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Abstract 

Background Cell clustering is a prerequisite for identifying differentially expressed genes (DEGs) in single-cell RNA 
sequencing (scRNA-seq) data. Obtaining a perfect clustering result is of central importance for subsequent analyses, 
but not easy. Additionally, the increase in cell throughput due to the advancement of scRNA-seq protocols exacer-
bates many computational issues, especially regarding method runtime. To address these difficulties, a new, accurate, 
and fast method for detecting DEGs in scRNA-seq data is needed.

Results Here, we propose single-cell minimum enclosing ball (scMEB), a novel and fast method for detecting single-
cell DEGs without prior cell clustering results. The proposed method utilizes a small part of known non-DEGs (stably 
expressed genes) to build a minimum enclosing ball and defines the DEGs based on the distance of a mapped gene 
to the center of the hypersphere in a feature space.

Conclusions We compared scMEB to two different approaches that could be used to identify DEGs without cell 
clustering. The investigation of 11 real datasets revealed that scMEB outperformed rival methods in terms of cell clus-
tering, predicting genes with biological functions, and identifying marker genes. Moreover, scMEB was much faster 
than the other methods, making it particularly effective for finding DEGs in high-throughput scRNA-seq data. We have 
developed a package scMEB for the proposed method, which could be available at https:// github. com/ Focus Paka/ 
scMEB.

Keywords Minimum enclosing ball, Differentially expressed genes, Single-cell RNA-seq data

Background
Advances in single-cell RNA sequencing (scRNA-seq) 
have made it possible to assess gene expression and cell 
state at high resolution [1–3]. Conventional bulk RNA-
seq investigates the transcriptomes by average cellular 
expression, which may ignore the differences between 
individual cells. Developed scRNA-seq technologies have 
provided opportunities to capture expressions of genes at 

the cellular level and further elucidated the heterogene-
ity between different cells [4, 5]. However, the identifica-
tion of differentially expressed genes (DEGs) across cells 
is still a challenging problem.

Multiple tools have been developed for bulk or scRNA-
seq differential expression analysis. Parametric methods 
including edgeR [6], DESeq2 [7], BPSC [8], and DEsin-
gle [9], which identify DEGs based on different distribu-
tion assumptions. Non-parametric methods, such as the 
Kolmogorov–Smirnov test, NODES [10], the Wilcoxon 
rank-sum test [11] and the likelihood ratio test, which 
detect DEGs directly. Soneson and Robinson [12] noted 
that some methods designed for bulk RNA-seq data dif-
ferential expression analysis could be used for scRNA-seq 
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but only if genes with low expression are prefiltered. One 
commonality these methods share is to identify DEGs 
between two experimental conditions. However, in some 
cases, the true labels of cells are implicit or unknown, and 
there may be two or more potential types of cells.

To overcome the above issues, a straightforward solu-
tion is to carry out unsupervised clustering first and then 
perform the differential expression analysis with the 
above tools by comparing one cluster to the rest of the 
clusters. In this way, clustering results affect the down-
stream analysis enormously. Choosing an appropriate 
clustering method and setting the parameters to get the 
perfect clustering result remains an issue. We clustered 
11 real datasets by graph-based methods in the scran [13] 
package with different parameter settings and found the 
difference in the number of types between the cluster-
ing results and the reference labels (Supplementary file 
1 Table  S1). Considering the drawbacks, some methods 
have been proposed to identify DEGs without reference 
clustering results. Representative methods include sin-
gleCellHaystack [14] and MarcoPolo [15]. singleCellHay-
stack employs Kullback–Leibler divergence to find genes 
with expressions that are non-uniformly distributed in a 
low-dimensional space. MarcoPolo assumes scRNA-seq 
data are bimodal and fit each gene with a Poisson mixture 

model, and it sorts out DEGs using three criteria. Differ-
ent from other methods that obtain the DEGs only under 
two conditions, the above two methods directly detect 
DEGs without clustering results, which improves the cal-
culation accuracy and efficiency enormously. However, 
we find that the problem of runtime still exists for these 
two methods when dealing with sizable real datasets, 
especially for the MarcoPolo method.

