
Lipman et al. BMC Genomics          (2023) 24:319  
https://doi.org/10.1186/s12864-023-09410-5

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomics

Integrative multi‑omics approach 
for identifying molecular signatures 
and pathways and deriving and validating 
molecular scores for COVID‑19 severity 
and status
Danika Lipman1, Sandra E. Safo2* and Thierry Chekouo1,2* 

Abstract 

Background  There is still more to learn about the pathobiology of COVID-19. A multi-omic approach offers a holistic 
view to better understand the mechanisms of COVID-19. We used state-of-the-art statistical learning methods to inte-
grate genomics, metabolomics, proteomics, and lipidomics data obtained from 123 patients experiencing COVID-19 
or COVID-19-like symptoms for the purpose of identifying molecular signatures and corresponding pathways associ-
ated with the disease.

Results  We constructed and validated molecular scores and evaluated their utility beyond clinical factors known to 
impact disease status and severity. We identified inflammation- and immune response-related pathways, and other 
pathways, providing insights into possible consequences of the disease.

Conclusions  The molecular scores we derived were strongly associated with disease status and severity and can be 
used to identify individuals at a higher risk for developing severe disease. These findings have the potential to provide 
further, and needed, insights into why certain individuals develop worse outcomes.
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Background
COVID-19 has been a concern for medical experts 
worldwide because of its unpredictable clinical outcomes 
and varying severity. Deaths from the disease worldwide 

have been related to acute respiratory distress syndrome 
(ARDS), a serious lung injury that allows fluids to leak 
into the lungs [1]. With the outbreak of the disease came 
a plethora of clinical and molecular data used to under-
stand the mechanisms of the disease. Understanding the 
biological mechanisms of a disease leads to the develop-
ment of precise treatments and the prevention or allevia-
tion of severe cases.

Multiple studies have performed analysis of clinical 
data to analyze severity and long-term effects of the dis-
ease [2, 3]. Molecular data have also been analysed, shed-
ding light on the underlying biological mechanisms of 
the disease and factors contributing to disease severity. 

*Correspondence:
Sandra E. Safo
ssafo@umn.edu
Thierry Chekouo
tchekouo@umn.edu
1 Department of Mathematics and Statistics, University of Calgary, 
Calgary, Canada
2 Division of Biostatistics, School of Public Health, University of Minnesota, 
Minnesota, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-023-09410-5&domain=pdf


Page 2 of 17Lipman et al. BMC Genomics          (2023) 24:319 

Examining the molecular signature of the disease pro-
vides information to hypothesize the long-term effects 
of COVID-19 and develop targeted therapies to allevi-
ate disease severity. Current studies have analysed the 
molecular signature of the disease through genomics [4], 
proteomics [5], and multi-omic analyses [6]. A multi-
omics study by Overmyer et al., 2020 [7] quantified tran-
scripts, proteins, metabolites, and lipids from patients 
with COVID-19 and patients experiencing COVID-19-
like symptoms. These molecules were associated with 
clinical outcomes including comorbidity scores, inten-
sive care unit (ICU) status, and disease severity through 
correlation analysis and machine learning techniques. 
To our knowledge, there are no papers that take a rigor-
ous integrative multi-omic analysis approach to identify 
key biomarkers of the disease. Further, molecular scores 
that combine the effects of multiple biomarkers are yet 
to be developed for COVID-19 severity. These scores can 
potentially identify individuals at a higher risk for devel-
oping severe COVID-19.

In our previous work [8] we took an alternative 
approach to analyse the data from Overmyer et al., 2020 
[7]. We analysed each view of data separately using sta-
bility selection and machine learning techniques to iden-
tify molecules of interest for further enrichment analysis, 
while controlling for a reasonable false detection rate. 
The main idea behind stability selection, is that rather 
than performing variable selection on the entire sample, 
it is performed on multiple subsamples, and variables 
that are consistently selected are “stable” [9]. Further, 
we used an unsupervised integrative analysis method to 
integrate the views of molecular data to analyse simulta-
neously but were limited in our ability to include clinical 
covariates, an outcome variable, and prior biological net-
work information.

