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Abstract 

Background As an important source of genetic variation, copy number variation (CNV) can alter the dosage of DNA 
segments, which in turn may affect gene expression level and phenotype. However, our knowledge of CNV in apple 
is still limited. Here, we obtained high-confidence CNVs and investigated their functional impact based on genome 
resequencing data of two apple populations, cultivars and wild relatives.

Results In this study, we identified 914,610 CNVs comprising 14,839 CNV regions (CNVRs) from 346 apple acces-
sions, including 289 cultivars and 57 wild relatives. CNVRs summed to 71.19 Mb, accounting for 10.03% of the apple 
genome. Under the low linkage disequilibrium (LD) with nearby SNPs, they could also accurately reflect the popula-
tion structure of apple independent of SNPs. Furthermore, A total of 3,621 genes were covered by CNVRs and func-
tionally involved in biological processes such as defense response, reproduction and metabolic processes. In addition, 
the population differentiation index ( Vst ) analysis between cultivars and wild relatives revealed 127 CN-differentiated 
genes, which may contribute to trait differences in these two populations.

Conclusions This study was based on identification of CNVs from 346 diverse apple accessions, which to our knowl-
edge was the largest dataset for CNV analysis in apple. Our work presented the first comprehensive CNV map and 
provided valuable resources for understanding genomic variations in apple.

Keywords Apple, Copy number variation, Population differentiation, Defense response

Background
Apple is an economically important fruit tree and has 
been widely grown in temperate regions around the 
world. The cultivated apple (Malus × domestica Borkh.) 

has been domesticated from the wild apple Malus siever-
sii and hybridized with Malus sylvestris [1, 2]. Differences 
of phenotypes between cultivated apples and wild rela-
tives are enormous in terms of fruit size, taste and other 
agronomic traits [3–5]. Genetic sources of trait varia-
tion can be mainly attributed to single nucleotide poly-
morphism (SNP) and copy number variation (CNV)[6]. 
However, to date, studies that revealed molecular mecha-
nisms related to important traits in apple were focused 
on SNPs, leaving the information of CNV largely unex-
plored. As an unbalanced structural variation, CNV is 
defined as deletions and duplications longer than 50  bp 
in length [7–9]. CNV can alter the dosage of DNA seg-
ments, leading to changes of copy numbers in different 
individuals, which in turn may affect gene expression 
level and phenotypic variation [10, 11]. Compared with 
SNPs, the number of CNV is much less in the genome, 
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but total number of base pairs impacted by CNV are sig-
nificantly higher than that of the SNPs [12]. Therefore, 
CNV is an important source of genetic variation that 
could fill the missing links in the population genetics.

Several studies focused on CNVs revealed that they 
are ubiquitous widely spread among plant genomes and 
might be likely to be associated with disease resistance 
and stress responses such as submergence tolerance and 
anaerobic germination tolerance in rice [13, 14], nema-
tode resistance in soybean [15], aluminum tolerance and 
resistance to Goss’s Wilt in maize [16, 17] and frost toler-
ance in wheat [17]. In addition, CNVs were also shown 
to be related to diverse trait variation. In wheat, an 
increased copy number of Ppd-B1 and Vrn-A1 is associ-
ated with altered flowering time [18]. In rice, a tandem 
duplication of GL7 and partial deletion of GSE5 contrib-
ute to grain size in rice [19, 20]. In cucumber, a 30.2 kb 
duplication defining the F locus gives rise to gynoecy 
[21], while a 1.4 kb deletion of CSR-D results in changes 
of fruit weight in tomato [22]. These studies uncov-
ered the important roles CNV plays in adaption, resist-
ance and development and it is an indispensable part of 
genomic variations.

