
Cao et al. BMC Genomics (2023) 24:238
https://doi.org/10.1186/s12864-023-09340-2

SOFTWARE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomics

pandasGWAS: a Python package for easy
retrieval of GWAS catalog data
Tianze Cao1†, Anshui Li2† and Yuexia Huang1*

Abstract

Background Since the NHGRI-EBI Catalog of human genome-wide association studies was established by NHGRI in
2008, research on it has attracted more and more researchers as the amount of data has grown rapidly. Easy-to-use,
open-source, general-purpose programs for accessing the NHGRI-EBI Catalog of human genome-wide association
studies are in great demand for current Python data analysis pipeline.

Results In this work we present pandasGWAS, a Python package that provides programmatic access to the NHGRI-
EBI Catalog of human genome-wide association studies. Instead of downloading all data locally, pandasGWAS
queries data based on input criteria and handles paginated data gracefully. The data is then transformed into multiple
associated pandas.DataFrame objects according to its hierarchical relationships, which makes it easy to integrate into
current Python-based data analysis toolkits.

Conclusions pandasGWAS is an open-source Python package that provides the first Python client interface to the
GWAS Catalog REST API. Compared with existing tools, the data structure of pandasGWAS is more consistent with the
design specification of GWAS Catalog REST API, and provides many easy-to-use mathematical symbol operations.

Keywords Database, Repository, RESTful, Python, GWAS, Pandas

Background
The GWAS Catalog was founded by the NHGRI in 2008,
which is a consistent, searchable, visualized and freely
available database of all published genome-wide associa-
tion studies [1]. Currently, there are three ways to access
this data: (i) via the graphical search interface supported
by official website, (ii) via downloading the offline data
dump provided by the official website, (iii) via GWAS
Catalog REST API hosted by official website. The first
way is the most friendly to beginners, and can obtain the
latest data, but it can only be operated manually, which

is not convenient for automation based on programming.
The second method can obtain all data locally, but can-
not guarantee that the data is up-to-date at the time of
research. The third method combines the advantages
of the previous methods, but the steps of acquiring and
parsing the data are tedious. Firstly, there are many URL
parameters for requesting data, and beginners must read
the documentation deeply to understand how to assem-
ble the correct parameters. Secondly, the structure of the
response data is also complex. Based on different request
parameters, response will be in normal JSON format or
JSON + HAL format [2]. At the same time, the format
of data may also be paginated or not, or it may be in the
form of Array or not.

Implementation
Retrieving data from server
pandasGWAS allows programmatic access to the GWAS
Catalog data which leverages GWAS Catalog REST API

†Tianze Cao and Anshui Li contributed equally to this work.

*Correspondence:
Yuexia Huang
yxhuang@hznu.edu.cn
1 School of Mathematics, Hangzhou Normal University,
Hangzhou 311121, China
2 Department of Statistics, Shaoxing University, Shaoxing 312000, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-023-09340-2&domain=pdf
http://orcid.org/0000-0001-9298-5342

Page 2 of 7Cao et al. BMC Genomics (2023) 24:238

[3]. HTTP response of GWAS Catalog REST API are cat-
egorized into Study, Association, Variant and EFO Trait.
pandasGWAS provides various functions for the above 4
data types in the module get_associations, get_variants,
get_traits, and get_studies, respectively. pandasGWAS
assembles the requested URL based on the specific called
function and the parameters passed in. If the raw data of
response is in the form of JSON + HAL, pandasGWAS
will automatically extract valid data from the "_embed-
ded" property. If the data is paginated, pandasGWAS will
in turn request data from other pages and aggregate all
the data. For friendly interactive features, pandasGWAS
uses the progressbar2 module to visualize this progress
[4]. The processed response data is converted into an
instance of the pandasGWAS custom class based on the
called function (Fig. 1).

Convenient set operations
In the module set_operation, pandasGWAS provides a
variety of set operation methods for analysis between
objects of the same type: bind(), union(), intersect(),
set_diff(), set_xor() and set_equal(). pandasGWAS also
supports set operations based on mathematical symbol
operations: + (bind), &(intersect), -(set_diff), ^(set_xor),
|(union), = = (set_equal).

