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Abstract 

Long non-coding RNAs (lncRNAs) play a crucial role in numbers of biological processes and have received wide atten-
tion during the past years. Since the rapid development of high-throughput transcriptome sequencing technologies 
(RNA-seq) lead to a large amount of RNA data, it is urgent to develop a fast and accurate coding potential predictor. 
Many computational methods have been proposed to address this issue, they usually exploit information on open 
reading frame (ORF), protein sequence, k-mer, evolutionary signatures, or homology. Despite the effectiveness of 
these approaches, there is still much room to improve. Indeed, none of these methods exploit the contextual informa-
tion of RNA sequence, for example, k-mer features that counts the occurrence frequencies of continuous nucleotides 
(k-mer) in the whole RNA sequence cannot reflect local contextual information of each k-mer. In view of this short-
coming, here, we present a novel alignment-free method, CPPVec, which exploits the contextual information of RNA 
sequence for coding potential prediction for the first time, it can be easily implemented by distributed representation 
(e.g., doc2vec) of protein sequence translated from the longest ORF. The experimental findings demonstrate that 
CPPVec is an accurate coding potential predictor and significantly outperforms existing state-of-the-art methods.
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Introduction
Recently, long non-coding RNAs (lncRNAs, > 200nt) 
have received increasingly more attention for their par-
ticipation in numerous important biological processes 
(e.g., gene regulation and expression [1], cell cycle regula-
tion [2]). The mutations and dysregulations in lncRNAs 
can cause human diseases, such as cancer, cardiovas-
cular and neurodegenerative diseases [3–6]. It is still a 

challenging task to distinguish lncRNAs from messen-
ger RNAs (mRNAs), this is because 1) they often have 
very similar features, such as poly(A) tails, splicing and 
approximate sequence length [7]; 2) lncRNAs may con-
tain small open reading frame (sORF) that encodes 
micropeptides [8], which could induce false positives; 3) 
there are considerable indel errors [9] during the process 
of sequencing and assembly.

Many computational methods have been proposed 
to distinguish lncRNAs from mRNAs in the past years 
[10–13]. These methods mainly exploit five kinds of 
information: 1) open reading frame (ORF). The longest 
ORF of an RNA sequence is often extracted because it is 
likely to be the correct ORF where a protein is translated 
[14], then the ORF length, ORF integrity and ORF cov-
erage are selected as ORF features that are effective and 
widely used by current methods. CPAT [12] identified 
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that ORF length is the most important feature for cod-
ing potential prediction. However, ORF features are 
more likely to be correct when no sequencing or assem-
bly errors occur, and hence are not suitable for plat-
forms with indel errors, e.g., Roche (454) [15]. 2) protein 
sequence. The physicochemical properties of the pro-
tein sequence translated from the longest ORF can also 
carry information for coding potential prediction. CPC2 
[11] used isoelectric point, and CPPred adds the other 
two properties (e.g., gravy and instability) mentioned 
by CPC2. 3) k-mer (e.g., codon usage (3-mer), hexamer 
usage (6-mer)). k-mer features are often calculated by 
counting the frequency of fixed-length words (k-mer) 
that occur in an RNA sequence, or using its variant, 
e.g., usage frequency of adjoining nucleotide triplets 
(ANT) in CNCI [16]. k-mer features are effective, and 
even robust (overlapping k-mer in PLEK [10]) for cod-
ing potential prediction for the fact that the distribution 
over k-mer is significantly different in mRNAs to lncR-
NAs. Recent study [17] also combined k-mer features 
directly with deep neural networks (e.g., Convolutional 
Neural Network (CNN)) to identify lncRNAs from 
mRNAs and achieved better performance than tradi-
tional classifiers (e.g., Support Vector Machine (SVM)). 
Despite the effectiveness of k-mer features, they count 
the occurrence frequencies of continuous nucleotides 
(k-mer) in the whole RNA sequence, which cannot 
reflect local contextual information of k-mer. Moreover, 
the increase of k leads to a very long and sparse vector 
representation, which not only induce noise, but also 
computational burden in real cases [18]. 4) Evolutionary 
signatures. This information is based on the sequence 
conservation that RNAs belonging to the same class 
often have similar sequence composition (e.g., base 
composition, transition, motifs) during the evolutionary 
process. CONC [19] uses amino acid composition and 
sequence entropy. CPPred employs CTD (composition 
(C), transition (T) and distribution (D)) features [20], 
they indicate that CTD features are particularly impor-
tant for coding potential prediction of sORF. However, 
evolutionary signatures (e.g., CTD features) that these 
methods use are also simple statistics calculated with 
the continuous nucleotides, which loses contextual 
information of RNA sequences. 5) Homology informa-
tion. This information is exploited by alignment-based 
methods (e.g., CPC [21], PhyloCSF [22]), which per-
forms sequence alignments to known protein database 
(e.g., UniProt [23]) or well-annotated reference genome 
to assess the coding potential of transcript. However, 
these methods heavily depend on sequence alignments, 
which is not only computationally expensive, but also 
not suitable for species without known protein database 
or well-annotated reference genome [10, 16].