The array comparative genomic hybridization (aCGH) 
and SNP arrays have been used for CNV detection in the 
last few years. With the development of sequencing tech-
nology, next-generation sequencing (NGS) is becoming 
popular for its high throughput and increasingly com-
petitive cost [23]. There are four types methods for CNV 
detection based on NGS data: read-pair (RP) method 
utilizing the position mapped to the reference genome; 
split-read (SR) method relying on the aberrant mapping 
of the pair-end reads; read-depth (RD) method depend-
ing on the normalized depth of reads; de novo assembly 
method which is used to refine the identification of CNV 
breakpoints and infer structure of CNV [6]. Each method 
has its own strengths and shortcomings in terms of accu-
racy and precision. A typical strategy is to combine mul-
tiple methods to minimize false positives [24–26]. For 
example, a comprehensive AthCNV dataset was identi-
fied using a benchmarking pipeline that combined three 
methods (RP, SR and RD) in Arabidopsis [27]. SpeedSeq, 
a powerful tool designed for CNV identification, com-
bined RP, SR and RD methods to improve detection effi-
ciency and has been widely used in whole-genome CNV 
analysis [26, 28].

CNV plays a vital role in apple fruit development. It 
was reported that a tandem duplication in the upstream 
regulatory region of MdMYB10 and a 930  bp region 
upstream of MdMYB110a (a paralog of MdMYB10) 
were responsible for red-fruit-flesh phenotypes in apple 
[29, 30]. To the best of our knowledge, there is only one 
study of NGS-based genome-wide CNV in apple, which 

used data of 30 cultivated apple accessions and identi-
fied 876 CNVRs enriched in resistance (R) gene models 
[31]. There is no genome-wide study of CNVs by com-
paring wild and cultivated apple at population level. 
Given a large amount of genomic re-sequencing data 
of apple released recently [4, 32], we collected data of 
346 accessions (289 cultivars and 57 wild relatives) and 
identified CNVs based on GDDH13 reference genome. 
Subsequently, we explored population genetic character-
istics of CNVs and further investigated their underlying 
impacts by analyzing GO enrichment pattern and copy 
number differentiated genes.

Results
CNV calling procedure and simulation evaluation
CNV identification in apple was performed as illustrated 
in the pipeline (Fig. 1A). Briefly, a strategy that integrates 
RP, SR and RD methods was used. A total of 1.56 Tb high-
quality whole genome sequencing data of 346 accessions 
were compiled for analysis (Additional file  2: Table  S1). 
After aligning clean reads to the reference genome 
’GDDH13 Version 1.1’, the average depth was ~ 7.2X and 
genome coverage was ~ 92%, which revealed that it was 
sufficient for CNV detection [33, 34].

To ensure the accuracy of CNV detection, we evaluated 
the performance of Speedseq using simulated CNV in 
the apple genome (see Methods). The results showed that 
it was able to detect simulated CNV at sequencing depth 
levels commonly used in genomics studies (Additional 
file 1: Fig. S1). For sequencing depth between 5 and 10X 
which majority of our data fall in, the method we used 
can obtain true positive rate (TPR) of ~ 65% and ~ 75% 
for deletions and duplications, respectively. With the 
increase of sequencing depth, the improvement of TPR 
becomes marginal and saturates at ~ 84% and ~ 80% for 
deletions and duplications, respectively.

Basic summary of CNV
A total of 914,610 CNVs (838,642 deletions and 75,968 
duplications) were identified from 346 accessions 
(Fig.  1B; Additional file  2: Table  S2) using GDDH13 
reference genome. The mean number of CNVs per 
accession was 2,643 (ranging from 910 to 7,272) with a 
mean of 2,423 deletions and 220 duplications. To con-
firm reliability of identified CNVs, manual check on the 
reads mappings was performed. Here, a 630  bp dele-
tion in the 5’UTR of MdCBF2 and a duplication cover-
ing MD15G139100 were selected as exemplary regions to 
show reliability of the identified CNVs (Additional file 1: 
Fig. S2).

To evaluate the influence of CNVs on genomic fea-
tures, the proportion of bases in all non-overlapping 
CNVs was calculated. Among all the features, exonic 
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regions showed the lowest percentages of CNV 
(19.86%). CNV was reduced in gene bodies (23.86%) 
compared with intergenic regions (29.59%) (Fig.  1C; 
Additional file  2: Table  S3). On the flip side, dele-
tion rates were lower in coding sequences (7.54%) 
than flanking sequences (24.62%). Additionally, the 
distribution of duplications along the whole genome 
(11.65% ~ 16.75%) seemed to be more even than dele-
tions (7.54 ~ 21.88%).

