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Abstract 

Background Asthma is a common chronic respiratory disease worldwide. Recent studies have revealed the critical 
effects of the ceRNA network and ferroptosis on patients with asthma. Thus, this study aimed to explore the potential 
ferroptosis‑related ceRNA network, investigate the immune cell infiltration level in asthma through integrated analysis 
of public asthma microarray datasets, and find suitable diagnostic biomarkers for asthma.

Methods First, three asthma‑related datasets which were downloaded from the Gene Expression Omnibus (GEO) 
database were integrated into one pooled dataset after correcting for batch effects. Next, we screened differentially 
expressed lncRNAs (DElncRNAs) between patients and healthy subjects, constructed a ceRNA network using the 
StarBase database and screened ferroptosis–related genes from the predicted target mRNAs for Disease Ontology 
(DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We also 
performed Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) on the batch effect‑corrected 
mRNA expression profile. Then, Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to 
screen potential diagnostic biomarkers, and the diagnostic efficacy was assessed using a receiver operating character‑
istic (ROC) curve. Finally, we determined the proportion of 22 immune cells in patients with asthma using CIBERSORT 
and investigated the correlation between key RNAs and immune cells.

Results We obtained 19 DElncRNAs, of which only LUCAT1 and MIR222HG had corresponding target miRNAs. The 
differentially expressed ferroptosis‑related genes were involved in multiple programmed cell death‑related pathways. 
We also found that the mRNA expression profile was primarily enriched in innate immune system responses. We 
screened seven candidate diagnostic biomarkers for asthma using LASSO regression (namely, BCL10, CD300E, IER2, 
MMP13, OAF, TBC1D3, and TMEM151A), among which the area under the curve (AUC) value for CD300E and IER2 were 
0.722 and 0.856, respectively. Finally, we revealed the infiltration ratio of different immune cells in asthma and found a 
correlation between LUCAT1, MIR222HG, CD300E, and IER2 with some immune cells.
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Conclusion This study explored a potential lncRNA‑miRNA‑mRNA regulatory network and its underlying diagnostic 
biomarkers (CD300E and IER2) in asthma and identified the immune cells most associated with them, providing pos‑
sible diagnostic markers and immunotherapeutic targets for asthma.

Keywords Asthma, Diagnostic biomarker, CeRNA network, Ferroptosis, Immune infiltration analysis

Introduction
Asthma is a chronic airway inflammatory disease, and 
the Global Asthma Network 1 (GAN1) study reported 
that the prevalence rates of asthma in children and 
adults were 10.5% and 4.4%, respectively [1, 2]. The over-
all global burden of asthma is still substantial. The main 
characteristics of asthma include airway inflammation, 
hyperresponsiveness, mucus hypersecretion, and airway 
remodeling [3]. However, the pathogenesis of asthma 
involves complex gene-environment interactions. Fur-
thermore, current treatment options for asthma are pri-
marily directed at symptom control rather than altering 
the prognostic endpoints of the disease, with a subset of 
patients with asthma whose symptoms cannot be con-
trolled [4]. Therefore, identifying potential asthma bio-
markers utilizing bioinformatic analysis might provide 
insights into the pathogenesis of asthma and determine 
new therapeutic targets.

The effect of competing endogenous RNAs (ceRNAs) 
on asthma has attracted the interest of researchers over 
recent years. Hence, further studies on ceRNAs might 
help to find new mechanisms for asthma treatment. 
CeRNAs, as a newly discovered mechanism of gene 
expression regulation, have an elaborate and complex 
regulatory network involving several RNA molecules, 
such as long non-coding RNAs (lncRNAs), pseudogenes, 
circular RNAs (circRNAs), viral RNAs, and mRNAs [5]. 
The present study aims to construct a lncRNA–miRNA–
mRNA regulatory network. LncRNAs and mRNAs have 
miRNA response elements (MREs). LncRNAs indirectly 
regulate mRNA expression levels and cellular functions 
by competitively binding MREs. Furthermore, the trend 
in expression levels is consistent across ceRNAs [6]. A 
growing number of studies have revealed that lncRNAs 
could regulate different cellular processes (for example, 
inflammation [7], proliferation [8], apoptosis [9], migra-
tion, and epithelial–mesenchymal transition) through 
the lncRNA-miRNA-mRNA axis, thereby regulating 
asthma progression. Therefore, our study focuses on the 
lncRNA–miRNA–mRNA axis in asthma through bioin-
formatic analysis to investigate the molecular regulatory 
mechanism involved in peripheral blood mononuclear 
cells (PBMCs) among patients with asthma.