Here, we present single-cell minimum enclosing ball 
(scMEB), a novel and fast method for detecting single-
cell DEGs. It extends the existing bulk RNA-seq differ-
ential expression analysis method scaling-free minimum 
enclosing ball (SFMEB) [16] to scRNA-seq data. It 
assumes that a small part of non-DEGs is known and 
builds a minimum enclosing ball based on it, and the 
genes outside the ball are regarded as DEGs. This method 
does not require data normalization beforehand and 
could be easily applied to scRNA-seq datasets without 
labelling cells. Because the method only uses parts of 
genes to build the model, it has the advantages of sim-
ple formulation and quick calculation speed. The calcula-
tion efficiency of the method could be further improved 
by using principal components (PCs) as inputs. Figure 1 
shows the workflow of scMEB for detecting DEGs, and 

Fig. 1 Overview of the scMEB workflow. Randomly sampling some important cells before PCA is optional, and the purpose is to speed up the 
calculation. The first 50 PCs could be obtained from the sampled/unsampled cells. A small part of the stable genes was used to build the model. 
A sphere that encloses the training data in the feature space was found. The remaining genes were divided into DEGs or non-DEGs according to 
whether they were outside or inside the enclosing ball, respectively
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the details of the proposed methods are shown in the 
Methods section.

Compared with the SFMEB method, scMEB is 
advanced in the wider scope of application, the improve-
ment of computation accuracy and speeding up the 
runtime of identifying DEGs. First, the proposed scMEB 
method is developed to identify DEGs in subsets of 
scRNA-seq data with many types of cells or scRNA-seq 
data with unknown labels. However, the SFMEB method 
only considers the DEG detection of bulk RNA-seq data. 
The purpose of SFMEB is to detect DEGs under two 
biological conditions or two different species. In real-
ity, the prediction of differential expression patterns in 
single-cell RNA-seq data is more complex than in RNA-
seq data. One of the major problems is that the evalua-
tion of the cluster number is difficult because of the high 
dimensionality of scRNA-seq data. Besides, for scRNA-
seq data with low abundance populations, some genes 
are expressed differentially in a sub-population but not 
detected in a larger cluster [14], which may lead to false 
negatives. Second, the SFMEB only considers building the 
model with the raw read counts, however, scMEB could 
transform the original expressions, and build the model 
with the transformed data. In our analysis, we incorpo-
rate PCA in the model and build the model with the first 
PCs. This difference not only improves the scMEB com-
putation accuracy enormously but also speeds up the cal-
culation greatly, especially for a sizable dataset.

Results
Descriptions of real data analysis
In this section, we compared the performance of scMEB 
with MarcoPolo and the four modes of singleCellHay-
stack. All three methods were developed for data that cell 
clusters were not obvious to detect DEGs without prior 
clustering. Compared with other methods under two 
conditions, these three methods were faster and more 
accurate for DEG detection [14, 15]. scMEB needs some 
non-DEGs to build the model; however, the ground truth 
of the genes is unknown. To address this issue, we utilized 
stably expressed genes (SEGs) [17] to replace non-DEGs 
to build the model. SEGs refer to a subset of genes in sin-
gle cells that are stably expressed in different cells and 
tissues, and the function is identical to the housekeeping 
genes in RNA-seq data [17]. For subsequent analysis, we 
directly used lists of 1,076 human and 916 mouse SEGs 
downloaded from https:// sydne ybiox. github. io/ scMer ge/ 
refer ence/ scSEG Index. html to build the model. In addi-
tion, we could use the scSEGIndex [17] method to get the 
SEGs of any species and the R package scMerge [18] as 
the calculation framework.

Distribution comparison of the identified DEGs
We analyzed the distributions of the most significant 500 
DEGs obtained by these three methods. The three meth-
ods measure the significance level of a gene’s potential as 
a DEG in different ways. The four modes of singleCell-
Haystack return estimated p-values for each gene. The 
smaller the p-value, the more significant this gene is. 
MarcoPolo returns a rank for each gene based on three 
criteria; the higher the ranking, the more significant. 
Finally, scMEB uses the signed distance between the 
point and the sphere of the hypersphere in feature space 
to measure the significance level of a gene’s potential as 
a DEG, and the larger the distance is, the more likely it is 
that the gene is a DEG.