CNVR distribution and linkage analysis with SNPs
Next, we merged CNVs across different accessions into 
CNVRs. A total of 14,839 CNVRs covering ~ 71.19 Mb 
were identified. These CNVRs account for ~ 10.03% 
of the reference genome. Then, they were classified 
into three types with respect to the reference genome: 
13,579 loss, 1,048 gain and 212 both events. The length 
of CNVRs varied from 109  bp to 847  kb with a mean 
of 4.80  kb (Additional file  2: Table  S4). Genome-wide 

Fig. 1 Summary statistics of CNVs in apples. A The whole CNV analysis workflow. B CNV size interval distribution. C CNV representation within apple 
genome features. The percentage of sequence classes impacted by duplications and deletions
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distribution of CNVRs on each chromosome, along 
with SNPs, TEs and gene features was shown in Fig. 2A-
E. It seemed to be consistent between the genomic dis-
tribution of TEs and CNVRs.

For each CNVR, the nearby flanking 300 SNPs 
upstream and downstream were considered for link-
age disequilibrium (LD) analysis. CNVRs were then 
grouped into three categories, Low-LD, Mid-LD and 
High-LD as illustrated in Methods. A great majority of 
CNVRs (80%) showed low LD with flanking SNPs, and 
15% of CNVRs had intermediate levels of LD, while 
only 5% exhibited high LD and could be considered 
tagged by adjacent SNPs (Fig.  2F). Expectedly, more 
common alleles were more often in a high-LD state, 
which displayed a positive correlation between LD state 
and CNVR MAF (Fig.  2G). In addition, proportion of 
high-LD, mid-LD and low-LD CNVRs were similar 
among three CNVR types (Fig. 2H).

CNVR can accurately reflect population structure
Phylogenetic analysis of CNVRs showed that the apple 
accessions could be separated into cultivar and wild 

relatives clearly (Fig.  3A, B). Neighbor-joining cluster-
ing analysis indicated that M. sieversii accessions located 
close to wild accessions while M. sylvestris accessions and 
cultivars formed a large branch (Additional file 1: Fig. S4).

We then compared our Principal Component Analysis 
(PCA) results of apple accessions to population structure 
inferred from SNPs. Although variance explained by PC1 
and PC2 of CNVs (6.94%) was lower than SNPs (26.52%), 
the cultivars and wild relatives could be distinguished in 
both results (Fig.  3C). While samples in the SNP-based 
results were more concentrated, the span of samples in 
CNVR-based was wider for both PC1 and PC2.

Copy number (CN)‑variable genes are mainly enriched 
in defense and stress response
In total, 3,621 genes completely or largely (> 50% of 
gene span) overlapped with CNVRs were identified 
in the reference genome (Additional file  2: Table  S5). 
These genes were considered CN-variable genes at the 
population level. To characterize biological functions 
of the CN-variable genes, we performed gene ontol-
ogy (GO) enrichment analysis using the R package 

Fig. 2 Chromosomal distribution of CNVRs, SNPs and Genes in the apple genome and relationship with SNPs. A Numbers of CNVRs including loss 
(red), gain (blue) and both (green) events in 1-Mb nonoverlapping windows. B SNP density (SNPs per 1-Mb window). C TE density (TEs per 1-Mb 
window). D CNVR density heatmap (CNVRs per 1-Mb window). E Gene density heatmap (genes per 1-Mb window). F Histogram of the number 
of CNVR r2 ranks that are above the SNP-SNP r2 median value for CNVRs. G Boxplots showing distribution of minor allele frequencies for each LD 
category. H Proportion of each LD category in loss, gain and both events
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topGO [35]. These genes were significantly enriched 
in defense response (GO:0,006,952, p = 5.72 ×  10–20) 
and response to stress (GO:0,006,950, p = 2.60 ×  10–6) 
(Fig.  4A; Additional file  2: Table  S6). We also found 
that 12 R genes (MD02G1069700, MD02G1070900, 
MD02G1071400, MD02G1100900, MD02G1106700, 
MD04G1015000, MD04G1035000, MD08G1045100, 
MD08G1045900, MD08G1083600, MD09G1024200, 
and MD11G1056000) involved in biological pro-
cesses such as defense response, response to stress and 
response to stimulus were CN-variable (Fig.  4B). In 
addition, many genes were also in connection with cell 
communication (GO:0,007,154, p = 7.28 ×  10–4), repro-
duction process (GO:0,022,414, p = 0.002), signal trans-
duction (GO:0,007,165, p = 9.96 ×  10–3) and metabolic 
processes. It is worth noting that several genes involved 
in the metabolic processes such as malate metabolic 
process (GO:0,006,108, p = 0.020) and sucrose meta-
bolic process (GO:0,005,985, p = 0.022) which might be 
involved in the taste improvement of apple.