Ferroptosis has garnered interest of researchers over 
the past few years, and research on its role in the patho-
genesis of asthma has gained momentum. The ferroptosis 

pathway, first proposed in 2012, is an iron-dependent 
novel form of programmed cell death, which varies from 
apoptosis, cell necrosis, and cell autophagy [10]. Fer-
roptosis could be triggered by iron-catalyzed lipid per-
oxidation, which is mediated by non-enzymatic (Fenton 
reaction) and enzymatic (lipoxygenases [LOXs]) mecha-
nisms [11]. The excessive release of oxidized lipid media-
tors increases the activity of cyclooxygenase (COX) and 
LOX, accelerates the metabolism of arachidonic acid, 
promotes the secretion of inflammatory signaling mol-
ecules [12], and mediates inflammatory responses and 
immune cell chemotaxis. Studies have shown that the 
phosphatidylethanolamine-binding protein 1/15 LOX 
(PEBP1/15-LO) complex is a critical regulator of fer-
roptosis capable of stimulating IL-13/ IL-4-induced Th-
cell inflammation. The colocalization level of PEBP1 
and 15-LO in human airway epithelial cells (HAECs) of 
patients with asthma is higher than that in those of the 
normal population, indicating the likelihood of ferrop-
tosis in HAECs of patients with asthma [13, 14]. Moreo-
ver, increased lipid peroxidation and ROS production 
levels as well as significantly reduced glutathione per-
oxidase 4 (GPX4) and solute carrier family 7 member 
11 (SLC7A11) protein levels have been reported in lung 
tissues of a murine house dust mite–induced asthma 
model,, indicating an increase in ferroptosis in lung tis-
sues of asthmatic mice [15]. Therefore, treatment of 
asthmatic mice with ferroptosis inhibitors such as defer-
oxamine (DFO) and ferrostatin-1 (Fer-1) significantly 
reduces airway inflammation [16], suggesting that ferrop-
tosis plays a crucial role in airway epithelial cells of ani-
mal models with asthma.

Studies have revealed that Th1/Th2-mediated immune 
imbalance serves as the predominant mechanism of 
airway inflammatory response in asthma [17] and that 
various immune cells are involved in the pathogenesis of 
asthma, including eosinophils, mast cells, dendritic cells 
(DCs), macrophages, neutrophils, T lymphocytes, B lym-
phocytes, and innate lymphocytes [18]. Moreover, infor-
mation on the ratio of different infiltrated immune cells 
can promote the classification and diagnosis of patients 
with asthma [19, 20]. For instance, asthma is classified as 
eosinophilic asthma, neutrophilic asthma, mixed granu-
locytic asthma, and paucigranulocytic asthma based on 
the analysis of inflammatory cell count in induced spu-
tum. However, only few studies have explored whether 
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other immune cells have diagnostic value. Therefore, 
identifying the ratios of different immune cells in asthma 
could help us understand asthma progression and estab-
lish an efficient diagnosis and personalized treatment 
strategy.

In this study, we obtained three microarray expression 
datasets of PBMC from patients with asthma and healthy 
individuals by screening the Gene Expression Omnibus 
(GEO) database, including two training sets (GSE143192/
GSE165934) and one validation set (GSE117038). After 
removing the batch effect  (nasthma = 14,  nnormal = 13), 
the training sets were combined to obtain lncRNA and 
mRNA expression profiles. After screening the differen-
tially expressed lncRNAs against the lncRNA expression 
profile, target mRNAs were predicted using the StarBase 
database and intersected with ferroptosis-related genes 
for Disease Ontology (DO), Gene Ontology (GO), and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses to construct the ceRNA network. 
Then, we performed Gene Set Enrichment Analysis 
(GSEA) and Gene Set Variation Analysis (GSVA) analyses 

against the mRNA expression profile and screened key 
genes using the Least Absolute Shrinkage and Selection 
Operator (LASSO) machine learning algorithm. After-
ward, receiver operating characteristic (ROC) curve 
analysis was applied to screen genes (as diagnostic mark-
ers) with high area under the curve (AUC) values. Finally, 
CIBERSORT was applied to perform immune infiltration 
analysis, while key lncRNAs and mRNAs were correlated 
with different immune cell infiltration levels. The experi-
mental flow chart of this study is shown in Fig. 1, and the 
details of all data sets are shown in Table 1.

Fig. 1 Complete flow chart of our research

Table 1 Summary table of GEO dataset information

Data set Normal Asthma Total

GSE143192 4 4 8

GSE165934 9 10 19

GSE117038 3 9 12
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Materials and methods
Data downloading and processing
We downloaded three public asthma-related periph-
eral blood mononuclear cell gene expression dataset 
profiles from the Gene Expression Omnibus database 
managed by the National Center for Biotechnology Infor-
mation [21] (https:// www. ncbi. nlm. nih. gov). The pro-
files included training sets GSE143192 [7]  (nasthma = 4, 
 nnormal = 4) and GSE165934  (nasthma = 10,  nnormal = 9) and 
validation set GSE117038 [22]  (nasthma = 9,  nnormal = 3). 
The species source of these three datasets is human 
(Homo sapiens) with platform numbers GPL22120, 
GPL23126, and GPL16791. Next, we downloaded human 
phenotype ontology (c5.hpo.v7.2.symbols.gmt), C2 
(Curated gene sets, c2.all.v7.2.symbols.gmt), and C5 (c5.
go.v7.2.symbols.gmt) gene sets from the MSigDB data-
base [23] (https:// www. gsea- msigdb. org/ gsea/ msigdb). 
Finally, we compiled 453 ferroptosis–related genes (Table 
S1) from the GeneCards database [24] (http:// www. genec 
ards. org), FerrDb database [25] (http:// www. zhoun an. 
org/ ferrdb/), and ferroptosis–related literature in the 
journal CELL [26].