We derived lists of common and unique genes for the 
most significant 500 DEGs detected by three methods in 
the human embryogenic stem cell (hESC) dataset [19]. 
We found that scMEB and Haystack had more genes 
in common with each other than with MarcoPolo, sug-
gesting that there are similarities in the results of sin-
gleCellHaystack and scMEB (Fig.  2). Additionally, we 
found a minor difference between the DEGs detected 
by the four modes of singleCellHaystack, and the aver-
age expressions of those DEGs almost covered the entire 
scope (Fig.  3). However, the DEGs detected by Marco-
Polo and scMEB distributed more concentrated, both 
methods tended to select DEGs with higher standard 
deviations. DEGs detected by scMEB had a lower average 

Fig. 2 The common and unique genes of the most significant 500 
DEGs detected by scMEB, Haystack, and MarcoPolo for the hESC 
dataset

https://sydneybiox.github.io/scMerge/reference/scSEGIndex.html
https://sydneybiox.github.io/scMerge/reference/scSEGIndex.html
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expression, whereas the average expressions of DEGs 
detected by MarcoPolo were much higher. To understand 
the relationships between the detected DEGs and SEGs, 
we calculated the intersection of detected DEGs and 
SEGs. The SEGs used in scMEB were obtained through 
the total human SEGs excluding those that were not 
included in the hESC dataset. Figure 4 showed the distri-
butions of SEGs and detected DEGs, as well as the inter-
section of these two types of genes. scMEB had the least 
number of overlapped genes, which demonstrated that it 

is reasonable to build a model with SEGs. Using Kumar’s 
[20] mouse dataset, we followed the same steps used 
for the hESC dataset and found a similar pattern to the 
human dataset (Supplementary file 1 Figs. S1–S3). Sup-
plementary files 2–3 listed the SEGs and the most signifi-
cant 500 DEGs detected by each method from the hESC 
data and Kumar data, as well as the differential statistics, 
including p-values, signed distances, and ranks. The four 
modes of singleCellHaystack, scMEB, and MarcoPolo 
returned the p-values, signed distances, and ranks for 

Fig. 3 Scatter plot showing mean expression and standard deviation of each gene across single cells. Each point represents a gene, with blue 
points representing DEGs identified in the hESC dataset and gray points representing other genes
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each gene, respectively. In addition, we got the number 
of SEGs that were included in the most significant 100, 
200, 500, and 1,000 DEGs detected by each method (Sup-
plementary file 1 Tables S2–S3). For the above two data-
sets, the scMEB had the smallest number of SEGs in the 
detected DEGs, which implied the smallest false discov-
ery rate.

To validate the fidelity of DEGs identified by scMEB, 
we selected the most significant 100 DEGs detected by 

three methods from a human scRNA-seq data (hESC 
data). We then excluded the overlapping genes and ana-
lyzed the rest of the 74 DEGs detected by scMEB. We 
retrieved the biological function of these genes from the 
NCBI [21] website, and found that there were 71 genes 
related to human illness or embryonic development. 
Particularly, scMEB could detect a few key genes among 
the top 100 DEGs. We found that ‘ENSG00000136698’ 
is involved in signaling during embryonic development, 

Fig. 4 Scatter plot showing mean expression and standard deviation of each gene across single cells. Each point represents a gene, with blue 
points representing DEGs identified in the hESC dataset, red points representing SEGs, green points representing genes at the intersection of DEGs 
and SEGs, and gray points representing other genes
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and mutations in this gene may cause autosomal vis-
ceral heterotaxy and congenital heart disease; the cad-
herins encoded by ‘ENSG00000113361’ are essential 
for cell differentiation and morphogenesis, decreased 
expression of this gene may be related to tumor growth 
and metastasis; and ‘ENSG00000122691’ is important 
for embryonic development, and mutations in this gene 
would result in Saethre-Chotzen syndrome. Also, using 
the same procedures, we examined the DEGs detected 
by scMEB in a mouse dataset (Kumar data). Among the 
80 DEGs uniquely detected by scMEB, 61 were specifi-
cally associated with mouse disease and development. 
More details about the functions of uniquely detected 
DEGs for two datasets could be accessed in Supple-
mentary files 4–5.

Comparison of identifying marker genes
We evaluated the performance of scMEB to identify 
marker genes. Cell markers are widely used for labeling 
cell populations and exploring cell compositions [22]. 
Following the two methods described by Kim et al. [15], 
we obtained marker genes and compared the perfor-
mance of marker gene identification through the receiver 

operating characteristic (ROC) curve and area under the 
curve (AUC). The “The method to obtain marker genes” 
section introduces the details about the obtainment of 
marker genes.