CN‑differentiated genes between cultivars and wild 
relatives
To investigate the CN-differentiated genes influenced by 
CNVs in these two apple populations, gene Vst between 
all cultivars and wild relatives (here only M.sieversii and 
M.sylvestris were retained) was calculated and genes 
located in top 1% Vst were further analyzed (Fig.  5A, B; 
Additional file  2: Table  S7). Within the 127 CN-differ-
entiated genes, 17 were annotated as R genes and most 
of them harbored higher copy numbers in wild rela-
tives than cultivars (Additional file  1: Fig. S5), which 
was consistent with the higher disease resistance in wild 
accessions. For example, MD03G1049200 (encoding 
NB-ARC domain-containing disease resistance protein 
that involved in pathogen recognition and subsequent 
activation of innate immune responses), has higher CN 
among wild relatives (mean CN = 3.92) compared with 
cultivars (mean CN = 2.03) (Additional file  1: Fig. S6 
Wilcoxon test; p = 9.05 ×  10–12). Typical resistance genes 
related to the specific immune response toward pathogen 

Fig. 3 Population genetic analyses of apples based on CNVRs. A Clustering results and population structure of 346 apple accessions using 
CNVRs. Cultivars and wild relatives are represented in blue and orange in the phylogenetic tree, respectively. B Principal component analysis of 
346 accessions. Accessions are denoted in the same color as in (A). The percentage of variance explained by PC1, PC2, and PC3 are provided. C 
Scatter plots of the first two principal components based on SNPs (left) and CNVRs (right). Accessions are denoted in the same color as in (A). The 
percentage of variance explained by PC1 and PC2 are provided
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Fig. 4 Functional enrichment of CNVR-associated genes. A GO analysis of genes affected by CNVRs. B CN heatmap of 12 R genes which exhibited 
significant differences between cultivars and wild relatives

Fig. 5 Genes with differentiated CN profiles between cultivars and wild relatives. A (Upper) A heatmap of gene CN (columns) for each of the 
highly differentiated (top1% Vst) genes in 346 accessions (rows). (Lower) A Manhattan plot of values (y axis) for each gene (x axis). The dashed line 
represents top1% Vst cutoff. Genes are depicted by their value patterns across the CNVnator CN estimations. B The copy number status revealed 
by genome average around MD15G1391000 is showed. C Copy number status of gene MD15G1391000 between Cultivars and Wild relatives. P 
value was determined by Wilcoxon rank sum test ***: p < 0.001. D Expression levels of MD15G1391000 in three accessions. C77: Cultivars 77; W249: 
Wild relatives 249; W412: Wild relatives 412. The numbers in the bracket under the accession name are the copy number of the gene in accessions, 
respectively
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or external adverse stimuli such as MD15G1391000 also 
show a similar CN trend (Fig. 5C). We also observed that 
the expression levels of MD15G1391000 increased with 
elevated copy numbers using the expression data of one 
cultivar and two wild accessions (Fig. 5D).

Discussion
Over the past decade, SNPs have been commonly used 
in population genetics-related studies. However, causal 
loci uncovered by SNPs studies explain only a part of the 
heritable contribution to trait variation, which results in 
a phenomenon called as “missing heritability” [36–38]. 
As an important source of genome variation, CNVs have 
the potential to fill the gap that SNPs cannot reveal in the 
population genetics.