The datasets used in this study were derived from dif-
ferent study types and experimental conditions, gen-
erating the batch effect. Therefore, we first extracted 
common lncRNAs and mRNAs from GSE143192 and 
GSE165934, performed batch effect correction using 
the Combat function in the R package “sva” [27], and 
finally performed multiple analyses (as described 
below) on the obtained integrated lncRNA and mRNA 
expression profile  (nasthma = 14,  nnormal = 13). In addi-
tion, we evaluated data quality before and after the 
batch effect correction and then constructed box and 
Principal Components Analysis (PCA) plots of the 
lncRNA expression profile.

Differentially expressed lncRNA screening and ceRNA 
network construction
Differential analysis of the batch effect–corrected 
lncRNA expression profile was performed using the R 
package “limma” [28], using patients with asthma and 
healthy individuals as the grouping criterion, a difference 
threshold of Log2|FC|> 1, and p-value of < 0.05. Then, 
volcano plots and heat maps of differentially expressed 
lncRNAs were generated using the R package “ggplot2” 
[29] and “pheatmap” respectively.

Next, we constructed a ceRNA network using the 
obtained differentially expressed lncRNAs with Star-
Base [30] (http:// StarB ase. sysu. edu. cn/). Most lncR-
NAs showed no corresponding target miRNAs, with 
only lung cancer-associated transcript 1 (LUCAT1) and 
MIR222HG being identified as predictable target genes. 

Therefore, we constructed ceRNA networks using only 
these two lncRNAs. Furthermore, the ceRNA networks 
were visualized using Cytoscape [31].

Ferroptosis‑related DEG enrichment analysis
The predicted target mRNAs from the ceRNA network 
constructed using differentially expressed lncRNAs 
were intersected with ferroptosis-related genes. Venn 
diagrams were plotted to obtain differentially expressed 
genes related to ferroptosis. These genes were subjected 
to DO [32], GO [33], and KEGG [34] enrichment analy-
ses using the R package “clusterProfiler” [35].

GSEA and GSVA analyses of the mRNA expression profile
The mRNA expression profile corrected for batch effect 
was analyzed by GSEA [36] and GSVA [37]. GSEA uses 
genes in a predefined gene set to assess their distribu-
tion trend based on their correlation with the phenotype, 
thereby determining their contribution to this pheno-
type. For this analysis, “c2.all.v7.2.symbols.gmt” was 
selected as the reference gene set. GSVA is a non-para-
metric unsupervised analysis primarily used to assess 
the enrichment profile of gene sets in microarrays and 
transcriptomes. This analysis evaluates whether different 
metabolic pathways are enriched among samples by con-
verting the expression matrix of genes into the expres-
sion matrix of gene sets. For GSVA, Hallmarker, KEGG, 
and GO-related gene sets were selected as reference gene 
sets. Then, the GSVA score of each gene set was quanti-
fied. Finally, we used the R package “limma” to perform 
a variance analysis based on the grouping information 
of patients with asthma and normal subjects and plotted 
histograms of upregulated and downregulated differen-
tially expressed gene sets sorted by t-value.

Biomarker screening by LASSO regression
The integrated training set corrected for batch effect was 
first screened for key genes in asthma using the LASSO 
algorithm. We applied these candidate genes to the 
GSE117038 validation set to predict the asthma status in 
this cohort and validate the diagnostic validity of these 
candidate biomarkers. Then, ROC curves were used. The 
AUC values were calculated, and genes with strong ROC 
results (AUC value of > 0.7) were selected as diagnostic 
markers for asthma.

Immune infiltration analysis by CIBERSORT 
and the correlation between key genes and infiltrating 
immune cells
CIBERSORT [38] was used to analyze the proportion of 
various immune cells in PBMC in patients with asthma 
and healthy subjects based on the principle of linear sup-
port vector regression. The Wilcoxon Rank sum-test was 

https://www.ncbi.nlm.nih.gov
https://www.gsea-msigdb.org/gsea/msigdb
http://www.genecards.org
http://www.genecards.org
http://www.zhounan.org/ferrdb/
http://www.zhounan.org/ferrdb/
http://StarBase.sysu.edu.cn/
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used in the immune infiltration analysis by CIBERSORT, 
and p-value < 0.05 demonstrated that the immune cell 
infiltration matrix was acquired. Then, we investigated 
the association between the key genes screened in the 
previous analysis and the ratio of immune cell infiltration 
and calculated Pearson correlation coefficients along with 
p-values (p-value < 0.05 as the significance threshold). 
Finally, we plotted lollipop plots showing the correlation 
among each lncRNA, mRNA, and different immune cells 
using the R package “ggplot2”.

Statistical analysis
All the experiments were performed on R Software 
(https:// www.r- proje ct. org/ version 4.1.1). The correla-
tion between genes and immune cells was measured by 
Spearman coefficient and corrected by Benjamini-Hoch-
berg (BH) multiple test, FDR correction was performed 
on multiple tests to reduce false-positive rates. Due to 
the data species and characteristics, differences were ana-
lyzed by the Wilcoxon rank-sum test and Student’s t test 
for the categorical variables and the continuous variables, 
respectively. The two-sided test was considered statisti-
cally significant at p-value < 0.05.

Results
Batch effect correction of the data
After batch effect correction and integration of the 
GSE143192 and GSE165934 datasets, we obtained 12,125 
and 3,376 common lncRNAs and mRNAs, respectively. 
We evaluated data quality before and after batch effect 
correction and generated box plots (Figs. 2A and C) and 
PCA plots (Figs.  2B and D) of the lncRNA expression 
profile before and after the batch effect correction. The 
results showed that the expression of genes in the two 
datasets before correction was unevenly distributed with 
significant principal component distinction (Figs.  2A 
and B). In contrast, the expression of genes in the two 
datasets after correction was evenly distributed with no 
significant principal component distinction (Figs.  2C 
and D), indicating that the batch effect was effectively 
reduced, which could improve subsequent data analysis.