We compared the ROC curves and AUC values of 
each method for marker gene identification using 11 real 
datasets (Fig. 5 and Supplementary file 1 Tables S4–S8). 
We first selected the top 100 genes with the maximum 
log fold change values for each dataset as marker genes. 
scMEB performed better than the other two methods for 
seven datasets, which accounted for 64% of 11 datasets. 
Because there were minor differences in the AUC values 
between the four modes of singleCellHaystack, we chose 
the highest AUC value of the four modes as the value of 
singleCellHaystack. By doing so, this method performed 
the best for three out of 11 datasets. MarcoPolo showed 
the best performance for only one dataset. To evaluate 
the performance for different numbers of marker genes, 
we compared the AUC values of six methods in the 11 
real datasets for the top 200, 300, 400, and 500 marker 
genes. Overall, scMEB performed the best in 7 or 8 of 
11 datasets for the different numbers of selected marker 

Fig. 5 The ROC curves of singleCellHaystack, scMEB, and MarcoPolo for identifying 100 marker genes using 11 real datasets. The marker genes were 
selected using the maximum log fold change values, and the singleCellHaystack was carried out through four modes
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genes, which coincided with the conclusion about the top 
100 marker genes (Supplementary file 1 Tables S5–S8).

To reduce the influence of a specific calculation method 
on the marker genes, we retrieved a list of marker genes 
from the two databases. Only nine datasets corresponded 
to the tissues in the database and had enough marker 
genes for subsequent identification. Supplementary file 1 
Table S9 shows the AUC values of each method for iden-
tifying marker genes. scMEB performed the best for five 
out of nine datasets, and singleCellHaystack had the best 
performance for the remaining four datasets. Therefore, we 
can draw similar conclusions about marker gene identifica-
tion for these two methods of defining marker genes. We 
also found that MarcoPolo performed differently compared 
to the results in [15], despite conducting the same study 
using the same dataset. It is possible that MarcoPolo only 
used the genes with average expression levels in the top 
30th percentile for data preprocessing, causing some DEGs 
to be removed before further analysis.

Clustering analysis of DEGs
To characterize the performance of discriminating differ-
ent cell types, we compared the clustering results of lists 
of DEGs detected by three types of methods and highly 
variable genes (HVGs) obtained by the getTopHVGs() func-
tion in the scran [13] package. We selected a data from the 
human and mouse datasets separately for clustering. For 
more details about the pre-processing of clustering and 
evaluation criteria, please refer to the “Clustering process 
and evaluation criteria” section.

We first investigated the t-SNE plots generated from a 
human dataset (hESC data) using HVGs or DEGs detected 
by each method (Fig.  6 A–G). We found that HVGs and 
DEGs showed similar performance in separating different 
types of cells. Although DEGs detected by Haystack and 
MarcoPolo resulted in the same number of clustering types 
with true labels, all methods failed to distinguish the MPS 
from the APS cell types. The 20 average clustering results 
of the four metrics suggested that DEGs were superior 
to HVGs at separating cell types (Fig. 6 H). Of the DEGs, 
scMEB performed the best. Supplementary file 1 Fig. S4 
shows the clustering results generated from a mouse data-
set (Kumar data). Both HVGs and DEGs showed a clear 
separation for different cell types; however, a few cells were 
falsely clustered by HVGs and DEGs detected by single-
CellHaystack and MarcoPolo, which were marked by red 

circles in the t-SNE plots. scMEB outperformed the other 
methods for the four clustering metrics.

The comparison of gene ontology analysis
To further compare the performance of these methods, 
we explored the biological functions of detected DEGs by 
performing gene ontology (GO) enrichment analysis for 
the hESC dataset. We conducted GO enrichment analy-
sis by selecting the most significant 500 DEGs detected by 
each method and mapping each of them to the ontologies 
in the GO database. Then, we compared the statistical sig-
nificance of the top enriched ontologies. Refer to the “Gene 
ontology enrichment analysis” section for more details.