In this manuscript, our main objective is to use state-
of-the-art statistical methods to investigate associations 
between multi-omics and COVID-19 outcomes (severity 
and status) and to determine key molecules that drive the 
relationships between the omics and clinical outcomes. 
Further, we combined the molecules identified into 
scores and investigated how well the scores predicted 
disease severity and discriminated between those with 
and without COVID-19. We use two rigorous supervised 
integrative analysis approaches that incorporate clinical 
covariates and molecular network information to ana-
lyze the four views of data: metabolomics, proteomics, 
lipidomics and RNAseq. When multiple views of data are 
available for each patient, there is correlation between 
the views. Analysing each view independently neglects 
these correlations, while using integrative analysis meth-
ods allows to model the dependencies among the views. 
Modeling correlations or associations between different 

but related data types could lead to better understand-
ing of disease pathobiology. Integrative analysis meth-
ods better model the complexity in multi-omics data 
compared to separate data analysis. Integrative analysis 
methods with variable selection are also beneficial in that 
they are multivariate methods that account for multiple 
comparisons without using adjusted p-values. An inte-
grative analysis method that also incorporates clinical 
covariates is crucial in understanding how molecular sig-
natures and clinical covariates relate to clinical outcomes. 
We determined molecules and pathways associated with 
COVID-19 severity using Bayesian integrative analysis 
and prediction, BIPnet [10]. The second method we used 
was sparse integrative discriminant analysis (SIDA) [11]. 
SIDA combines linear discriminant analysis and canoni-
cal correlation analysis to simultaneously model associa-
tion among views and separation among groups within a 
view. We determined molecules discriminating between 
those with and without COVID-19 using SIDA. These 
methods are able to incorporate pathway information 
and molecular data with consideration for clinical covari-
ates and outcomes to uncover molecules likely to be key 
biological markers for COVID-19.

Results
Patients characteristics, outcome variables, and omics data
To gain insight into molecular architecture of COVID-
19 status and severity, we used publicly available pro-
teomics, metabolomics, RNA sequencing, lipidomics, 
and clinical data from a study performed by Over-
myer et  al., 2020. COVID-19 status refers to whether 
the patient tested positive or negative for the disease, 
and COVID-19 severity refers to the severity of the dis-
ease in the patient measured using HFD45. The study 
was not long enough to gain insight into long COVID. 
Our total sample was 123. This comprised 99 patients 
who tested positive for COVID-19 and 24 patients who 
experienced COVID-19-like symptoms but tested nega-
tive. After filtering the molecular data, our analytical 
data consisted of 5800 genes, 72 metabolomics features, 
264 proteins, and 1015 molecules from lipidomics. Our 
outcome was either COVID-19 severity or COVID-19 
status. A patient’s disease severity was measured by the 
number of hospital-free days out of 45 days (HFD45). A 
score of 0 indicates the highest severity with the patient 
either still being in the hospital after 45 days, or hav-
ing died before the 45-day period ended. A higher score 
indicates lower disease severity. A maximum score of 45 
would indicate the lowest severity, indicating that out of 
45 days, the patient was out of hospital for all 45 days. 
There is an opposite relationship between the score, and 
the severity. In the original data collected by Overmyer 
et al., 2020, there were other scores of severity. However, 
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HFD45 is the most granular, is able to incorporate mor-
bidity, and did not have missing observations so we used 
this score to analyze disease severity. We do not have a 
score for severity at the initial time of admission to the 
hospital, though this would have been more appropri-
ate for analysis to determine the change in severity from 
time of admission to the hospital. The median HFD45 
score was 29. The median age was 63 years, the number 
of male subjects was 73, sixty-four people were admitted 
to the ICU, and the median Charlson comorbidity index 
(CCI) was 3.