Based on the above analysis, here, we explored how 
to exploit the contextual information of RNA sequence 
to enhance the performance of coding potential predic-
tion. We developed an accurate coding potential predic-
tor, CPPVec, which exploits the contextual information 
of RNA sequence based on distributed representation 
(e.g., doc2vec [24]) of protein sequence translated from 
the longest ORF. Tests on human, mouse, zebrafish, fruit 
fly and Saccharomyces cerevisiae datasets demonstrate 
that CPPVec significantly outperforms existing state-of-
the-art methods. To our best knowledge, this is the first 
attempt to introduce distributed representation to coding 
potential prediction. There are two main contributions of 
our proposed method:

•	 We exploited the contextual information of RNA 
sequence for coding potential prediction for the first 
time, which was easily implemented by using a dis-
tributed representation (e.g., doc2vec) of protein 
sequence. The experimental results demonstrated the 
effectiveness of distributed representation for coding 
potential prediction.

•	 We fixed hexamer score by calculating it with the 
first reading frame of the longest ORF instead of the 
RNA sequence in CPPred and verified the effective-
ness of this fixed feature.

The source code and the dataset used in the paper are 
publicly available at: https://​github.​com/​hgcwei/​CPPVec.

Materials and method
Datasets
In this study, we adopted the datasets strictly selected by 
CPPred to test our proposed method. Two models are 
built for coding potential prediction, including Human-
Model and Integrated-Model. For Human-Model, 50,040 
human (Homo sapiens) mRNAs are downloaded from 
NCBI RefSeq [25] (https://​ftp.​ncbi.​nih.​gov/) and 37,297 
human ncRNAs are downloaded from Ensembl database 
[26], released in 26 November 2017 (https://​ftp.​ensem​bl.​
org/). 33360 mRNAs and 24163 ncRNAs are randomly 
selected as training set (Human-Training), 8557 mRNAs 
and 8241 ncRNAs are selected as testing set (Human-
Testing) after redundancy removal by using CD-hit [27] 
with sequence identity cutoff ≥ 80 %. Moreover, mouse 
(Mus musculus), zebrafish (Danio rerio), fruit fly (Dros-
ophila melanogaster), S. cerevisiae are also selected as 
testing sets (e.g., Mouse-Testing, Zebrafish-Testing, S. 
cerevisiae-Testing, Fruit-fly-Testing) to compare the 
cross-species prediction performance of different classifi-
cation methods. They are constructed following the same 
building strategy as Human-Testing. For Integrated-
Model, in order to evade the problem caused by the 
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specificity of species, several species (e.g., human, mouse, 
zebrafish, fruit fly, S. cerevisiae, nematode (Caenorhab-
ditis elegans) and thale cress (Arabidopsis thaliana)) 
are downloaded from NCBI RefSeq, including 525,316 
mRNAs and 55,198 ncRNAs. To evade the problems 
of computational burden and data imbalance, 52,530 
mRNAs and 27,600 ncRNAs are randomly selected as 
training set (Integrated-Training), 13,903 mRNAs and 
13,903 ncRNAs are randomly selected as testing set 
(Integrated-Testing) after redundancy removal using CD-
hit with sequence identity cutoff ≥ 80%.