In this study, performance of Speedseq was evaluated 
firstly to determine its availability in CNV detection. 
Although not detecting all the CNVs, the method keeps 
extremely low false positive rate (< 1%), which is expected 
as we aim to identify CNVs with high confidence. The 
simulation result demonstrates that our strategy is capa-
ble to detect majority of CNVs in the data of this work 
with high accuracy. It was reported that a 625  bp CNV 
in the 5’UTR of MdCBF2 which regulates cold acclima-
tion in the GDDH13 reference genome when compared 
with HFTH1 genome [39]. Correspondingly, we identi-
fied a 630 bp deletion in the same position among acces-
sions such as Jonathan and McIntosh, compared with the 
GDDH13 genome which is among the Golden Delicious 
accessions (Additional file  1: Fig. S2). Manual check on 
the reads mapping and CNV detection around MdCBF2 
were also conducted to ensure the accuracy of our 
results, which suggests that our CNV detection strategy 
is valid and reliable.

These CNVs were then merged to generate 14,839 
CNVRs, which comprised 10.03% of the apple refer-
ence genome. The relationship between CNVRs and 
TEs was explored firstly. The Pearson correlation coef-
ficient of genomic density between CNVRs and TEs 
was 0.6 (an obvious positive correlation), and 95.92% 
of CNVRs overlapped with TEs, which demonstrates 
that CNVRs have an enrichment within TEs to some 
extent. The resulting CNVR map was also compared 
with SNPs. In contrast to the highly variable distribu-
tion of SNPs along chromosomes, the distribution of 
CNVR is largely flat, exhibiting a decoupling of the 
two variation types. The density of CNVR and SNP 
across the whole genome shows a significant positive 
correlation with local discordance (r = 0.58; p < 2.2e-
16) (Additional file 1: Fig. S3).

To examine whether there is some relation between 
CNVRs and SNPs, LD analysis was conducted between 
each CNVR and nearby 600 SNPs. Similar to results 

reported in other studies, CNVRs are generally in low 
linkage (i.e. 80% of CNVRs exhibit low LD state) with 
SNPs [40–42]. Low LD state can be attributed to two 
reasons. For one thing, LD is affected by allele fre-
quency, which was reflected by positive correlation 
between CNVR MAF and LD state. Wray et  al. con-
firmed that the difference in allele frequency of the 
coupled loci would result in a low LD between them 
[43]. In this analysis, although we kept CNVRs existed 
in more than ten accessions, almost half of CNVRs is 
at low allele frequency (MAF ≤ 0.05), whereas MAF of 
SNPs are all greater than 0.05. The unmatched allele 
frequencies of CNVRs and SNPs quite possibly con-
tributed to the low LD. For another thing, SNP density 
within local regions can explain low LD. As depicted 
by Redon et  al., CNVs were enriched within segmen-
tally duplicated regions of the genome, in which there 
is a paucity of SNPs [40]. Cooper et al. and McCarroll 
et  al. used different SNP sets in their human CNV 
analyses, resulting in dissimilar LD state between 
CNVs and SNPs [44, 45]. In our study, there is a mild 
discordance in the density of SNPs and CNVRs as 
plotted in Fig. S3, which may also influence the low LD 
state. A follow-up study is needed to thoroughly clar-
ify the relationship between CNVs and SNPs. Taken 
together, as a type of genetic variation that has not 
been comprehensively characterized in apple, CNVs 
have potential to associate with important traits that 
are independent of SNPs.

Population genetics analysis based on CNVRs in apple 
was the first attempt to investigate relationships among 
different apple accessions to date. Population structure 
was largely reflected by dendrogram inferred from both 
CNVs and SNPs. Recent introgression from M. sylvestris 
into M. × domestica has been so intensive that cultivars 
now appear to be closer to M. sylvestris than to their pro-
genitor M. sieversii. The first two principal components 
(PCs) based on SNPs explained 26.52% of total variance, 
and the population was highly structured across PC1. 
Compared with SNPs, the first two PCs based on CNVs 
explained less variance (6.94%) while the population was 
separated clearly along PC2. This result uncovers acces-
sibility of CNVs in population structure inference and 
underlying information that may not captured by SNPs, 
which demonstrates significance of CNV in genome vari-
ation studies [1, 4].