For each functional category of GO, we combined the 
top five enriched GO terms for the three methods for 
comparison. For simplicity, we only compared the scMEB 
with Haystack and MarcoPolo. Figure 7 showed that the 
top five enriched terms for scMEB and Haystack were 
almost the same, and both differed from the MarcoPolo 
terms. We found the common top five enriched terms 
from scMEB and Haystack that described the develop-
ment of different tissues in humans. These indicated that 
detected DEGs serve essential cellular functions, which 
also coincided with the source of the hESC dataset that 
originated from human embryonic stem cells at various 
stages of differentiation. The greater the −log10p.adjuct , 
the more DEGs were mapped to this GO term, which 
was also called that DEGs were significantly enriched 
in this GO term. Therefore, compared with the other 
two methods, there were more genes in the 500 DEGs 
detected by scMEB mapped to these combined top five 
GO terms. Additionally, the DEGs detected by scMEB 
were significantly enriched in molecular function and 
cellular components (Supplementary file 1 Figs. S5 and 
S6). Nevertheless, the DEGs detected by MarcoPolo were 
less enriched for most GO terms. Supplementary file 
6 contains the GO enrichment analysis results of three 
methods. From the outputs of three methods for GO 
enrichment analysis, the DEGs detected by scMEB were 
significantly enriched in 1,108 GO terms, the second was 
the Haystack (664 GO terms), and MarcoPolo had the 
least number of significantly enriched GO terms (29 GO 
terms). The number of DEGs detected by MarcoPolo that 
mapped to the database was also less than the numbers of 
scMEB and Haystack. The expressions of genes that were 
included in the same GO term may have some similarities 

Fig. 6 The clustering results of HVGs and DEGs detected by each method in a human (hESC data) dataset. A-G The t-SNE plots generated from 
hESC data using A HVGs as well as DEGs detected by B Haystack, C Haystack.adv, D Haystack.tsne, E Haystack.tsne.adv, F scMEB, and G MarcoPolo. 
The cells in the left panel are colored by predefined labels, and the cells in the right panel are colored by predicted labels. (H) Bar plots of 
comparison between clustering and predefined cell class labels using four clustering metrics. The red dashed line is the average value of scMEB for 
each metric

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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or connections, causing these genes distributed more 
concentrated in the feature space. From the conclusions 
of Fig. 3, scMEB tended to detect DEGs that distributed 
more concentrated, however, the DEGs detected by Hay-
stack distributed more dispersively. Therefore, the differ-
ent distribution characteristics of detected DEGs led to a 

very different pattern of scMEB than the other two meth-
ods in the GO molecular function.

Runtime comparison
We measured the runtime of the three methods by run-
ning the model for 11 real datasets. We only used the CPU 

Fig. 7 GO enrichment analysis of detected DEGs mapped to biological processes
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version of MarcoPolo for comparison due to hardware 
restrictions. scMEB finished in seconds, singleCellHay-
stack in minutes, and MarcoPolo (CPU version) in hours 
(Fig. 8). MarcoPolo can involve fitting a mixture model for 
each gene, which means it takes a long time to estimate the 
parameters. Because MarcoPolo (GPU version) is 60 ∼ 90 
times faster than MarcoPolo (CPU version) [15], it is rea-
sonable to infer that MarcoPolo (GPU version) would finish 
processing these 11 real datasets in minutes. The runtime 
of Haystack and Haystack.adv was close, and Haystack.tsne 

and Haystack.tsne.adv also had approach run times, which 
may be related to the type of inputs, as the former two 
methods used the first 50 PCs as inputs, while the latter 
two methods used two t-SNE coordinates. Inputting t-SNE 
coordinates for singleCellHaystack is faster than inputting 
50 PCs, especially for a sizable dataset. scMEB was the fast-
est among all methods for 9 out of 11 datasets, and scMEB  
had a runtime similar to that of singleCellHaystack for 
the other two datasets. The details of runtime for these 
methods are shown in Supplementary file 1 Table S10.

Fig. 8 The runtime of different methods for 11 real datasets of various genes and sizes
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Discussion
scMEB is a fast method for detecting DEGs without clus-
tering results. It finds an MEB based on a small part of 
known non-DEGs in the feature space. The DEGs are 
detected according to the distance from a mapped gene 
to the center of the sphere. Because it regards each gene 
as a vector, we were able to build the model without clus-
tering the cell results, which reduced the effects of clus-
tering results on DEG detection. Additionally, we only 
used a part of the genes and the first 50 PCs as inputs, 
which improved the calculation efficiency enormously. 
Sampling a portion of important cells before PCA could 
further accelerate the computation, which is very useful 
for high-throughput scRNA-seq data.