Screening for differentially expressed lncRNAs 
and construction of ceRNA networks
We performed variance analysis on the batch effect-
corrected lncRNA expression profile data and obtained 
19 DElncRNAs. The heat map (Fig.  3A) and volcano 
plot (Fig.  3B) allowed us to visualize the differentially 
expressed lncRNAs between patients with asthma and 
healthy individuals. Next, the results of the DElncRNA-
miRNA-mRNA interaction ceRNA regulatory network 
showed that only two lncRNAs, namely, LUCAT1 and 
MIR222HG, had corresponding target miRNAs in the 

StarBase database. Therefore, we constructed lncRNA-
miRNA-mRNA axes for LUCAT1 and MIR222HG, 
respectively. LUCAT1 had 16 target miRNAs, and 9136 
mRNAs were targeted by these 16 miRNAs (Fig. 4A and 
Table S2); MIR222HG had only one target miRNA (has-
miR-382-3p), and 756 mRNAs were targeted by this 
miRNA (Fig. 4B and Table S3).

Ferroptosis‑related DEG enrichment analysis
The target mRNAs of LUCAT1 and MIR222HG obtained 
in the previous procedure (a total of 9202 genes) were 
compared with ferroptosis-related genes (Fig.  5A) to 
obtain 278 differential ferroptosis-related genes. GO 
enrichment analysis revealed that these differential fer-
roptosis-related genes were significantly enriched dur-
ing biological processes, including response to oxidative 
stress, response to nutrient levels, cellular response to 
external stimulus, cellular components (such as phago-
phore assembly sites, focal adhesion, cell-substrate junc-
tion, and melanosome), and molecular functions (such as 
ubiquitin protein ligase binding, protein serine/threonine 
kinase activity, coenzyme binding, and single-stranded 
DNA binding). KEGG pathway enrichment analysis 
showed that these differential genes were significantly 
enriched in signaling pathways, including ferroptosis, 
autophagy, central carbon metabolism in cancer, FoxO 
signaling pathway, and mitophagy. Moreover, DO enrich-
ment analysis revealed that these differential genes were 
involved in peripheral nervous system neoplasm, auto-
nomic nervous system neoplasm, neuroblastoma, and 
bone cancer. We selected the top five differentials ferrop-
tosis-related genes from the enrichment analysis results 
to generate bubble plots for GO-BP, GO-CC, and GO-MF 
(Figs. 5B-D) and KEGG and DO analyses (Figs. 5E and F). 
The detailed GO enrichment analysis results are shown 
in Table  2, and the KEGG and DO enrichment analysis 
results are shown in Table 3.

GSEA and GSVA analyses of the mRNA expression profile
The GSEA result against the mRNA expression profile 
of asthma showed a significant correlation with gene 
sets, including “REACTOME_INNATE_IMMUNE_SYS-
TEM” and “BLANCO_MELO_COVID19_SARS_COV2_
INFECTION_A594_ACE2_EXPRESSING_CELLS_UP” 
data sets (Figs. 6A and B). Meanwhile, the GSVA results 
primarily included the results of KEGG, GO (GO-BP, 
GO-CC, and GO-MF), and Hallmarker enrichment anal-
yses. The top five highest GSVA values in GO-BP enrich-
ment analysis results were associated with response 
to oxidative stress, mRNA metabolic process, cell–cell 
signaling, bio-adhesion, and nucleic acid phosphodies-
ter bond hydrolysis. The GO-CC results showed that the 
relevant differential gene products primarily functioned 

https://www.r-project.org/
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in cellular components, including synapse, catalytic 
complex, inflammasome complex, Golgi apparatus, and 
inclusion body. The main results of GO-MF analysis 
include glycosaminoglycan binding, calmodulin bind-
ing, protein-containing complex binding, growth factor 
binding, and sequence-specific DNA binding. The results 
of the Hallmarker enrichment analysis included DNA 
repair, MTORC1 signaling, glycolysis, bile acid metabo-
lism, and MYC-targeted v1. The results of the KEGG 
enrichment analysis primarily included SNARE interac-
tions in vesicular transport, primary immunodeficiency, 
the Hedgehog signaling pathway, MAPK signaling path-
way, and the aminoacyl tRNA biosynthesis pathway. We 
plotted histograms of upregulated and downregulated 

differential genes in gene sets based on the GSVA results 
(Figs. 6C-G). The GSEA results are shown in Table 4, and 
the GSVA results are shown in Table 5.

Biomarker screening by LASSO regression
Based on the constructed LASSO-penalized regression 
model (Fig.  7A), the number of variables was deter-
mined by finding λ with the lowest classification error 
(λ = 0.1583217) (Fig.  7B). Consequently, we screened 
seven potential marker genes (BCL10, CD300E, IER2, 
MMP13, OAF, TBC1D3, and TMEM151A). The ROC 
curve results plotted based on these seven candi-
date genes showed that only CD300E and IER2 fea-
tured good diagnostic effects in the validation set 

Fig. 2 Quality assessment of GSE143192 and GSE165934 before and after the batch effect correction. A Box plot before batch effect correction. 
B Principal Components Analysis (PCA) plot before batch effect correction. C Box plot after batch effect correction. D PCA plot after batch effect 
correction
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GSE117038, with AUC values of 0.722 and 0.856, 
respectively (Figs.  7C and D). These results indicate 
that CD300E and IER2 may serve as novel asthma 
biomarkers.