Differential analysis of molecules
We performed differential analysis (DA) of molecules 
in each omics data to determine statistically signifi-
cant molecules associated with HFD45 or disease sta-
tus. Figure 1 shows volcano plots of up (red) and down 
(blue) regulated molecules of COVID-19 status. We 
observed some overlaps (e.g CRTAC1, LUM, CFH, 
ITIH3, IGLV3-1, and IGHA2) in the proteins deter-
mined to be associated with disease status in the DA 
and in the multivariate integrative analysis, highlighting 

the potential impact of these molecules in discriminat-
ing patients who tested positive from those who tested 
negative. For insight into the functional classification 
of these molecules, we performed functional enrich-
ment analysis on the significant molecules (137 genes 
and 16 proteins, pvalue <0.01) with largest fold changes 
(absolute value >1.5) using Ingenuity Pathway Analysis 
(IPA) software. Pathways related to immune function 
and cell cycle were enriched in our list of genes and 
proteins [Fig. 3(A-B)]. Figure 2 displays volcano plots of 
the effect size of each molecule for disease severity. We 
estimated effect sizes via linear regression– a positive 
effect size implies that a higher expression level of the 
molecule is associated with lower severity. We again 
found some overlaps (LCP1, AGT, ITIH3, APOA2, and 
APOD) in proteins determined to be associated with 
severity in the DA and multivariate integrative analysis. 
Functional enrichment analysis on the statistically sig-
nificant (p< 0.01 ) genes and proteins with largest effect 
sizes (absolute value > 7 ) (52 genes and 17 proteins) 
revealed pathways related to immune function and 
cell cycle. Other pathways related to multiple health 

Fig. 1  Volcano plot of the filtered RNAseq, metabolomics, proteomics, and lipidomics data. Red represents molecules that are significantly (level 
0.05) upregulated in COVID-19, and blue are molecules that are significantly downregulated in COVID-19. Black represents molecules that were not 
significantly deferentially expressed
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conditions such as cancer and immunodeficiency were 
also enriched. We summarize these results in Fig.  3 
(C-D).

Molecular signatures for COVID‑19 severity
Molecular panel
In addition to the univariate approach, we considered 
a multivariate approach to integrating the molecular 
data, allowing us to investigate the conditional effect of 
each variable on disease severity given other variables. 
In particular, a Bayesian integrative analysis method 
(BIPNet) for simultaneous data integration and out-
come prediction (Refer to Methods section), coupled 
with n-fold (n=61) cross-validation, was used to asso-
ciate the molecular and clinical data with HFD45, and 
to determine molecular signatures most likely contrib-
uting to the variation in HFD45. The following clinical 
covariates were included in BIPNet: age, sex, ICU sta-
tus, and CCI. Of the 5,800 genes, 72 metabolomic fea-
tures, 264 proteins, and 1,015 lipidomic features used 
in BIPNet, the number of molecules that were selected 

in all 61 BIPNet models at a marginal posterior prob-
ability (MPP) of at least 0.95 were: 281 genes (MPP 
> 0.99 ), 21 proteins (MPP > 0.95 ), 8 lipidomics fea-
tures (MPP> 0.95 ), and 3 metabolomics features (MPP 
> 0.95 ). Linear regression models for severity and each 
selected molecule adjusting for clinical covariates 
resulted in 3.75 to 12 times more variation in severity 
explained compared with a baseline clinical model that 
included age, sex, and CCI (Adjusted R-squared range 
of 0.15-0.48 versus baseline Adjusted R-squared = 0.04, 
pvalue<0.05 for all molecules). Of note, 16 genes with 
the largest effect sizes (>9.5) are all protein-coding 
genes. Many of the genes we identified are related to 
immune function, inflammatory response (CCR6, CD4, 
CD40LG, FCRL3, TLR7), and cell growth (DYRK2, 
MSX2). Further, IPA found that many proteins iden-
tified are related to the insulin regulation biological 
process (CFD, IGFBP2, FETUB), as was also noted in 
COVID-19 research paper [12], and inflammation and 
immune response (S100A8, SAA2, DEFA1, LYZ, B2M, 
FETUB, LCN2).

Fig. 2  Volcano plot of the filtered RNAseq, metabolomics, proteomics, and lipidomics data. Red represents molecules that are significantly 
positively associated with disease severity, and blue are molecules that are significantly (level 0.05) negatively associated with disease severity. Black 
represents molecules that were not significantly differentially expressed
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Molecular scores
We further constructed molecular scores based on a 
panel of molecules or pathways from Ingenuity Path-
way Analysis of candidate molecules. We investigated 
whether these molecular scores, in addition to clinical 
factors, are able to predict severity better than clinical 
factors alone.