To better understand the roles of CNVs play, we 
focus on genes overlapped with CNVRs and exam-
ined their GO enrichment. These genes are mainly 
enriched in defense response and response to stress, 
which is consistent with a previous study [31]. Among 
these genes, 211 (5.8%) are annotated as genes encod-
ing proteins with nucleotide binding sites (NBS or 
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NBC-ARC domains) and leucine-rich repeat (LRR) 
domains as well as genes encoding receptor-like pro-
tein kinases (RLK) which are known to be involved 
in plant defense-related mechanisms [46, 47]. It 
is worth noting that several genes involved in the 
metabolic processes such as malate metabolic pro-
cess (GO:0,006,108, p = 0.020) and sucrose meta-
bolic process (GO:0,005,985, p = 0.022) which might 
be involved in the taste improvement of apple. For 
instance, MD04G1101300 and MD17G1077700 were 
malate degradation related genes encoding NADP-
malic enzyme (NADP-ME). The rapid decrease of 
malate content during fruit ripening has already been 
attributed to its degradation by cytosolic NADP-ME in 
some fruits such as loquat [48]. The high-level expres-
sion of NADP-ME increased the ratio of total sugars 
to total acids by regulating the fruit acidity in apple, 
leading to the improvement of fruit taste and sensory 
evaluation [49]. MD03G1248900, a gene encoding 
NAD(H) kinase 3, homolog of NADK3 whose up-
regulation of expression coincided with fruit growth 
at ripening stages in tomato, might also involve in the 
enlargement process in the apple fruit [50].

During the process of plants domestication, CNVs are 
found to be related to stress tolerance, disease resistance 
and development [6]. Considering that cultivated apples 
were domesticated from M.sieversii and M.sylvestris, 
CN-differentiated were identified between cultivars and 
wild relatives, which only consisted of M.sieversii and 
M.sylvestris. Among 127 CN-differentiated genes, 17 of 
them are annotated as R genes and exhibit higher copy 
numbers in wild relatives than cultivars, which is con-
sistent with the higher disease resistance in wild acces-
sions. Higher copy number might play key roles in 
stronger stress resistance in wild relatives compared to 
cultivars. The most prominent gene is MD12G1236200 
(XRN4), which was at higher CN among wild rela-
tives (mean CN = 3.06) compared with cultivars (mean 
CN = 2.00) (Wilcoxon test; p = 6.59 ×  10–44). It was 
reported that XRN4 involved in ethylene response and 
disease resistance in Arabidopsis [51]. The decreased CN 
of MD12G1236200 might also be related to the changes 
of similar function, which needs to be verified by wet 
experiments. Besides, several CN-variable genes appear 
to be involved in fruit developmental processes (Addi-
tional file  1: Fig S6). MD08G1184000, designated as 
MdGF14f, has an abnormal copy number in some wild 
relatives (mean CN = 1.14) while almost no changes were 
observed in cultivars (mean CN = 2.00) (Wilcoxon test; 
p = 3.04 ×  10–15). High expression in flowers indicates 
that it may play an important role in apple growth and 
development [52]. MD07G1086100 belongs to MADS-
box gene family. Sequence analysis from appleMDO 

database (http:// bioin forma tics. cau. edu. cn/ Apple MDO/) 
indicated that MdMADS110 was ubiquitously expressed 
in different tissues including apical bud, spur bud and 
flower [53, 54]. Studies have revealed that it involved in 
plant reproduction processes [52]. This analysis indicated 
that MD07G1086100 showing differentiated CN is likely 
to play possible regulatory roles in apple development. 
The decrease of gene copy numbers might be relevant 
to potential adaptability or neutrality of non-function-
alization mutations, which supports the ‘less is more’ or 
‘regression evolution’ hypothesis [55].

Conclusions
In this study, we carried out comprehensive CNV analy-
ses in wild and cultivated apples. In total, 14,839 CNVRs 
occupying 10.03% of the apple genome were identified, 
and a comprehensive map of CNVs was constructed 
based on 346 apple accessions. The low LD between 
CNVRs and SNPs indicates that CNVs are largely inde-
pendent genetic variation resources. Genes overlapping 
with CNVRs were mainly enriched in defense response, 
reproduction and other metabolic processes. Some genes 
overlapping CNVRs are highly differentiated between 
cultivars and wild relatives, which appears to be related 
with some differences in traits between them. To con-
firm their genetic associations, functional verification is 
required in follow-up studies. These findings will provide 
important resources for comprehensive understanding of 
the genome variation and may serve as a useful reference 
for future genomic studies on apple and related species.