The differences in the expression distributions of 
DEGs and SEGs imply that building a model using a list 
of SEGs is reasonable. In addition, scMEB had a bet-
ter or comparable performance for detecting marker 
genes compared to singleCellHasytack and MarcoPolo. 
The clustering results showed that DEGs detected by 
scMEB had a better performance in separating different 
cell types. Additionally, the GO enrichment analysis of 
detected DEGs suggested that scMEB has the potential 
to find more significant enriched genes than the other 
methods. We found that scMEB is similar to singleCell-
Haystack in terms of the number of common DEGs and 
the biological functions of the top enriched genes of 
the detected DEGs. Both methods performed better at 
marker gene detection than MarcoPolo. The compari-
son of runtimes for 11 real datasets with various genes 
and sizes coincided with the conclusion that scMEB is a 
fast method for scRNA-seq data differential expression 
analysis.

The discriminant function of scMEB is a dichotomic 
separation, which is different from the outputs of sin-
gleCellHaystack and MarcoPolo. singleCellHaystack 
provides p-values for each gene, and MarcoPolo returns 
a rank for each gene based on three criteria. Thus, 
either could be used to select a certain number of the 
most significant DEGs by setting a threshold. From this 
perspective, scMEB also provides a metric for ranking 
the genes, that is, the distance between the gene and 
the center of the ball in the feature space. The further 
the distance, the more significant the gene.

Conclusions
We proposed a fast and clustering-independent scMEB 
method for DEG detection in scRNA-seq data. The 
analysis of 11 real datasets demonstrated that scMEB 
provides a new way to identify marker genes and pre-
dict genes with biological functions. Additionally, the 
selected DEGs could further improve the performance 

of clustering. Although scMEB has fast calculation, 
it suffers from a large number of genes because of the 
PCA step. We will consider this issue in our future 
work.

Methods
Processing of scRNA‑seq data
We followed the steps by Vandenbon and Diez [14] to 
preprocess the datasets. First, we used counts per mil-
lion to normalize the data. Then, we divided the expres-
sions of each gene across the cells into detected and not 
detected and determined the threshold based on the 
median of the normalized data. Lastly, we kept the data 
for which genes were detected in more than 10 cells as 
well as cells with more than 100 detected genes for subse-
quent analysis.

scRNA‑seq datasets
We evaluated the performance of the scMEB by conduct-
ing analyses on 11 real scRNA-seq dataset, and comparing 
the results with singleCellHaystack and MarcoPolo. single-
CellHaystack includes four modes ranging from simple to 
advanced, and uses the first 50 PCs or 2D t-SNE [23] coor-
dinates as the input. For simplicity, we denoted the four 
modes as Haystack, Haystack.adv, Haystack.tsne, and Hay-
stack.tsne.adv. Table 1 shows a brief summary of the 11 real 
datasets. The scRNA-seq data included different human 
and mouse tissues, and the number of cells varied from 200 
to 8,000.

Table 1 Summary of 11 scRNA-seq datasets used for differentially 
expressed gene identification

hESC: human embryogenic stem cell;

 PBMC: peripheral blood mononuclear cell

Datasets Organism Cells (n) Genes (n) Classes 
(n)

Publication

hESC Human 446 48981 8 [19]

PBMC Human 3994 15716 8 [24]

Human 
Liver

Human 8444 20007 11 [25]

Kumar Mouse 246 45159 3 [20]

Kidney Mouse 519 23341 5 [26]

Liver Mouse 714 23341 5 [26]

Limb 
Muscle

Mouse 1090 23341 6 [26]

Pancreas Mouse 1564 23341 9 [26]

Lung Mouse 1716 23341 11 [26]

Heart Mouse 4365 23341 7 [26]

Marrow Mouse 5037 23341 22 [26]
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The framework for detecting DEGs in scRNA‑seq datasets
The scMEB method extends the SFMEB [16] method, 
which has been previously used to identify DEGs in RNA-
seq data, to scRNA-seq data. scMEB regards each gene as 
a point positioned in a feature space and builds a model 
with a small set of non-DEGs. The basic idea of scMEB is to 
find the smallest sphere B(c,R) to enclose the non-DEGs. 
Therefore, those genes outside the sphere, which are obvi-
ously different from the training data, could be identified as 
DEGs.