Scores based on  pathways  We performed Ingenuity 
Pathway Analysis (IPA) on the selected proteins and genes 
to provide further insight into the driving networks. Path-
ways are groups of molecules that work toward a certain 
process [13]. We used all 281 selected genes for pathway 
analysis. Results from IPA on the 281 genes are summa-
rised in Supplementary Table 1. Although we used IPA to 
access network information, there are other easily accessi-
ble methods of gaining network information of molecules, 
for example KEGG [14]. We performed enrichment anal-
ysis in IPA, though there are other methods for enrich-
ment analysis such as the software GSEA (https://​www.​
gsea-​msigdb.​org/​gsea/​index.​jsp). These results provide 
insight into possible long-term consequences of severe 
cases, as well as biological functions being affected. We 
constructed scores for each pathway using effect sizes for 
each molecule in the pathway as determined in the univar-
iate regression models (Supplementary Figs. 1-4). Details 
on how scores are created are provided in Conclusions 
section. Supplementary Table  2 contains the adjusted 

R-square value from the regressions using pathway scores 
(see methods), and the MSE of the models. Figure 4 shows 
(A) heatmaps of the relationship between the pathway 
scores and HFD45 and (B) a histogram of the MSE labeled 
with adjusted R-squared. The top networks based on MSE 
and adjusted R squared included the primary immuno-
deficiency signaling pathway, CD28 signaling in T helper 
cells, calcium-induced T lymphocyte apoptosis, the role 
of NFAT in the regulation of immune response, and PKC 
signaling in T lymphocytes. These pathways explained 8 
to 8.5 times the variation in severity compared with the 
baseline clinical model. These findings suggest that path-
ways regarding T cells and immune response are strongly 
associated with disease severity, which is to be expected. 
We discuss these pathways further in the Discussion sec-
tion.

We repeated the same process for the proteins selected 
in BIPnet. The results from IPA on the 21 proteins are 
summarised in Supplementary Table 3, where we observe 
the top 10 significant canonical pathways. We devel-
oped a score for each network that had unique molecules 
selected. Refer to Supplementary Table  4 for results. A 
visual of the scores’ associations with disease severity, 
as well as the MSE and adjusted R-squared is presented 
in Fig. 5. The MODY (maturity-onset diabetes of young) 
pathway had the most obvious association with disease 
severity and lowest MSE and highest adjusted R squared 
(explaining 14.25 times the variation in the HFD45 than 

Fig. 3  Results of the top 10 pathways associated with COVID-19 status from (A) 137 significant genes, (B) 16 significant proteins. Results of the top 
10 pathways associated with COVID-19 severity from (C) 52 significant genes, (D) 17 significant proteins

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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the baseline clinical model). From the models, the most 
significant pathways are MODY signaling, the neuropro-
tective role of THOP1 in Alzheimer’s disease, and FXR/
RXR Activation pathways. We discuss these results fur-
ther in the Discussion section.

Scores Based on a Panel of Molecules  We used the effect 
sizes (Supplementary Figs. 1-4) of the molecules to con-
struct scores for each view of data. A score comprised of 
all genes performed poorly and had convoluted utility. 
To improve predictive performance and hone in on key 
molecules the genes with the largest effect sizes were 
used (16 genes with weights>9.5. Cutoff selected based 
on graphical analysis choosing approximately the top 
5 % ). We present the molecules used to create the scores 
in Supplementary Table 5. The scores demonstrate their 
predictive value in disease severity and identify patients 
at high risk of developing severe cases. We fit separate 
models with/without adjusting for clinical covariates 
for each datatype score and present the results of the 
coefficient of the score, its pvalue, and 95 percent confi-
dence interval in Supplementary Table 6. We provide a 
model fit using clinical covariates (age, sex, and CCI) for 

