MQTLs (termed as breeder’s MQTLs) included 
the following:- MQTL1B.1, MQTL2A.1, MQTL2B.4, 
MQTL2B.5, MQTL3B.3, MQTL3B.5, MQTL4A.1, MQTL4A.2, 
MQTL5B.3, MQTL6B, MQTL7D.1, and MQTL7D.2. The 
number of initial QTLs involved in these MQTLs ranged 
from a minimum of 5 to a maximum of 24 QTLs, PVE 
values of individual MQTLs ranged from 12.18 to 26.96% 
and LOD scores ranged from 5.65 to 18.18. Some of these 
MQTLs included QTLs for both SR and APR. The com-
bination of both the SR and APR has also been found to 
provide durable resistance against rusts in wheat [94].

Concluding remarks
In the present study, efforts have been made by us to under-
stand the complex quantitative genetic architecture of stripe 
rust resistance in wheat by using meta–analysis approach. 

Table 2 (continued)

hcMQTL Gene Position (bp) Function description

MQTL5A.5 TraesCS5A02G306100 514,451,862–514,453,496 S-adenosyl-L-methionine-dependent methyltransferase

MQTL5A.5 TraesCS5A02G306200 515,494,843–515,496,141 Myc-type, basic helix-loop-helix (bHLH) domain

MQTL5B.4 TraesCS5B02G539800 695,480,381–695,486,142 Leucine-rich repeat

MQTL6B TraesCS6B02G041900 25,911,394–25,916,811 NB-ARC 

MQTL6B TraesCS6B02G051800 30,965,469–30,968,216 Phospholipid/glycerol acyltransferase

MQTL6B TraesCS6B02G054100 34,219,265–34,220,922 WD40 repeat

MQTL7B.1 TraesCS7B02G013300 9,754,094–9,760,088 Glycosyl transferase, family 31

MQTL7B.2 TraesCS7B02G019600 16,833,162–16,835,197 Rhodanese-like domain

MQTL7D.1 TraesCS7D02G022600 10,593,989–10,595,471 Zinc finger, RING-type

MQTL7D.2 TraesCS7D02G073100 42,835,938–42,838,577 Cytochrome P450
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Our meta-analysis led to the identification of 67 MQTLs, 
2 QTL hotspots and 24 singletons associated with stripe 
rust resistance. More than half of these MQTLs were veri-
fied through GWAS-based SNPs/MTAs. It was revealed 
that many of these MQTLs were found to be co-localized 
with as many as ten major resistance genes. Among the 67 
MQTLs, 29 hcMQTLs were selected and investigated for 
the detection of CGs. The most promising MQTLs (viz., 
MQTL1B.1, MQTL2A.1, MQTL2B.4, MQTL2B.5, MQTL3B.3, 
MQTL3B.5, MQTL4A.1, MQTL4A.2, MQTL5B.3, MQTL6B, 
MQTL7D.1, and MQTL7D.2) identified in this study may 
facilitate marker-assisted breeding for stripe rust resist-
ance in wheat. In addition, information on markers flank-
ing the MQTLs can be utilized in genomic selection models 
to increase the prediction accuracy for stripe rust resistance. 
Future basic strategic  research, including cloning and func-
tional characterization, is suggested for as many as 59 of the 
123 DECGs. These CGs can also be utilized for enhancing the 
wheat resistance against stripe rust after in vivo confirmation/
validation using one or more of the following methods: gene 
cloning, reverse genetic methods, and omics approaches.

Methods
QTLs for stripe rust and preparation of input files
An extensive search for publications reporting QTLs 
associated with stripe rust resistance was performed 
in wheat using Google Scholar (https:// schol ar. google. 
com/) and other available data repositories. This search 
was further supplemented by a recently developed 
QTL database [http:// wheat qtldb. net/; 23]. The follow-
ing information was collected from each QTL mapping 
study: (a) type of mapping population (e.g.,  F2:3, recombi-
nant inbred lines and doubled haploid) and their parents, 
(b) size of the population, (c) different disease resistance 
parameters, such as infection rate (IR), disease severity 
(DS), final disease severity (FDS), area under the disease 
progress curve (AUDPC), infection type (IT), stripe rust 
response (SR), normalized difference vegetation index 
(NDVI), latency period (LP), reaction type (RT), infection 
response (IR), leaf area infected (LAI), number of stripes 
per 10  cm2 leaf area (SN), (d) pathotype used for pheno-
typing, (e) method of QTL mapping, (f ) position of QTLs 
and markers flanking the QTLs, (g) logarithm of odds 
(LOD) scores and (h) R2 values of the individual QTLs. 
For the meta-analysis, only QTLs with all of the neces-
sary data were selected.