Methods
CNV simulation
To test the performance of the method used in this study, 
200 duplications and 200 deletions were simulated in 
apple genome using the RSVSim (v1.28.0), an R pack-
age that can be used to simulate CNVs across a genome 
[56]. The simulated reads were generated from the modi-
fied genome using wgsim (v1.9; https:// github. com/ lh3/ 
wgsim). It was noting that we simulated reads at various 
levels of sequencing coverage ranging from 5 to 30X as 
we aimed to investigate the relationship between discov-
ery power and coverage depth in CNV detection. Next, 
the reads were mapped to the unmodified apple genome 
and used for CNV detection following subsequent calling 
analysis. The true positive, false positive and false nega-
tive CNV discovery rates were calculated to evaluate per-
formance of the method.

Samples and NGS data processing
A total of 346 accessions which have clear pedigree infor-
mation were used for CNV detection. This dataset consists 
of 289 cultivars and 57 wild relatives. The corresponding 

http://bioinformatics.cau.edu.cn/AppleMDO/
https://github.com/lh3/wgsim
https://github.com/lh3/wgsim
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re-sequencing data was obtained from previous stud-
ies with accession number CRA003964 in the Genome 
Sequence Archive (GSA) database and SRP075497 in 
the NCBI Sequence Read Archive [4, 32]. The reference 
genome GDDH13 and gene annotation files were down-
loaded from the Genome Database for Rosaceae (GDR) 
(https:// www. rosac eae. org/ speci es/ malus/ malus_x_ 
domes tica/ genome_ GDDH13_ v1.1) [57]. Raw reads were 
preprocessed to remove low-quality reads and adapter 
sequences by Trimmomatic (v0.38) with the following 
parameters: SLIDINGWINDOW, 4:15; TRAILING, 20; 
HEADCROP, 3; MINLEN, 90 [58]. Clean reads were then 
mapped to the apple reference genome using BWA-MEM 
(v0.7.17) with default parameters and SAM format files 
were sorted and indexed into BAM format files using Sam-
tools (v1.5) [59, 60]. Potential duplicate reads generated in 
PCR amplification were removed using Picard (v2.17.0) 
(http:// broad insti tute. github. io/ picard/). The BAM files 
were further filtered based on mapping quality (reads with 
MAPQ < 20 were discarded) for subsequent analysis [31].

Three available RNA-seq datasets corresponding to 
accessions with sample number C77, W249 and W412 
(C77 belongs to cultivars, W249 and W412 belong 
to wild relatives) was obtained from GSA database 
(CRA003991) under accession number CRR274993, 
CRR274994, CRR274995, CRR274999, CRR275000, 
CRR275001, CRR275002, CRR275003, CRR275004. 
Each sample consisted of three biological replicates. We 
processed these data as described previously [32] and 
used the average FPKM of three replicates to measure 
abundance of gene expression.

CNV calling and CNVR definition
SpeedSeq, a software package that integrates RP, SR and 
RD method, was used for CNV detection in this analy-
sis [26]. It incorporates Lumpy (v0.2.13) and CNVnator 
(v0.3) to detect CNV together [33, 34]. In detail, Lumpy 
with the default parameters was run in the Lumpy 
Express script as well as the -P option to output probabil-
ity curves for each breakpoint on each accession. Then 
CNVnator was used to annotate the copy number of each 
variant using the sliding window of 1 kb and filtering the 
raw calls with a cutoff P-value of 0.05. Finally, only dele-
tions and duplications supported by RD, SR and RP anal-
ysis simultaneously and longer than 50 bp were retained 
for further analysis.

The CNV region (CNVR) is defined as a combined 
region of overlapping CNVs in the apple genome after 
aggregating and filtering out the ones existed in less than 
ten accessions. Here, CNVR were merged from different 
accessions with at least 90% stringently reciprocal overlap 
by extending the boundaries of the overlapping CNVs. 
Then they were further classified as “gain” (i.e. CNVRs 

merged from duplications across different accessions), 
“loss” (i.e. CNVRs merged from deletions across differ-
ent accessions) and “both” (i.e. CNVRs merged from both 
duplications and deletions within the same regions across 
different accessions) events according to their types. 
Only CNVR presented in at least ten individuals were 
used for subsequent functional and population genetics 
analysis, thus minimizing the bias caused by uniformity 
of sequence coverage depth and impact of rare CNVR.