comparison of MSE and adjusted R-squared. The scores 
with the best accuracy are the protein scores (explain-
ing 10 times the variation than the clinical model) and 
gene scores(explaining 8.5 times the variation than the 
clinical model). We provide a visual of the relation-
ship between HFD and the scores and a comparison 
of the models’ adjusted R squared and MSE in Fig.  6. 
These scores generally provide adjusted R-squared val-
ues which are higher, and MSEs which are lower than 
the models based on individual molecules, with few 
exceptions. It is evident the scores we have created are 
highly predictive of disease severity and can identify 
high-risk individuals. We observed that the association 
of proteins and HFD45 was the strongest, the adjusted 
R-square largest, and the mean squared error the small-
est (Fig. 6). From the heatmap, a lower protein score was 
associated with more severe disease. From Supplemen-
tary Fig. 4, protein S100A8 had a large negative coeffi-
cient (based on the weights), which indicated that hold-
ing all other proteins in the score constant, an elevation 
in this protein decreases the score and hence increases 
severity. Interpretations for the other molecules in the 
scores are similar. In Supplementary Table 7, we include 

Fig. 4  Results from the BIPnet gene pathway scores. (A) Heatmap of the scores across HFD (B) Plot of MSE of the models with and without 
adjusting for clinical covariates. Labeled with the adjusted R squared from the regressions. Pvalues denoted as: * ≤ 0.05 , ** ≤ 0.01 , ***≤ 0.0001 . 
Pathway names are as follows: p1=Th1 Pathway, p2= Th1 and Th2 Activation Pathway, p3=Th2 Pathway, p4= ICOS-ICOSL Signaling in T Helper 
Cells, p5=T Cell Receptor Signaling, p6=PD-1, PD-L1 cancer immunotherapy pathway, p7=FAK Signaling, p8=Primary Immunodeficiency Signaling, 
p9=CD28 Signaling in T Helper Cells, p10=G-Protein Coupled Receptor Signaling, p11=CREB Signaling in Neurons, p12=CREB Signaling in Neurons, 
p13=Phagosome Formation, p14=Non-Small Cell Lung Cancer Signaling, p15=Calcium-induced T Lymphocyte Apoptosis, p16=Role of NFAT in 
Regulation of the Immune Response, p17=Natural Killer Cell Signaling , p18=Protein Kinase A Signaling, p19=PKCθ Signaling in T Lymphocytes, 
p20=Breast Cancer Regulation by Stathmin1
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a summary of the model using all scores as predictors. 
This model had an R squared value of 0.44, and an MSE 
of 151.83 and was the best model, explaining 11 times 
the variation in severity than the baseline clinical model. 
From the model containing all scores, the proteins are 
still the most significant.

Molecular signatures for COVID‑19 status
Molecular panel
We identified multi-omics signatures associated with 
COVID-19 status by applying n-fold cross-validation (n 
= 61) with SIDA on the training set. We investigated the 
effects of each molecule on disease status conditional 

Fig. 5  Results from the BIPnet protein pathway scores. (A) Heatmap of the scores across HFD (B) Plot of MSE of the models with and without 
adjusting for clinical covariates. Labeled with the adjusted R squared from the regressions. Pvalues denoted as: * ≤ 0.05 , ** ≤ 0.01 , ***≤ 0.0001 . 
Pathway names are as follows: PR1=LXR/RXR Activation, PR2=FXR/RXR Activation, PR3=Atherosclerosis Signaling, PR4=IL-12 Signaling and 
Production in Macrophages, PR5=Production of Nitric Oxide and Reactive Oxygen Species in Macrophages, PR6=Clathrin-mediated Endocytosis 
Signaling, PR7=Airway Pathology in Chronic Obstructive Pulmonary Disease, PR8=Acute Phase Response Signaling, PR9=Maturity Onset Diabetes 
of Young (MODY) Signaling, PR10=Neuroprotective Role of THOP1 in Alzheimer’s Disease