Moreover, in order to verify the effectiveness of 
CPPVec to find novel lncRNAs, we constructed a test-
ing set from EVlncRNAs [28], which is a comprehensive, 
manually curated and high-quality lncRNAs database 
validated by low-throughput experiments (e.g., qRT-
PCR, knockdown, etc.). We downloaded all the avail-
able sequences of lncRNAs and got 37 novel lncRNAs 
(https://​www.​sdklab-​bioph​ysics-​dzu.​net/​EVLnc​RNAs2/), 
then CD-hit with sequence identify cutoff ≥ 80 % is used 
to remove the lncRNAs that are similar to Integrated-
Training. Finally, 34 lncRNAs are remaining and selected 
as an independent testing set.

Distributed representation of protein sequence
Representation learning plays an important role in 
machine learning methods [29]. A proper representation 
usually achieves good result for a machine learning task. 
In the past years, distributed representation has been 
proved to be a successful data representation approach 
in natural language processing. Compared with one-
hot encoding, distributed representation contains more 
semantic information about language context and more 
suitable for tasks such as sentiment classification [30], 
text classification [31]. Indeed, biological sequences (e.g., 
DNA, RNA and protein sequences) have many similar 
characteristics with natural language. For example, they 
are both symbol sequences that elements in the sequence 
are arranged in a specified order, on the other hand, they 
contain a lot of semantic information, many biologists 
believe that biological sequences are not merely one-
dimensional string of symbols, but encode a lot of useful 
information about molecular structure and functions in 
themselves [32]. Hence, it is a natural idea to introduce 
distributed representation in natural language processing 
to biological sequence analysis. It is firstly introduced by 
ProtVec [33] to protein family classification and a pre-
diction accuracy of 99% is achieved, then it is pervasive 
in a wide range of applications for biological sequences 
analysis, e.g., protein secondary structure prediction [34], 
RNA-protein binding sites prediction [35, 36].

In this paper, we introduce the distributed representa-
tion to coding potential prediction for RNA sequence. 

To attain this goal, we are faced with three problems: 1) 
Which kind of sequence should we choose to encode, RNA 
sequence, the longest ORF extracted from RNA sequence, 
or protein sequence translated from the longest ORF? 2) 
How to build a corpus from the chosen sequences? and 3) 
How to train the corpus and get a distributed representa-
tion for each sequence? In our opinion, our application is 
concerned with coding potential of RNA sequence, and 
hence we should pay more attention to protein sequence. 
Moreover, just as a word in natural language, the basic 
unit of a protein is “word” called codon (corresponding to 
acid amine), and hence we consider the distributed rep-
resentation of protein sequence translated from the long-
est ORF which is more likely to be the correct ORF than 
other ORFs, we employ the popular framework, doc2vec 
to generate a vector representation (embedding) of a pro-
tein sequence. To be specific, for all the translated protein 
sequences, we first adopt the following splitting strategy to 
generate a “document” for each protein sequence:

where a protein sequence is split in a non-overlapping 
manner with word length of 3. Second, every split protein 
sequence is formed into a “document” and appended to 
a corpus, then we can use distributed memory model of 
paragraph vectors (PV-DM) (Fig. 1) to train the corpus and 
generate distributed representation for each “document”. In 
PV-DM, a protein sequence ID and the context of the cen-
tral “word” (e.g., WVH) are mapped into a unique vector 
in themselves, which are concatenated together to predict 
the central “word”. It is inspired by the idea that apart from 
contextual information, the paragraph vector is also asked 
to contribute to the prediction task of the central “word”.

In what follows, s = s1s2...sn denote a “document” gen-
erated from a protein sequence. si denote the i-th “word” 
in the “document”, W  is the linear mapping matrix for 
each “word”, v is the paragraph vector to be trained, the 
predicted occurrence probability of the central “word” st 
given its context can be represented as:

where U , b are the softmax parameters [24] and 2k is the 
length of context. f is function that concatenate mapped 
word vector W · si with paragraph vector v . By the con-
catenated part, the words that have similar context will 
have similar distributed representations. Note that all the 
words in a split protein sequence share the same protein 
sequence ID and paragraph vector. After training with 
stochastic gradient descent, the generated vector repre-
sentation (embedding) of the split protein sequence carry 
contextual information of RNA sequence and can be 
used for coding potential prediction.

MNFLLSWVHWSLALLLYL . . . →

MNF , LLS,WVH ,WSL,ALL, LYL, . . .