In order to facilitate subsequent analysis, all CNVRs 
were recoded manually by converting a loss event into 
“0/1”, a neutral event into “0/0” and a gain event into 
“1/1”, thus we converted the file into VCF-format file 
and filtered the CNVRs with MAF < 0.05 to keep consist-
ent with criterion used in SNPs filtration for comparison 
with SNPs in population structure analysis.

Relationship analysis between CNVs and SNPs
Transposable element (TE) was shown as a source of 
novel genetic diversity in Arabidopsis because of large 
extent not in linkage disequilibrium (LD) with nearby 
SNPs [61]. As TE activity is an important source of CNV 
formation, the relationship between CNVs and SNPs in 
apple was then investigated to observe whether there are 
similar phenomena as described in Arabidopsis [61]. SNP 
information for apple accessions was obtained from BIG 
Data Center (https:// bigd. big. ac. cn/) with accession num-
ber GVM000128. Accessions with both CNV and SNP 
information were selected for analysis, thus 343 samples 
were retained. For each CNVR, the nearest 300 upstream 
and 300 downstream SNPs with a minor allele frequency 
greater than 5% were selected. Pairwise genotype corre-
lations (r2 values) for all SNP-SNP and SNP-CNVR pairs 
were calculated by PLINK (v1.90p) [62]. Then, r2 values 
ordered by decreasing rank and a median SNP-SNP rank 
value was calculated. According to the number of times 
(N) CNVR rank over the SNP-SNP median rank, each 
CNVR was classified as Low-LD, Mid-LD and High-LD 
to SNP as follows:

Population‑genetic properties derived from apple CNVRs
To explore the population structure and convergence of 
accessions, admixture analysis was performed ADMIX-
TURE (v1.3.0) with 500 replicates and cross-validation 
error (CV) procedure was run [63]. Neighbor-joining 
clustering analysis based on pairwise genetic distance 
matrices was conducted using PHYLIP (v3.697) with 
1,000 bootstrap replicates [64] and the clustering den-
drograms were visualized in iTOL [62, 65]. Principal 

LD =

Low 0 ≤ N ≤ 200 ;
Mid 200 < N ≤ 400 ;
High 400 < N ≤ 600

https://www.rosaceae.org/species/malus/malus_x_domestica/genome_GDDH13_v1.1
https://www.rosaceae.org/species/malus/malus_x_domestica/genome_GDDH13_v1.1
http://broadinstitute.github.io/picard/
https://bigd.big.ac.cn/
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component analysis (PCA) was performed using the 
smartpca program of the Eigensoft software package 
(v6.0.1) [66].

Gene annotation and enrichment analysis
Gene contents encompassed by CNVR were assessed by 
comparing coordinates between them. Only genes cov-
ered by CNVR more than 50% were considered for func-
tional analysis. GO enrichment analysis was carried out 
on these genes using the R package topGO (v2.28.0) [35]. 
Significance of GO terms were determined using Fisher’s 
exact test with FDR correction, and GO terms were con-
sidered significant if the adjusted P-value was below 0.05.

CN‑differentiated genes between cultivars and wild 
relatives
Because cultivars have been domesticated mainly from 
M. sieversii and M. sylvestris, only wild relatives belong-
ing to these two species were considered in this analysis 
[1]. The statistic Vst was used to identify divergent genes 
between the cultivars and wild relatives. It was devised 
specially to measure the population differentiation at 
CNV levels and varies from 0 to 1 representing no differ-
entiation and complete differentiation respectively [40]. 
Vst was calculated as follows:

where Vtotal is total variance in copy number measured 
by CNVnator among all apple accessions, Vcultivars is copy 
number variance among all cultivars and Vwild relatives is 
copy number variance among all wild relatives. Ncultivars 
and Nwild relatives is the sample size for the cultivars and 
wild relatives, respectively; Ntotal is the total sample size. 
Thus Vst was calculated across all genes using CN esti-
mates obtained from CNVnator.

Abbreviations
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CNVR  Copy number variation region
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