Helper functions for accessing web links
In the module Browser, pandasGWAS provides a set
of helper functions for accessing web links, such as
PubMed(open_in_pubmed()), dbSNP(open_in_dbsnp()),
GTEx project(open_in_gtex()) and the GWAS Catalog
Web interface itself(open_study_in_gwas_catalog(), open_
variant_in_gwas_catalog(), open_trait_in_gwas_catalog(),
open_gene_in_gwas_catalog(), open_region_in_gwas_cat-
alog() and open_publication_in_gwas_catalog()).

Class structure of data entities
The class Study contains 7 properties: studies, platforms,
ancestries, genotyping_technologies, ancestral_groups,
country_of_origin and country_of _recruitment. The
types of these properties are pandas.DataFrame [5].
When the processed data is passed into constructor of
Study, constructor parses data into the property studies
of which columns correspond one-to-one with prop-
erties of Study in GWAS Catalog REST API. The col-
umn accessionId is an identifier in the Study, which can
be used to find a unique Study on the official website.
Because platforms, ancestries, and genotypingTechnolo-
gies listed in studies are of type Array, they are flattened
and assigned to properties with the same name to facili-
tate future data analysis. The value in the corresponding

Fig. 1 Architecture of pandasGWAS

Page 3 of 7Cao et al. BMC Genomics (2023) 24:238

column accessionId is also assigned to the property plat-
forms, which acts as a foreign key of relational database
between the property platforms and the property studies,
and also applies to the property ancestries and the prop-
erty genotyping_technologies. Based on the same design
principle, pandasGWAS creates the column ancestryId
as the primary key of property ancestries, and extracts
the corresponding values and assigns them to proper-
ties ancestral_groups, countries_of_origin and coun-
tries_of_recruitment respectively (Fig. 2). The properties
of Classes Association (Fig. 3), Variant (Fig. 4A-E) and
Trait (Fig. 4F) are designed with the same philosophy as
the Class Study.

Results and discussion
Example 1: a real world use case
To demonstrate the utility of pandasGWAS, we use
the work of Light et al. as an example [6]. In this work,
the authors started by selecting variants previously
reported in the GWAS Catalog for autoimmune dis-
ease. It can be easily implemented using pandasGWAS.
Firstly, we load the required modules in the Python
console.

 > > > from pandasgwas.get_studies import get_studies
 > > > from pandasgwas.Browser import open_in_

pubmed
 > > > from pandasgwas.get_associations import get_

associations

Fig. 2 Class structure of Study. a columns of the property studies in class Study; b columns of the property platforms in class Study; c columns of
the property ancestries in class Study; d columns of the property genotyping_technologies in class Study; e columns of the property ancestral_
groups in class Study; f columns of the property country_of_origin in class Study; g columns of the property country_of_recruitment in class Study

Page 4 of 7Cao et al. BMC Genomics (2023) 24:238

Then we can get studies in the GWAS Catalog by autoim-
mune disease.

 > > > my_studies = get_studies(efo_trait = ’autoim-
mune disease’)

We can use the function len () to confirm how many
studies were retrieved.

 > > > len(my_studies)
We can know the Study identifier easily.
 > > > my_studies.studies [’accessionId’]
To browse related study directly on PubMed, we can

use the helper function open_in_pubmed ().
 > > > my_studies.studies [’publicationInfo.pubmedId’].

apply(lambda x:open_in_pubmed(x))
To get the variants previously associated with autoim-

mune disease.
 > > > my_associations = get_associations(efo_trait =

’autoimmune disease’)

To filter associations by P value < 1 × 10−6.
 > > > association_ids = my_associations.associations

[my_associations.associations [’pvalue’] < 1e-6] [’associa-
tionId’].tolist()

 > > > m y _ a s s o c i a t i o n s 2 = m y _ a s s o c i a t i o n s
[association_ids]

To check risk alleles and risk frequency.
 > > > my_associations2.strongest_risk_alleles [[’riskAl-

leleName’, ’riskFrequency’]]

Example 2: in conjunction with other Python tools
The data type of pandasGWAS is pandas.DataFrame,
which is the foundation of data analysis in python. It
can be easily combined with other analysis and visu-
alization tools. This example will be used in conjunction
with plotnine [7] to visualize data. plotnine is an Python

Fig. 3 Class structure of Association. a columns of the property associations in class Association; b columns of the property loci in class Association;
c columns of the property strongest_risk_alleles in class Association; d columns of the property author_reported_genes in class Association; e
columns of the property ensembl_gene_ids in class Association; f columns of the property entrez_gene_ids in class Association

Page 5 of 7Cao et al. BMC Genomics (2023) 24:238

implementation of ggplot2 [8], which is a grammar of
graphics in R.