Immuno‑infiltration analysis by CIBERSORT
We analyzed the changes in the proportion of vari-
ous infiltrating immune cells in the GSE143192 and 
GSE165934 datasets using CIBERSORT (Fig. 8A). The 
results showed differences in immune cell composi-
tion among different groups. The correlation heat map 
of 20 types of immune cells (the algorithm identified 
a total of 22 types of immune cells, but the immune 
infiltration results of resting CD4 + memory T cells 
and naive B cells were null) showed (Fig. 8B) that naive 
CD4 + T cells were significantly and positively corre-
lated with resting dendritic cells and resting mast cells. 
Meanwhile, such immune cells were significantly but 
negatively correlated with T follicular helper cells and 
activated CD4 + memory T cells. The heat map results 
of the variance analysis exhibited (Fig.  8C) that some 
immune cells differed in number between patients 
with asthma and normal groups. Meanwhile, the box 
plot results indicated (Fig.  8D) that the number of 
memory B cells, CD8 + T cells, naive CD4 + T cells, 
and M0 macrophages significantly differed between 
patients with asthma and normal groups.

Correlation analysis of key genes and infiltrating immune 
cells
Finally, we investigated the association between the 
immune cell ratio and the expression of LUCAT1, 
MIR222HG, CD300E, and IER2 in patients with asthma 
to determine the biomarkers correlated with the immune 
cell ratio. The lollipop plots showed the correlation of 
LUCAT1, MIE222HG, CD300E, and IER2 with immune 
cells (Fig.  9). The results of immune cells with signifi-
cant correlation (p-value < 0.05) showed that LUCAT1 
expression was positively correlated with the ratios of M0 
macrophages, activated mast cells, and neutrophils and 
negatively correlated with the ratios of resting mast cells, 
naive CD4 + T cells, and γ-δ T cells; MIR222HG expres-
sion was positively correlated with the ratios of memory 
B cells, M0 macrophages, and T follicular helper cells and 
negatively correlated with the ratios of resting mast cells 
and naive CD4 + T cells; CD300E expression was posi-
tively correlated with the ratios of M1 macrophages and 
activated NK cells; IER2 expression was positively cor-
related with the ratios of neutrophils and activated NK 
cells.

Discussion
Asthma is a global problem affecting people of all ages. 
However, the current clinical diagnosis of asthma is usu-
ally based on clinical symptoms and variable and revers-
ible airflow limitations, with no clear diagnostic gold 

Fig. 3 Differential lncRNA analysis of the dataset after batch effect correction. A Heatmap showed the relative level of 19 upregulated and 
downregulated differentially expressed lncRNAs (DElncRNAs) in in the dataset after batch effect correction,with up‑regulated lncRNAs (red) and 
down‑regulated lncRNAs (blue). B Volcano plot of DElncRNAs in the dataset after batch effect correction, with high expression (red) and low 
expression (blue)
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Fig. 4 Competing endogenous RNA (CeRNA) networks for LUCAT1 and MIR222HG, with red dots for lncRNA, yellow dots for miRNA, and green dots 
for mRNA. A CeRNA network for LUCAT1. B CeRNA network for MIR222HG
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standard. Although phenotypic analysis based on airway 
inflammatory biomarkers has elucidated the pathophysi-
ological mechanism of asthma [39], the actual control 
of asthma remains suboptimal, with treatments mostly 

based on anti-inflammatory/bronchodilator regimens. 
Meanwhile, increasing studies have shown that lncRNAs 
serve as ceRNAs to regulate the onset and progression of 
asthma [40–42]. Therefore, we could make implications 

Fig. 5 GO, KEGG and DO enrichment analysis results of 278 differential ferroptosis–related genes. A Venn diagram showed 278 overlapping genes 
of mRNAs targeted by lncRNAs and ferroptosis–related genes. B Bubble plot of GO‑BP enrichment results in differential ferroptosis–related genes. 
C Bubble plot of GO‑CC enrichment results in differential ferroptosis–related genes. D Bubble plot of GO‑MF enrichment results in differential 
ferroptosis–related genes. E Bubble plot of KEGG enrichment results in differential ferroptosis–related genes. F Bubble plot of DO enrichment results 
in differential ferroptosis–related genes
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for achieving an early diagnosis and treatment of asthma 
by identifying novel biomarkers and targets of asthma 
and exploring the relationship between asthma and fer-
roptosis, as well as the diversity and complexity of the 
immune microenvironment.

In this study, we initially screened the differentially 
expressed lncRNAs using the StarBase database to 
obtain lncRNAs with targeted miRNAs (LUCAT1 and 
MIR222HG) and then constructed ceRNA networks 
by predicting targeting mRNAs from these miRNAs. 
LncRNAs are non-coding RNAs with a length of > 200 
nucleotides, which account for nearly 70% of the human 
transcriptome. They are highly important in regulat-
ing almost all biological processes, and they serve as 

important regulators of histophysiology and disease pro-
cesses [43]. LncRNAs also play a role in regulating the 
progression of asthma.