(1)ŷ = b+U f (st−k , ..., st−1, st+1, ..., st+k ;W , v)

https://www.sdklab-biophysics-dzu.net/EVLncRNAs2/
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It is worth noting that in our recent paper [37], we use one-
hot encoding to capture contextual information of biological 
sequence for protein coding regions prediction, however, it is 
not suitable for coding potential prediction for two reasons: 
1) protein sequence translated from the longest ORF has a 
variable length but most of machine learning methods only 
receive a fixed-length input. 2) one-hot encoding is too low-
level to reflect high-level semantic information of biological 
sequence. Distributed representation elegantly alleviates the 
above problems, e.g., doc2vec not only naturally converts 
a variable-length sequence to a fixed-length vector, but also 
contains a lot of contextual information of RNA sequence.

Performance evaluation of CPPVec
To evaluate the performance of CPPVec, we use the stand-
ard performance metrics, such as sensitivity (SN), specific-
ity (SP), accuracy (ACC), precision (PRE), F-score, AUC 
and MCC. These metrics can be calculated as follows:

SN =
TP

TP + FN

SP =
TN

FP + TN

PRE =
TP

TP + FP

ACC =
TP + TN

TP + TN + FP + FN

F − score =
2 ∗ PRE ∗ SN

PRE + SN

MCC =

TP ∗ TN − FP ∗ FN

(TP + FN ) ∗ (TP + FP) ∗ (TN + FP) ∗ (TN + FN )

All the above metrics are based on the notions of TP, FP, 
TN, and FN, which correspond to number of positive sam-
ples identified correctly, negative samples identified incor-
rectly, negative samples identified correctly, and positive 
samples identified incorrectly, respectively. The MCC is an 
overall measurement of performance and another objec-
tive assessment index. AUC is the area under the receiver 
operating characteristic curve, it can be calculated by using 
the trapezoidal areas created between each ROC points.

Results and discussion
Pipeline of CPPVec
The pipeline of CPPVec can be found in Fig. 2, CPPVec 
mainly contains two steps, including feature extraction 
and classification model construction.

During the process of feature extraction, the data-
set (e.g., mRNAs, ncRNAs) is split into a training set 
and testing set, then the longest ORF, protein sequence 
are generated to calculate features, including four fea-
tures from the longest ORF, four features from protein 
sequence and two features from RNA sequences. Note 
that the training and testing set are put together to gen-
erate distributed vector representations by doc2vec. 
Moreover, CPPVec calculated hexamer score with the 
first reading frame of the longest ORF instead of RNA 
sequence used in CPPred. We fixed this feature for the 
fact that the first reading frame of the longest ORF is 
likely to be the correct reading frame [14] and the calcu-
lation of hexamer score are more significant than that in 
the first reading frame of RNA sequence. As for classifi-
cation model construction, we selected libsvm [38] as a 
classification model, the features of training and testing 
set were fed into the SVM classifier to train and test the 

Fig. 1  The distributed memory model of paragraph vectors (PV-DM) for protein sequence. The trained vector representations of protein sequence 
and each word contain contextual information of protein sequence
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classification model, respectively. Here, we choose SVM 
for the reasons: 1) Use the same classifier as CPPred 
to verify the effectiveness of additional features, e.g., 
doc2vec and fixed hexamer scores; 2) In CPPVec, the 
dimension of features is not high, and the scale of the 
datasets is not very large; 3) SVM has good implementa-
tion, e.g., libsvm is easy to use.

We chose the optimal parameters in CPPVec by gradu-
ally increasing one parameter with the other fixed, and 
observed the highest MCC scores achieved on Human-
Training. In doc2vec, the context length was set to 4, the 
dimension of generated features was 100, and the “word” 
length was 3. As for SVM, the radial basis function was 
selected as the kernel function, the parameter C was set 
to 300 and gamma was 0.4. We also attempted to use 
grid.py script of libsvm for optimal C and gamma but it 
was very time-consuming. Moreover, the same setting as 
Human-Training is used for other datasets and we found 
that it worked well.

Performance of CPPVec on benchmark datasets
In order to verify the effectiveness of our proposed 
method, we compared our proposed method, CPPVec, 
with existing state-of-the-art methods, including CPPred, 
CPAT, CPC2, and PLEK. All the methods are trained and 
tested with the same datasets used in CPPred for a fair 
comparison. Human-Model is test on human, mouse, 
zebrafish, S. cerevisiae and fruit fly and Integrated-Model 
is test on Integrated-Testing.