Fig. 6  Results from the BIPnet scores. (A) Heatmap of the scores across HFD, a pattern is most noticeable in the protein and lipid scores. (B) Plot 
of MSE of the models with and without adjusting for clinical covariates. Bars are ordered in ascending order of MSE. Labeled with the adjusted R 
squared from the regressions. Pvalues denoted as: * ≤ 0.05 , ** ≤ 0.01 , ***≤ 0.0001
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on all other molecules of each view. The cross-validated 
misclassification rate of the SIDA models was 0.07, and 
we consistently selected 44 proteins, 20 genes, 7 metabo-
lites, and 3 lipids in all 61 models. We performed logistic 
regression with each molecule as a predictor in its own 
model adjusting for clinical covariates. The AUCs from 
these models are as high as 1.5 times the AUC of the 
baseline clinical model. We present the effect sizes and 
significance levels from these models in Supplementary 
Figs.  5-8. We identified recurring functions of selected 
proteins as neural functions and conditions (CHL1, ITI3) 
and immune response (LCP1, IGLV3-1). As for selected 
genes we observed molecules related to immune function 
(ILDR1). One particularly interesting gene we selected 
in SIDA is OR52K1, which is related to the perception 
of a smell. This is interesting as patients with COVID-19 
commonly experience a loss of smell.

Molecular scores
As with the disease severity section, we constructed 
molecular scores based on a panel of molecules or path-
ways from Ingenuity Pathway Analysis of candidate mol-
ecules. We investigated whether these molecular scores, 
in addition to clinical factors, are able to predict disease 
status better than clinical factors alone.

Scores based on pathways  We performed IPA on the 44 
proteins and 20 genes selected in SIDA. Supplementary 
Table 8 contains the top canonical pathway for genes. Only 
one gene pathway (tumor microenvironment pathway) is 
significant at a level of 0.05 from Fisher’s test. Supplemen-
tary Table 9 contains results from the regression using the 

score created from molecules in this pathway adjusting 
for clinical covariates. We determined this pathway score 
does not have a strong association with COVID-19 status. 
We provide results from IPA for the 44 proteins in Supple-
mentary Table 10 indicating 17 pathways are significant at 
a level of 0.05. We present the results from the regressions 
using the scores from the pathways in Supplementary 
Table 11. Figure 7 contains the ROC curves for each of the 
pathway scores, as well as the distribution of the scores 
across the COVID and non-COVID individuals in the test-
ing dataset. From our score regressions, the atherosclero-
sis signaling pathway, IL-12 signaling and production in 
macrophages, PPARa/RXRa activation, MODY signaling, 
and complement system had the strongest associations 
with AUCs being 1.36-1.45 times the AUC of the clini-
cal baseline model. Distribution plots of the molecules in 
these pathways by COVID-19 status are available in Sup-
plementary Figs. 9-11 where we observed the molecules in 
the selected pathways had different abundances depend-
ing on COVID-19 status. From our analysis using SIDA 
and BIPnet there was some overlap in the molecules we 
selected. Specifically, we selected the proteins CRTAC1, 
LUM, APOA2 in relation to both disease status and sever-
ity. We also identified pathways that are enriched in both 
severity and status. From the proteins we selected in SIDA 
and BIPnet the pathways LXR/RXR activation, FXR/RXR 
activation, atherosclerosis signaling, IL-12 signaling and 
production in macrophages, acute phase response signal-
ing, maturity-onset diabetes of young (MODY) signaling, 
and neuroprotective role of THOP1 in Alzheimer’s dis-
ease were selected. We discuss these pathways further in 
the Discussion section.

Fig. 7  Results from the SIDA protein pathway scores. (A) The ROC curves for each of the score regression models which was significant at a level of 
0.05. AUC is presented in the legend. (B) The distribution of the scores across the COVID and non-COVID individuals in the testing dataset. Pvalues 
denoted as: * ≤ 0.05 , ** ≤ 0.01 , ***≤ 0.0001 . PR16 = Maturity Onset Diabetes of Young (MODY) Signaling, PR21 = Complement System, PR24 = 
Atherosclerosis Signaling , PR25 = IL-12 Signaling and Production in Macrophages, PR26 = Aldosterone Signaling in Epithelial Cells, PR27 = PPARa/
RXRa Activation