LUCAT1, which is also known as smoke and cancer-
associated lncRNA1 [44], is highly expressed in various 
malignancies. It regulates the proliferation, migration, 
and invasion of malignant tumors through diverse mech-
anisms [45, 46]. Furthermore, studies have demonstrated 
that elevated LUCAT1 levels suppressed the expres-
sion of inflammatory genes and interferon-stimulated 
genes [47], whereas the overexpression of LUCAT1 in 
human lung cell lines cultured in high-glucose condi-
tions resulted in reduced iNOS and NO levels [48]. In 
particular, LUCAT1 could regulate anti-inflammatory 

Table 2 GO enrichment analysis of ferroptosis‑related differentially expressed genes (DEGs)

ID Description Count in gene set p‑value

GO‑BP
 GO:0006979 response to oxidative stress 53 1.66E‑32

 GO:0031667 response to nutrient levels 54 2.78E‑31

 GO:0071496 cellular response to external stimulus 43 9.36E‑28

 GO:0034599 cellular response to oxidative stress 41 1.16E‑27

 GO:0031669 cellular response to nutrient levels 37 3.05E‑27

 GO:2001233 regulation of apoptotic signaling pathway 41 1.25E‑22

 GO:0010038 response to metal ion 38 1.58E‑21

 GO:0006914 autophagy 41 2.19E‑19

 GO:0061919 process utilizing autophagic mechanism 41 2.19E‑19

 GO:0035690 cellular response to drug 35 1.54E‑18

GO‑CC
 GO:0000407 phagophore assembly site 10 1.21E‑11

 GO:0005925 focal adhesion 27 2.16E‑11

 GO:0005924 cell‑substrate adherens junction 27 2.55E‑11

 GO:0030055 cell‑substrate junction 27 3.19E‑11

 GO:0042470 melanosome 14 2.67E‑10

 GO:0048770 pigment granule 14 2.67E‑10

 GO:0005776 autophagosome 12 6.78E‑09

 GO:1902911 protein kinase complex 12 4.18E‑08

 GO:0034045 phagophore assembly site membrane 6 5.07E‑08

 GO:0031968 organelle outer membrane 15 1.64E‑07

GO‑MF
 GO:0031625 ubiquitin protein ligase binding 31 2.27E‑17

 GO:0004674 protein serine/threonine kinase activity 24 1.03E‑07

 GO:0050662 coenzyme binding 19 1.56E‑07

 GO:0003697 single‑stranded DNA binding 10 1.06E‑05

 GO:0032182 ubiquitin‑like protein binding 9 1.85E‑05

 GO:0008198 ferrous iron binding 5 2.92E‑05

 GO:0051219 phosphoprotein binding 8 4.42E‑05

 GO:0003996 acyl‑CoA ligase activity 4 8.96E‑05

 GO:0016874 ligase activity 10 9.11E‑05

 GO:0015175 neutral amino acid transmembrane transporter activity 5 0.000107
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processes through different mechanisms. In the last two 
years, several studies that used bioinformatic analysis to 
screen key genes have shown that LUCAT1 is a differen-
tially expressed lncRNA associated with ferroptosis [49, 
50]. However, MIR222HG, which belongs to the lncRNA 
subclass of miRNA host genes and is a miR222/221 clus-
ter host gene, remains poorly understood by researchers 
[51]. MIR222HG expression promotes the development 
of castration-resistant prostate cancer [52], whereas it 
was screened in an investigation of whether immune-
related lncRNAs could be used as diagnostic markers 
for glioblastoma. In addition, the MIR222HG-ILF3 RNP 
complex regulates the RNA stability of DNM3OS, a cell 
cycle regulator [51]. However, neither LUCAT1 nor 
MIR222HG has been studied in the context of asthma 
remains unknown.

In recent years, there has been growing interest regard-
ing the importance of ferroptosis in asthma, and lncR-
NAs are emerging as key mediators in ferroptosis studies 

[53]. For example, LINC00618 inhibits ferroptosis by 
attenuating the expression of lymphatic-like specific 
helicase and SLC7A11 [54]. LINC00336 also serves as a 
ceRNA to inhibit ferroptosis by binding to MIR6852 to 
regulate cystathionine-beta-synthase expression [55]. In 
this work, we obtained ferroptosis–related differential 
genes through ceRNA networks constructed by differ-
entially expressed lncRNAs. The preliminary exploration 
of their enrichment analysis might provide insights into 
further research on the ferroptosis–related lncRNA-
miRNA-mRNA regulatory axis. GO enrichment analy-
sis revealed that these differential ferroptosis-related 
genes are closely associated with oxidative stress, which 
is consistent with the definition of ferroptosis (iron and 
oxidative stress-dependent programmed cell death), 
while the biochemical features of ferroptosis primarily 
include increased cellular unstable iron, massive ROS 
production, decreased GPX4, and lipid metabolite accu-
mulation [56]. Meanwhile, recent studies have found that 