From Tables  1, 2 and 3, it is observed that CPPVec 
performs the best among the existing state-of-the-art 
methods on all the test datasets. The MCCs of CPPVec 
are 0.953, 0.972 and 0.961 on Human-Testing, Mouse-
Testing and Integrated-Testing, respectively, an improve-
ment of 0.018 over the second best result achieved by 
PLEK on Human-Testing, 0.046 over the second best 
results achieved by CPPred on Mouse-Testing and 0.042 
over the second best result achieved by CPPred on Inte-
grated-Test, respectively. Moreover, we also test CPPVec 
on several other species to assess its performance on 
cross-species coding potential prediction. As shown in 
Tables  4, 5  and 6, CPPVec achieved consistent results 
when testing with zebrafish, S. cerevisiae and fruit fly, all 
of the AUC scores on the three testing sets exceed 0.99.

Performance of CPPVec on experimentally validated 
lncRNAs
In order to verify the ability of CPPVec to identify novel 
lncRNAs, we compare the prediction performance of 
CPPVec with CPPred, CPAT, CPC2, and PLEK on 34 
experimentally validated lncRNAs. As shown in Sup-
plementary Table S1, CPPVec outperforms the other 
methods, only missing one lncRNAs with sequence name 
“NR_073054.1”. In comparison, CPPred, CPAT, CPC2 
and PLEK incorrectly predict several other lncRNAs 
apart from “NR_073054.1”. Moreover, CPPVec correctly 
predicts lncRNAs with more confidence (smaller pre-
dicted coding probability) than the other methods, e.g., 

Fig. 2  Pipeline of CPPVec. Multiple features are extracted from three kinds of sequence: the RNA sequence, the longest ORF extracted from the 
RNA sequence, and protein sequence translated from the longest ORF, and finally integrated into a SVM classifier for coding potential prediction. 
Note that the difference between CPPVec and CPPred lies in that the additional feature of doc2vec and the fixed feature of hexamer score
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Table 1  Comparison of CPPVec (Human-Model), CPPred, CPAT, CPC2, and PLEK on Human-Testing

Method SP(%) SN(%) PRE(%) ACC(%) F-score AUC​ MCC

PLEK 98.10 95.42 98.11 96.73 0.967 0.993 0.935

CPC2 95.30 90.92 95.26 93.07 0.930 0.982 0.862

CPAT 94.07 94.58 94.30 94.33 0.944 0.984 0.887

CPPred 97.04 95.44 97.10 96.23 0.963 0.992 0.925

CPPVec 98.69 96.67 98.71 97.65 0.977 0.997 0.953

Table 2  Comparison of CPPVec (Human-Model), CPPred, CPAT, CPC2, and PLEK on Mouse-Testing

Method SP(%) SN(%) PRE(%) ACC(%) F-score AUC​ MCC

PLEK 93.43 87.61 95.41 89.88 0.913 0.969 0.796

CPC2 95.86 95.86 97.30 95.61 0.964 0.991 0.909

CPAT 96.65 96.10 97.81 96.32 0.970 0.993 0.923

CPPred 97.70 95.57 98.48 96.40 0.970 0.993 0.926

CPPVec 99.07 98.36 99.40 98.64 0.989 0.999 0.972

Table 3  Comparison of CPPVec (Human-Model), CPPred, CPAT, CPC2, and PLEK on Zebrafish-Testing

Method SP(%) SN(%) PRE(%) ACC(%) F-score AUC​ MCC

PLEK 88.48 90.48 91.99 89.67 0.912 0.962 0.787

CPC2 89.95 96.28 93.34 93.71 0.948 0.965 0.869

CPAT 85.53 98.51 90.87 93.24 0.945 0.964 0.862

CPPred 93.75 95.55 95.72 94.82 0.956 0.979 0.893

CPPVec 93.57 98.34 95.72 96.40 0.970 0.990 0.926

Table 4  Comparison of CPPVec (Human-Model), CPPred, CPAT, CPC2, and PLEK on S.cerevisiae-Testing

Method SP(%) SN(%) PRE(%) ACC(%) F-score AUC​ MCC

PLEK 99.03 46.92 98.73 49.94 0.638 0.946 0.216

CPC2 100 88.41 100 89.08 0.938 0.983 0.554

CPAT 100 83.23 100 84.20 0.908 0.969 0.473

CPPred 99.76 86.24 99.98 87.02 0.926 0.990 0.515

CPPVec 100 93.97 100 92.23 0.957 0.994 0.626

Table 5  Comparison of CPPVec (Human-Model), CPPred, CPAT, CPC2, and PLEK on Fruit-fly-Testing