Construction of the high‑density consensus genetic map
For the construction of the consensus map, the R package 
‘LPmerge’ was utilized [95]; for this purpose, the follow-
ing integrated genetic maps were used as the reference 
maps: (i) the ‘ITMI_SSR map’ with 1406 loci [96] (this 
map was created by combining 1,184 previously available 

loci, including 915 RFLPs and 269 SSR markers, with 222 
SSR markers developed during the same study); (ii) the 
‘Wheat, Consensus SSR map, 2004’ with 1235 marker loci 
[97] (this map was developed by combining SSR mark-
ers from different research groups including the Wheat 
Microsatellite Consortium, GDM, GWM, CFD, CFA, 
and BARC); (iii) an integrated map for durum wheat with 
30,144 markers [98] (this map included 26,626 SNPs and 
791 SSRs); (iv) the ’Illumina iSelect 90 K SNP Array-based 
genetic map’ with 40,267 loci [99] (this map was based on 
40,267 SNPs available from the 81,587 markers mapped 
using wheat 90 K Infinium iSelect SNP array); and (v) the 
‘AxiomR, Wheat 660  K SNP array-based genetic map’ 
with 119,566 markers [100] (this map included 119,001 
SNP markers derived from the Wheat660K SNP array, as 
well as 565 previously available SSR, DArT, STS, SRAP, 
and ISSR markers; this map has high collinearity with 
the 90  K and 820  K consensus genetic maps, and it is 
also consistent with the recently released wheat whole 
genome assembly). For the construction of the consensus 
map, markers flanking individual QTLs were also consid-
ered. There were hundreds of shared markers present in 
these genetic maps, albeit at different genetic positions, 
which were considered when ordering the markers in the 
consensus chromosomal maps (Supplementary Table 11). 
The steps involved in the construction of consensus map 
are well-described in a recent study [101].

QTL projection on the consensus map
The genetic map file and QTL information file from each 
study were prepared and utilized as input data text files 
for QTL projection using BioMercator V4.2 [102]. This 
software requires a collection of the following differ-
ent descriptions characterizing each collected QTL: the 
genetic position of the QTL (peak position and CI), LOD 
score, R2 value, the trait associated with the QTL and the 
size of the mapping population utilized for identification 
of the QTLs. When there was no CI available for a QTL, 
the CI (95%) was estimated using the population-specific 
equations provided below [103, 104].

According to the statistical approach utilized in the 
software, the input mapping studies are expected to be 
independent from each other. Repeated time and place 
QTL mapping tests usually revealed duplicate QTLs for 
the same parameter in a few publications. To avoid giv-
ing such QTLs too much weight in the meta-analysis, we 

For the F2∶3 and Backcross populations, CI (95%) = 530∕(R2 × N)

For the RIL population, CI (95%) = 163/(R2
×N)

For the DH population, CI (95%) = 287/(R2
×N)

https://scholar.google.com/
https://scholar.google.com/
http://wheatqtldb.net/
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only kept the QTL with the maximum contribution to 
the total phenotypic variation. The QTLProj command 
available in the software permitted the homothetic pro-
jection of the peak position and the CIs of the individual 
QTLs on the consensus map. It is based on a scaling rule 
between the flanking markers of QTLs on their actual 
maps and their location on the consensus map [102, 105].

Prediction of MQTLs through meta‑analysis
Meta-analysis of QTLs was performed using the same 
software BioMercator V4.2 for each individual chromo-
some, separately. When conducting the analysis, two 
distinct approaches were used, each of which was deter-
mined by the number of QTLs that were available for 
each chromosome. If there were less than ten QTLs on a 
single chromosome, the technique described by Goffinet 
and Gerber [39] was employed; if there were more than 
ten QTLs on a single chromosome, the second strategy 
proposed by Veyrieras et  al. [38] was used. In the first 
approach, the model was selected based on their lowest 
Akaike information criterion (AIC) values. In the sec-
ond approach, the best model was selected from a list of 
models that included AIC, AIC3, corrected AIC, Bayes-
ian information criterion (BIC) and average weight of 
evidence (AWE) models. The model was considered best 
fit, if it possesses the lowest criteria in at least three of 
the models.

Physical mapping of the MQTLs, their validation using 
GWAS and candidate gene mining
The sequence information of the linked markers flanking 
the MQTLs was obtained from the publicly available data-
bases like GrainGenes (https:// wheat. pw. usda. gov/ GG3) 
or CerealsDB (https:// www. cerea lsdb. uk. net/ cerea lgeno 
mics/ Cerea lsDB/ index NEW. php) databases. BLASTN 
searches against the Wheat Chinese Spring IWGSC Ref-
Seq v1.0 genome assembly in the EnsemblPlants data-
base (http:// plants. ensem bl. org/ index. html) were used to 
determine the physical positions of markers. The physi-
cal positions of some of the SNP markers could also be 
obtained from the online database “JBrowse-WHEAT 
URGI database” (https:// urgi. versa illes. inra. fr/ jbrow seiwg 
sc/). The physical positions of the markers flanking the 
MQTLs were considered physical/genomic coordinates of 
the MQTLs.