Table 3 KEGG and DO enrichment analyses of ferroptosis‑related DEGs

ID Description Count in gene set p‑value

KEGG
 hsa04216 Ferroptosis 28 1.91E‑35

 hsa04140 Autophagy—animal 32 1.79E‑21

 hsa04136 Autophagy—other 13 5.40E‑13

 hsa05230 Central carbon metabolism in cancer 17 2.13E‑12

 hsa04068 FoxO signaling pathway 22 3.34E‑12

 hsa04137 Mitophagy—animal 16 4.18E‑11

 hsa05167 Kaposi sarcoma‑associated herpesvirus infection 25 4.45E‑11

 hsa04066 HIF‑1 signaling pathway 19 5.49E‑11

 hsa04621 NOD‑like receptor signaling pathway 24 8.65E‑11

 hsa05161 Hepatitis B 22 2.51E‑10

DO
 DOID:1192 peripheral nervous system neoplasm 44 8.98E‑17

 DOID:2621 autonomic nervous system neoplasm 42 3.81E‑16

 DOID:769 neuroblastoma 42 3.81E‑16

 DOID:184 bone cancer 34 4.36E‑16

 DOID:201 connective tissue cancer 41 1.33E‑15

 DOID:0050736 autosomal dominant disease 43 1.65E‑15

 DOID:3347 osteosarcoma 31 4.22E‑15

 DOID:4450 renal cell carcinoma 38 1.57E‑14

 DOID:3996 urinary system cancer 46 2.33E‑14

 DOID:263 kidney cancer 42 8.72E‑14

Fig. 6 Plots of GSEA and GSVA results. A GSEA‑enriched gene set REACTOME_INNATE_IMMUNE_SYSTEM. B GSEA‑enriched gene set BLANCO_
MELO_COVID19_SARS_COV_2_INFECTION_A594_ACE2_EXPRESSING_CELLS_UP. C Histogram of upregulated and downregulated gene sets in 
GSVA in the GO‑BP reference set. D Histogram of GSVA enrichment results in the GO‑CC reference set. E Histogram of GSVA enrichment results in 
the GO‑MF reference set. F Histogram of GSVA enrichment results in the Hallmarker reference set. G Histogram of GSVA enrichment results in the 
KEGG reference set

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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oxidative/antioxidative imbalance and increased oxida-
tive stress products contribute to airway inflammation, 
mucus hypersecretion, and airway remodeling, thereby 
playing a role in asthma progression [57, 58]. Therefore, 
the role of oxidative stress in asthma has also received 
increasing attention from researchers. In this study, the 
KEGG analysis revealed that apart from being highly 
involved in the ferroptosis pathway, these differential fer-
roptosis–related genes were also significantly enriched in 
signaling pathways, including autophagy, FoxO signaling, 

and mitophagy. In addition, ferroptosis, autophagy, and 
mitophagy are closely related to each other [59, 60], 
affecting asthma progression under the regulation of 
different mechanisms. For example, the PEBP1/15-LO1 
complex, which mediates the onset of ferroptosis, is 
elevated in patients with asthma, which induces airway 
redox imbalance, thereby causing T2 inflammation and 
asthma exacerbation [14]; MIR-335-5P targets and regu-
lates ATG5, which reduces the onset of autophagy in the 
airways of patients with asthma, attenuating an inflam-
matory response [61]; estrogen receptor 2 transcription-
ally suppresses the expression of miRNA-423, which 
increases the expression level of PINK1 in asthma and 
mitophagy mediated via PINK1, leading to the worsen-
ing of asthma [62]. A variety of programmed cell death 
pathways may interact with one another during asthma 
pathogenesis; however, this needs further exploration. 
Moreover, ferroptosis-related genes were enriched in the 
FoxO signaling pathway in a biomedical study on amyo-
trophic lateral sclerosis [63]. Christina et  al. showed in 
their study using a Drosophila model that targeting the 
JNK/FoxO signaling pathway could regulate airway 
remodeling in chronic inflammatory lung diseases [64]. 
Furthermore, elevated FoxO1 expression in airway mac-
rophages among patients with mild asthma induces mac-
rophage polarization in the lungs, which is involved in 
airway inflammation and airway remodeling in asthma 
[65]. LUCAT1 and MIR222HG may modulate ferropto-
sis in asthma by various mechanisms, thereby influenc-
ing asthma progression. Analysis based on GSEA found 
that the innate immune system genes were significantly 
affected. Different form the GO and KEGG enrichment 
analyses of ferroptosis-related DEGs, GSVA was able to 
use whole-genome information and further distinguish 
the differences in biological behaviors between patients 
and healthy subjects.

In the present study, we screened seven key genes 
using the LASSO algorithm and identified differentially 
expressed genes, namely, CD300E and IER2, with AUC 
values greater than 0.7 as diagnostic markers for asthma 
using ROC curve analysis. CD300E, originally known as 
the immune receptor expressed by myeloid cells (IREM)-
2, is a glycosylated surface receptor primarily expressed 
in human monocytes and myeloid DCs, which serves as 
an activating receptor that regulates inflammatory and 
immune responses [66, 67]. Immediate early response 
2 (IER2) is a potential DNA-binding protein that serves 
as a transcription factor or transcriptional co-activator 
in regulating cellular biological processes [68]. Although 
CD300E and IER2 have not been reported in the con-
text of asthma, CD300E serves as a biomarker for M2c 
macrophages [69]. Additionally, the level of M2c mac-
rophages can be used as a marker for asthma to detect 