Firstly, we load the required modules in the Python
console.

 > > > from pandasgwas.get_studies import get_studies
 > > > from plotnine import ggplot,geom_bar,aes
Secondly, we search Study based on different disease

Trait. We can use the plus sign(+) to aggregate all
results.

 > > > study1 = get_studies(reported_trait = ’Suicide
risk’)

 > > > s t u d y 2 = g e t _ s t u d i e s (r e p o r t e d _ t r a i t =
"Dupuytren’s disease")

 > > > study3 = get_studies(reported_trait = "Triglycer-
ides")

 > > > study4 = get_studies(reported_trait = "Retinal
vascular caliber")

 > > > study5 = get_studies(reported_trait = "Non-small
cell lung cancer (survival)")

 > > > all_studies = study1 + study2 + study3 + study4 +
study5

In order to analyze the results of the query, we can
also use the math symbol (+) to complete the data

visualization. From the graph, we know that the count
of research related to "Triglycerides" is the most highest
(Fig. 5).

 > > > ggplot(all_studies.studies) + geom_bar(aes(x =
’diseaseTrait.trait’))

pandasGWAS vs gwasrappidd
Among the existing tools, gwasrappidd [9] which is
implemented based on the R programming language is
the only one with similar functionality to pandasGWAS.
Users familiar with gwasrapidd can easily use pandas-
GWAS in Python. First, use "from pandasgwas import *"
instead of "library(gwasrapidd)" in R to import the func-
tions into current namespace. Second, the names of the
functions starting with "get" and their main arguments in
pandasGWAS are the same as in gwasrapidd. Users need
to pay attention to the differences of types between R and
Python when using parameters. For more detailed infor-
mation about the types of functions in pandasGWAS,
one can refer to the definitions and examples given in the
GITHUB.IO documentations.

Compared with gwasrapidd, pandasGWAS has sev-
eral advantages and we just list some of them below. The

Fig. 4 Class structure of Variant and Trait. a columns of the property variants in class Variant; b columns of the property locations in class Variant;
c columns of the property genomic_contexts in class Variant; d columns of the property ensembl_gene_ids in class Variant; e columns of the
property entrez_gene_ids in class Variant; f columns of the property efo_traits in class Trait

Page 6 of 7Cao et al. BMC Genomics (2023) 24:238

function set_xor() is not supported by gwasrapidd and
it does not support mathematical symbol operations to
simplify set operations on the requested data (Table 1).
The mapping between the columns of the table and the
keys of JSON in the GWAS Catalog REST API is weak.
Firstly, some data are missing, such as: locations of Vari-
ant in API. Secondly, when some data is flattened and
assigned to child DataFrames, gwasrappidd does not cre-
ate primary and foreign keys to indicate the relationship
between them, such as: variants.ensemble_ids in gwas-
rappidd. When researchers used gwasrappidd for the first
time, confusions between the official website’s REST API
and the results returned by the function may be caused
by the weak mapping. However, pandasGWAS can solve
most of the problems mentioned above in gwasrappidd.

Conclusions
pandasGWAS definitely fills a major gap in the Python
community for programmatic access to the GWAS Cat-
alog data. Compared to existing tools, pandaGWAS is
easier to get started. pandasGWAS is tested and docu-
mented, which has been uploaded to PyPI and can be
easily installed by typing "pip install pandasgwas" at the
command line.

Availability and requirements
Project name: pandasGWAS.

Project home page: https:// pypi. org/ proje ct/ panda sgwas
Operating system(s): any supporting Python > = 3.8

(tested on Windows 10).
Programming language: Python.