Method SP(%) SN(%) PRE(%) ACC(%) F-score AUC​ MCC

PLEK 91.53 83.12 97.66 84.72 0.898 0.949 0.633

CPC2 94.51 97.11 98.69 96.61 0.979 0.991 0.893

CPAT 96.85 97.41 99.24 97.30 0.983 0.992 0.916

CPPred 95.85 93.99 98.97 94.34 0.964 0.986 0.837

CPPVec 94.39 98.60 98.68 97.80 0.986 0.994 0.929
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NR_111959.1, XR_593181.2, etc. All the results demon-
strated that CPPVec has stronger ability to identify novel 
lncRNAs than existing state-of-the-art methods.

Performance of distributed representation
In order to verify the effectiveness of distributed rep-
resentation of protein sequence translated from RNA 
sequence, we conducted an ablation study to separate the 
features used in CPPVec and observe the performance 
improvement that distributed feature vector contributes. 
To be specific, we use OVEC to denote the method that 
only use the 100 dimensional feature vector generated 
from doc2vec, we use NVEC to denote the method that 
use features of CPPVec except distributed features. All 
the methods are test on Integrated-Model using hold-out 
and 3-fold cross-validation. As shown in Supplementary 
Table S2, OVEC achieves MCC with 0.925, which even 
outperform CPPred that use multiple features. From Sup-
plementary Table S3, OVEC achieves MCC with 0.912, 
which achieves considerable performance with CPPred. 

Moreover, we also analyzed the vector representations 
generated by doc2vec and k-mer on Integrated-Training 
dataset. Figure  3 shows a two-dimensional projection of 
generated vector representations by k-mer and doc2vec 
using t-SNE [39]. We can see that almost all the mRNAs 
and ncRNAs were clustered in two groups for doc2vec, 
whereas mRNAs mixed with ncRNAs heavily and difficult 
to separate for k-mer. It is interesting to see that there are 
two subgroups for ncRNAs features generated by doc2vec, 
this is because there exist multiple kinds of ncRNAs (e.g., 
piRNA, lncRNA, etc.) in Integrated-Training dataset and 
ncRNAs belong to the same class often show similar dis-
tributed representation. All the above results demonstrate 
that distributed representation of protein sequence is 
effective to distinguish mRNAs from ncRNAs.

Performance of fixed hexamer score
In order to verify the effectiveness of fixed hexamer 
score, we compared the prediction performance of 

Table 6  Comparison of CPPVec (Integrated-Model), CPPred, CPAT, CPC2, and PLEK on Integrated-Testing

Method SP(%) SN(%) PRE(%) ACC(%) F-score AUC​ MCC

PLEK 90.17 66.32 87.09 78.24 0.753 0.872 0.582

CPC2 95.54 91.27 95.34 93.40 0.933 0.979 0.869

CPAT 93.86 92.66 93.75 93.26 0.932 0.980 0.865

CPPred 94.93 96.91 95.03 95.92 0.960 0.990 0.919

CPPVec 98.38 97.70 98.38 98.05 0.981 0.997 0.961

Fig. 3  Visualization of two-dimensional projections for k-mer and doc2vec using t-SNE
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NVEC and CPPred on Integrated-Test to observe the 
performance improvement of fixed hexamer score. 
From Supplementary Table S2, NVEC shows much bet-
ter prediction performance than CPPred with MCC of 
0.935 versus 0.919, and from Supplementary Table S3, 
NVEC shows much better prediction performance than 
CPPred with MCC of 0.937 versus 0.923, which verifies 
the significance of fixed hexamer score.

Conclusion
In this paper, we proposed a novel coding potential pre-
dictor (CPPVec) based on a distributed representation 
(e.g., doc2vec) of protein sequence translated from the 
longest ORF of RNA sequence, which effectively exploit 
the contextual information of protein sequence. Tests 
on human, mouse, fruit fly, zebrafish and S.cerevisiae 
demonstrates that CPPVec consistently outperforms 
existing state-of-the-art methods, which verifies that 
distributed representation of protein sequence is an 
effective feature for coding potential prediction.
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