Using vector x for a gene, a list of non-DE genes is repre-
sented by {xi, i = 1, 2, · · · , n} . We formulate the model as 
follows

where ξ is the slack variable, which is used to allow some 
points outside the sphere; c and R are the center and 
radius of a sphere, respectively; C is a tuning parameter 
to control the radius and the number of errors; and φ is 
an unknown mapping that transforms the original vector 
into a high-dimensional vector in the feature space.

By solving the dual problem

we obtain the decision function 
f (xi) = φ(xi)− ĉ

2
− R̂2 . Because the formula 

is only related to the product of the mapped val-
ues, we replaced the product with a kernel func-
tion K (xi, xj) . There are multiple kernel functions to 
choose from; we used the radial basis function kernel 
( K (xi, xj) = exp(−ν

∥

∥xi − xj

∥

∥

2
) ) in our work. Therefore, 

the discriminant rule for detecting DEGs is

Since each gene is regarded as a vector in scMEB, the 
length of expressions of a gene across cells is the dimen-
sion of the gene. The greater the number of cells, the 
higher the gene dimensions. In reality, different types of 
data could be used as inputs in scMEB. Thus, we could 
use PCs as inputs to reduce the dimensions of the data. In 
the real data analysis, we used the first 50 PCs as inputs 
for scMEB. Replacing the original expression levels with 
the orthogonal PCs not only reduces the data noise, but 
also may improve the ability of scMEB to detect DEGs. 
Sampling important cells before PCA could further 
speed up the calculation. The threshold of the number 

(1)
min
c,R,ξ

R2 + C
∑n

i=1 ξi,

subjuct to ||φ(xi)− c||2 ≤ R2 + ξi,
ξi ≥ 0, i = 1, 2, · · · , n,

(2)

min
�

∑n

i=1

∑n

j=1
�i�j�(xi)

T�(xj) −
∑n

i=1
�i�(xi)

T�(xj)

subject to
∑n

i=1
�i = 1,

0 ≤ �i ≤ C , i = 1, 2,⋯ , n,

{

DE genes f (xi)>0,
non-DE genes otherwise.

of sampling cells could be set manually considering that 
some cells provide limited information for DE analysis, 
especially for cells with few detected genes. In the “Dis-
cussions about the settings in scMEB” section, we evalu-
ated the performance of scMEB for different parameter 
settings in sampling, and found that sampling 10% of 
all cells is a good choice for a big dataset. In our work, 
if the number of cells was more than 1,000, we followed 
the same sample rule as the advanced mode of single-
CellHaystack [14] and randomly sampled 1,000 impor-
tant cells from the total number of cells. The probability 
of each cell being selected was related to the number of 
detected genes in this cell. The more detected genes in 
the cell, the more likely the cell was to be selected. Fig-
ure 1 shows the workflow of scMEB for detecting DEGs. 
In this way, scMEB runs much faster than the other 
methods. Additionally, we followed the parametric tun-
ing process of SFMEB [16], that is, fixing a parameter 
( C = 0.1 ) and selecting another parameter ν from (0,  1) 
using a grid search. Considering that the expressions of 
some non-DEGs could be regarded as differential expres-
sions, the reject rate was set at 10% to control the scale of 
the sphere.

Relation to SFMEB
There are mainly two extensions from the SFMEB to 
scMEB. First, different from the SFMEB which identi-
fies DEGs under two biological conditions, scMEB could 
be extended to two or more potential types of cells or 
unknown labels datasets, which fits with the characteris-
tic of scRNA-seq data. Second, instead of using the origi-
nal expressions as inputs in SFMEB, scMEB incorporates 
PCA in the model, and uses the first 50 PCs as inputs, 
which improves the computation accuracy and speeds up 
the calculation enormously.