Fig. 5 Analyze study by disease trait

Table 1 pandasGWAS vs gwasrappidd

pandasGWAS gwasrappidd

Programming Language python R

Type of Property pandas.DataFrame tidyverse.tibble

Set Operations set_xor, bind, union, intersect, set_diff, set_equal bind, union,
intersect, set_diff,
set_equal

Set Operations Based on Mathematical Symbol + (bind), &(intersect), -(set_diff), ^(set_xor), |(union), = = (set_
equal)

Unsupported

The Mapping Between The Columns of The Table and The Key of
JSON in The GWAS Catalog REST API

Strong Weak

https://pypi.org/project/pandasgwas

Page 7 of 7Cao et al. BMC Genomics (2023) 24:238

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

Other requirements: pandas > = 1.4.3, requests > = 2.28.1,
progressbar2 > = 4.0.0.

License: MIT License.
Any restrictions to use by non-academics: The NHGRI-

EBI GWAS Catalog and all its contents are available
under the general terms of use for EMBL-EBI services.

Abbreviations
GWAS Genome-wide association studies
NHGRI National Human Genome Research Institute
EBI European Bioinformatics Institute
REST Representational State Transfer
API Application Programming Interface
JSON JavaScript Object Notation
HAL Hypertext Application Language
HTTP Hyper Text Transfer Protocol
URL Uniform Resource Locator
EFO Experimental Factor Ontology

Acknowledgements
Not applicable.

Authors’ contributions
TC designed the tool and implemented the code. YH and AL tested the tool.
All authors read and approved the final manuscript.

Funding
This work was supported by 11901145 from the National Natural Science
Foundation of China to AL. The funding body did not play any role in the
design of the study or in the collection, analysis and interpretation of data or
in writing the manuscript.

Availability of data and materials
Source code is available in https:// pypi. org/ proje ct/ panda sgwas and https://
github. com/ caoti anze/ panda sgwas. Documentation and tutorials can be
found at https:// caoti anze. github. io/ panda sgwas/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 25 July 2022 Accepted: 26 April 2023

References
 1. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone

C, McMahon A, Morales J, Mountjoy E, Sollis E, Suveges D, Vrousgou O,
Whetzel PL, Amode R, Guillen JA, Riat HS, Trevanion SJ, Hall P, Junkins H,
Flicek P, Burdett T, Hindorff LA, Cunningham F, Parkinson H. The NHGRI-EBI
GWAS Catalog of published genome-wide association studies, targeted
arrays and summary statistics 2019. Nucleic Acids Res. 2019;4:D1005–12.

 2. HAL - Hypertext Application Language. https:// state less. group/ hal_ speci
ficat ion. html. Accessed 20 July 2022.

 3. GWAS CATALOG API Guide. https:// www. ebi. ac. uk/ gwas/ rest/ docs/ api.
Accessed 20 July 2022.

 4. progressbar2. https:// pypi. org/ proje ct/ progr essba r2/. Accessed 20 July
2022.

 5. pandas. https:// pypi. org/ proje ct/ pandas/. Accessed 20 July 2022.
 6. Nicholas L, Véronique A, Bing G, Shu-Huang C, Tony K, Tomi P. Interroga-

tion of allelic chromatin states in human cells by high-density ChIP-
genotyping. Epigenetics. 2014;9:1238–51.

 7. plotnine. https:// pypi. org/ proje ct/ plotn ine/. Accessed 21 July 2022.
 8. Wickham H, Grolemund G. R for Data Science: Import, Tidy, Transform,

Visualize, and Model Data. 1st ed. O’Reilly Media; 2017
 9. Magno R, Maia AT. gwasrapidd: an r package to query, download and

wrangle GWAS catalog data. Bioinformatics. 2019;36:649–50.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://pypi.org/project/pandasgwas
https://github.com/caotianze/pandasgwas
https://github.com/caotianze/pandasgwas
https://caotianze.github.io/pandasgwas/
https://stateless.group/hal_specification.html
https://stateless.group/hal_specification.html
https://www.ebi.ac.uk/gwas/rest/docs/api
https://pypi.org/project/progressbar2/
https://pypi.org/project/pandas/
https://pypi.org/project/plotnine/

	pandasGWAS: a Python package for easy retrieval of GWAS catalog data
	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Retrieving data from server
	Convenient set operations
	Helper functions for accessing web links
	Class structure of data entities

	Results and discussion
	Example 1: a real world use case
	Example 2: in conjunction with other Python tools
	pandasGWAS vs gwasrappidd

	Conclusions
	Availability and requirements
	Acknowledgements
	References