Furthermore, the data on stripe rust resistance of 20 
GWAS published during 2014–2021 were collected and 
utilized to verify the efficacy of the MQTLs. A summary 
of these GWAS is provided in Supplementary Table 12. 
The phenotypic data analyzed in these GWAS were col-
lected from 13 different countries, with population sizes 
varying from 141 to 23,346, involving different types of 
wheat, such as durum, spring, winter wheat, and mixed 

populations of different kinds of wheat. These pan-
els were genotyped with GBS, DArT-seq, and different 
types of SNP assays, such as 9  K iSelect SNP genotyp-
ing array, 20 K Illumina iSelect DNA array, 35 K Axiom 
array, 90  K Illumina iSelect SNP array, and 660  K SNP 
array. Similar to ascertaining the physical coordinates of 
MQTLs, the physical positions of the significant SNPs 
and/or marker–trait associations (MTAs) identified in 
these GWAS were obtained either by BLASTN searches, 
databases or source papers. Given that wheat has a rea-
sonably high linkage disequilibrium (LD) decay distance 
(about 5  Mb), the MTAs found through GWAS within 
5 Mb genomic regions close to a MQTL were accepted 
as co-located [55].

Furthermore, some high-confidence MQTLs (hcMQTLs) 
were selected and investigated for the identification of 
available CGs. These hcMQTLs were chosen based on the 
following criteria: (i) involvement of at least 3 initial QTLs, 
(ii) occupying physical distance < 15  Mb, and (iii) genetic 
distance < 5  cM. The annotated reliable CGs (High Con-
fidence Genes v1.1) within the physical interval of each 
hcMQTL were retrieved using the BioMart tool of the 
Ensembl Plants database, and their functional annotations 
were investigated (https:// wheat- urgi. versa illes. inra. fr/ Seq- 
Repos itory/ Annot ations).

Expression analysis of the genes available from hcMQTLs
Two expression datasets, NCBI-ID ERP013983 and 
ERP009837 [36, 106], were used to identify poten-
tial genes that were differentially expressed within the 
hcMQTL intervals based on experiments reported at 
ExpVIP (http:// www. wheat- expre ssion. com) [107]. The 
ERP009837 dataset consists of differential expression 
data of 7-day-old seedlings of wheat variety N9134 inoc-
ulated with Chinese Pst race CYR 31 with leaf samples 
collected at 24, 48, and 72 h after inoculation. Leaf sam-
ples collected from un-inoculated plants were consid-
ered controls.

The ERP013983 dataset contains differential expression 
data from two genotypes, Vuka (susceptible) and Avocet-
Yr5 (resistant), inoculated with Pst strain 87/66 at the 
three-leaf stage. The leaf samples were taken at 0, 1, 2, 3, 
5, 7, 9, and 11 days post-inoculation (dpi) in the suscep-
tible genotype Vuka but only for five days in the resistant 
line Avocet-Yr5 (at 0, 1, 2, 3, and 5 dpi). The data on gene 
expression in expVIP were reported as log2 transformed 
TPM (transcripts per million) values. It is important to 
mention that only genes with twofold or more up-regu-
lation/down-regulation; calculated by comparing TPM 
values under stress vs. control) were considered as dif-
ferentially expressed CGs (DECGs). The results of such 
DECGs were visualized using the web program Heat-
mapper, which may be found at http:// www. heatm apper. 

https://wheat.pw.usda.gov/GG3
https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/indexNEW.php
https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/indexNEW.php
http://plants.ensembl.org/index.html
https://urgi.versailles.inra.fr/jbrowseiwgsc/
https://urgi.versailles.inra.fr/jbrowseiwgsc/
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
http://www.wheat-expression.com
http://www.heatmapper.ca/expression/
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ca/ expre ssion/. Furthermore, the transcriptomics data 
from the Azhurnaya 209-sample RNA sequencing pro-
ject, which investigated the developmental timeline of a 
wheat cultivar using a large set of samples from different 
tissue types [107], were then used in the present study to 
analyze the expressions of the reported DECGs in differ-
ent wheat tissues. TPM values were used to assess the 
level of expressions of CGs within the hcMQTL regions, 
which was displayed on the heat map using Heatmapper.

Identification of major Yr genes colocalizing with MQTLs
The nucleotide sequences of the genes or sequences of 
markers linked with Yr genes were extracted from the 
GrainGenes database and BLASTed against the wheat 
reference genome that is accessible in the EnsemblPlants 
database. The physical positions of the genes once retrieved 
were compared with the physical coordinates of MQTLs to 
ascertain their co-localization with the MQTLs.
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