Table 4 GSEA results of the mRNA expression profile

GSEA

ID NES p‑adjust q‑value

REACTOME_INNATE_IMMUNE_SYSTEM 1.882402 0.02038 0.010727

BLANCO_MELO_COVID19_SARS_
COV_2_INFECTION_A594_ACE2_
EXPRESSING_CELLS_UP

1.839356 0.02038 0.010727

Table 5 GSVA results of the mRNA expression profile

Gene Set ID Score

KEGG SNARE_INTERACTIONS_IN_VESICULAR_TRANS‑
PORT

3.779257

KEGG PRIMARY_IMMUNODEFICIENCY ‑3.4665

KEGG HEDGEHOG_SIGNALING_PATHWAY ‑3.4328

KEGG MAPK_SIGNALING_PATHWAY 3.381272

KEGG AMINOACYL_TRNA_BIOSYNTHESIS ‑3.07139

GO‑BP RESPONSE_TO_OXIDATIVE_STRESS ‑3.52922

GO‑BP MRNA_METABOLIC_PROCESS ‑2.41036

GO‑BP CELL_CELL_SIGNALING 2.343272

GO‑BP BIOLOGICAL_ADHESION ‑2.26262

GO‑BP NUCLEIC_ACID_PHOSPHODIESTER_BOND_
HYDROLYSIS

1.82118

GO‑CC SYNAPSE 5.093992

GO‑CC CATALYTIC_COMPLEX ‑3.99279

GO‑CC INFLAMMASOME_COMPLEX 3.192443

GO‑CC GOLGI_APPARATUS ‑2.481

GO‑CC INCLUSION_BODY 2.224472

GO‑MF GLYCOSAMINOGLYCAN_BINDING ‑3.08434

GO‑MF CALMODULIN_BINDING 2.854325

GO‑MF PROTEIN_CONTAINING_COMPLEX_BINDING 2.83028

GO‑MF GROWTH_FACTOR_BINDING 2.393979

GO‑MF SEQUENCE_SPECIFIC_DNA_BINDING 2.341345

Hallmarker DNA_REPAIR 3.412268

Hallmarker MTORC1_SIGNALING 2.539293

Hallmarker GLYCOLYSIS 2.092539

Hallmarker BILE_ACID_METABOLISM 1.911157

Hallmarker MYC_TARGETS_V1 ‑1.80191
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the severity of the disease and guide treatment strategies 
[70]. Therefore, subsequent studies must be conducted to 
validate the conjecture of CD300E as a diagnostic marker 
for asthma. Although we initially revealed several poten-
tial biomarkers using machine learning in this study that 
have a high diagnostic value for asthma, further examina-
tion of CD300E and IER2 expression levels in hospital-
constructed asthma cohorts is necessary to verify the 
diagnostic power of these marker genes before they can 
be clinically used.

Finally, we applied the integrated genetic dataset to 
assess the differences in immune cell composition pat-
terns between patients with asthma and healthy indi-
viduals by CIBERSORT. Among the 22 types of immune 

cells, CD4 + T cells, B cells, and mast cells showed sig-
nificant differences between the two groups, which 
is consistent with previous reports on immune cell 
migration and infiltration in asthma [71–73]. In addi-
tion, we found a correlation between the infiltration of 
certain immune cells and the expression of key genes. 
We hypothesized that these genes may boost the abun-
dance of immune cells through certain mechanisms, 
thereby influencing the progression of asthma. How-
ever, this correlation remains unclear, which requires 
validation by in  vitro and in  vivo experiments, which 
might be the endpoint of further studies. Meanwhile, 
we cannot exclude the possibility that there is no causal 
relationship between immune cell infiltration and 

Fig. 7 Biomarkers screened by the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm. A The LASSO regression 
algorithm in training set. B The optimal value for penalization coefficient λ in training set. C ROC curve of CD300E in validation set. D ROC curve of 
IER2 in validation set

Fig. 8 Immune cell infiltration assessment and visualization results. A Bar chart of immune cell infiltration distribution across different samples in 
GSE143192 and GSE165934. B Correlation heat map of 20 types of infiltrating immune cells, with red representing positive correlation and blue 
representing negative correlation; the darker the color, the stronger the correlation. C Heat map of immune cells differentially expressed between 
asthma and normal cohorts, with red bands indicating high expression and blue representing low expression. D Box plot of the content of different 
immune cells between asthma and normal cohorts, with blue representing asthma samples and red representing normal samples,*p‑value < 0.05

(See figure on next page.)
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Fig. 8 (See legend on previous page.)
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the expression of these marker genes and that airway 
inflammation is responsible for the changes in immune 
cell ratios and marker gene expression during asthma 
progression.

This study also has some limitations: First, the small 
dataset collected from the GEO database and the rela-
tively small sample size used for analysis and validation 
might lead to bias in the analysis of key genes and CIB-
ERSORT. Next, the immune infiltration analysis based 
on PBMC samples may have some limitations due to 
potential interfering factors. In addition, our data analy-
sis was based on open-source data sets, and the key genes 
screened by the analysis were not adequately supported 
by the literature, indicating that the credibility of the 
results should be verified in further experiments.

Conclusion
In this study, we screened key asthma-related genes 
(LUCAT1, MIR222HG, CD300E, and IER2) and immune 
cell infiltration profiles through bioinformatic analysis, 
which could provide insights into the pathogenesis of 
asthma and new perspectives and approaches for asthma 
diagnosis and treatment.
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