Discussions about the settings in scMEB
We have conducted four analysis experiments to evalu-
ate the performance of scMEB for different parameter 
settings in random sampling. Each analysis experiment 
was repeated 50 times and the AUC values were shown 
with boxplots. We selected data from the human (Human 
liver data) and mouse (Heart data) datasets separately, 
and the number of cells in these two datasets was over 
4,000. We changed the sampled cells number to 100, 300, 
500, 1,000, 1,500, and 2,000, the AUC values of scMEB 
increased greatly with the sampled number increased in 
the beginning, and gradually tended towards stability for 
a larger number of sampled cells (Supplementary file 1 
Fig. S7 A–B). Meanwhile, the variability in AUC values 
reduced as the sampled number increased. Supplemen-
tary file 1 Fig. S7 C showed the AUC values of scMEB in 
seven datasets (cells number > 1,000) when sampled 2% , 
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5% , 10% , 15% , and 20% of the total cells. We found that 
the AUC values changed minor when the sampled pro-
portion was greater than or equal to 10% . At last, we  
sampled the same number of cells (1,000 cells) from 
each dataset, and showed the AUC values after run-
ning 50 times (Supplementary file 1 Fig. S7 D). The 
values for most of the datasets were stable, except for 
the Human liver data, in which AUC values changed 
comparatively greater than the other datasets. The reason 
may be that Human liver data has more total cells than 
the other datasets. Therefore, it is more reasonable to 
sample the important cells with a proportion rather than 
a fixed value.

We have conducted some analysis experiments to com-
pare the performance and computational time when 
inputting original genes with sampling cells (sample 
+ scMEB), inputting the top 50 PCs without sampling 
(PCA + scMEB), and inputting the top 50 PCs with sam-
pling cells (Sample + PCA + scMEB) in eleven real data-
sets. Using the top 50 PCs as scMEB inputs would get 
higher AUC values than using the original genes for most 
datasets (Supplementary file 1 Fig. S8 A). There were 
minor differences in the median of AUC values between 
the sampling and without sampling, except that sam-
pling cells would lead to a larger variance. In addition, 
compared with inputting the top 50 PCs, it would take 
a longer time when using original genes as inputs, and 
sampling cells before PCA could speed the calculation for 
a big data, especially for the Marrow and Human Liver 
datasets (Supplementary file 1 Fig. S8 B).

The method to obtain marker genes
Kim et  al. [15] provided two methods to obtain the 
marker genes. For the first method, we selected marker 
genes via the log fold change values. However, the log 
fold change is only related to two populations, and there 
may be more than two types of cells. We first grouped 
the cells for each gene by true labels. The original data-
sets provided the true labels of cells, which were obtained 
by fluorescence-activated cell sorting (FACS) technique 
or by manual curation based on the recognized mark-
ers. Next, We sorted the cells in ascending order based 
on the average expression of each group. The greatest 
difference in log average expression values between the 
consecutive cell types was regarded as the log fold change 
value of this gene. In this way, we selected the genes with 
maximum log fold change values as the marker genes. 
The second method for obtaining marker genes was to 
retrieve them from existing databases, such as the Cell-
Marker [22] database and Panglao [27] database. Both 
databases provided a list of marker genes for different 
human and mouse tissues. We obtained the marker genes 

from those two databases that corresponded to the tis-
sues of analyzed real datasets.

Clustering process and evaluation criteria
To get the clustering results, we first selected 2,000 sig-
nificant DEG or HVG genes and performed a princi-
pal component analysis (PCA) on the log-normalized 
expression values, and then we clustered the first 50 PCs 
using the clusterCells() function from scran [13]. We 
visualized the data with true labels and predicted labels 
using the t-SNE method. Four evaluation criteria were 
used to quantificationally evaluate the clustering results: 
adjusted rand index (ARI), purity, Fowlkes and Mallows 
(FM) index, and normalized mutual information (NMI).

Gene ontology enrichment analysis
The GO database defines and describes the functions 
of genes and proteins and provides knowledge of the 
biological domain concerning biological processes, 
molecular functions, and cellular components [28]. We 
performed GO enrichment analysis by selecting some 
DEGs and mapping each of them to the ontologies in 
the GO database.

Each GO term is a pathway that includes a list of 
genes related to a certain biological function. The value 
that the number of genes in each pathway divides by 
the total number of genes for all the pathways is defined 
as ‘BgRatio’, which is only related to the GO database. If 
we map the detected DEGs to the pathways in the GO 
database, we have the total number of DEGs that could 
be mapped to GO database and the number of DEGs 
that mapped to each pathway. Then, we get another 
value for the ratio of these two numbers, which is called  
‘GeneRatio’. The Fisher’s exact test or hypergeometric 
test is conducted to test the significance of the GeneRatio  
with respect to the BgRatio. The greater the -logPval, 
the more genes included in DEGs are enriched in this 
GO term.
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