Page 9 of 17Lipman et al. BMC Genomics          (2023) 24:319 	

Scores Based on a Panel of Molecules  We used the effect 
sizes from the logistic regression models to create a score 
composed of a linear combination of selected molecules 
for each view of data. Initially, a score using all genes and 
proteins was created but had a poor predictive perfor-
mance. For improved prediction and utility, the number 
of genes and proteins used in the scores was reduced to 
10 for genes, and 11 for proteins as these molecules had 
the highest significance (pvalue <0.01). Supplementary 
Table  12 has the list of molecules used in creating the 
score. In addition, we have provided the distribution of 
these molecules for each dataset by COVID-19 status in 
Supplementary Figs. 12-15. We fit regression models using 
these scores with/without adjusting for clinical covariates 
and present the AUC, coefficients of scores, and pvalues 
for the scores in Supplementary Table 13. Figure 8 con-
tains the ROC curves and AUC for each of the scores with 
and without adjusting for clinical covariates, as well as 
the distribution of the scores across the COVID and non-
COVID individuals in the testing dataset. We included 
the model with only clinical covariates (age, sex, CCI, and 
ICU status) for comparison. It is evident that the scores 
we have created are significantly associated with COVID-
19 status with the AUCs of the model ranging from 1.3 
to 1.57 times the AUC of the clinical baseline model. The 
most accurate model provides discriminatory accuracy 
higher than any individual molecule. In particular, the 
protein score we developed has the best ROC curve and 
the best separation of classes. This means we have identi-
fied a significant panel of molecules which can accurately 
classify COVID-19 patients.

Validation of results
We used three independent datasets to validate the scores 
we created in Molecular scores section. All datasets used 
are open source and had the molecules log2-transformed 
and standardized to have mean zero and variance one.

Validation of proteomics severity scores
To validate proteomics scores for COVID-19 severity, we 
used the data from (Wu et. al) [6] and weights estimated 
in Molecular scores section to obtain a score for each of 
the 135 samples aged between 19 and 70. The samples 
in this dataset did not have severe comorbidities. The 
severity outcome in this dataset is measured as an ordi-
nal response: asymptomatic (n=60), mild (n=38), severe 
(n=22) , and critical (n=15), which we grouped into two 
classes: asymptomatic-mild, and severe-critical, to be 
consistent with our outcome. Since the proteomics data 
did not contain all of the proteins we used to develop 
our score, we could only validate the score comprised 
of the following proteins: AGT, APOA2, APOD, B2M, 
CFD, CST3, DEFA1, FETUB, IGFBP2, LCN2, LUM, 
LYZ, PTGDS, RNASE1, S100A8, SAA2, TNC (4 miss-
ings). Therefore, we computed the scores for the valida-
tion dataset using only the weights we found for these 
proteins. We performed logistic regression with the new 
scores as a predictor. The AUC resulting from the logis-
tic regression was 0.837 demonstrating that the derived 
score is strongly associated with disease severity even in 
an independent dataset. The ROC plot from this dataset 
and the distribution of the scores across the classes are 
available in Fig. 9.

Fig. 8  Results from the SIDA scores. (A) The ROC curves for each of the score regression models with and without adjusting for clinical covariates. 
AUC is indicated in the legend. (B) The distribution of the scores across the COVID and non-COVID individuals in the testing dataset. Pvalues 
denoted as: * ≤ 0.05 , ** ≤ 0.01 , ***≤ 0.0001
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Validation of genomics severity scores
To assess the validity of our genomics score for sever-
ity, we used data obtained from (Wargodsky et. al) 
[15]. The data consist of 13 critically ill patients, and 
10 patients with mild to moderate outcomes over the 
age of 18 who tested positive for COVID-19. Due to 
missing data for some genes, we could only validate 
the score derived in Molecular scores section using the 
following molecules: CCR6, CD4, CD40LG, CX3CR1, 
DYRK2, FCRL3, MAN1C1, P2RY10, TLR7, ZNF549, 
ZXDB (missing 5). Using logistic regression with the 
score as the predictor, the AUC was 0.7769, demon-
strating that the score is able to predict severity fairly 
well when applied to this independent dataset.

Validation of gene scores for COVID‑19 status
We used data from (Blanco-Melo D et. al) [16] to vali-
date our gene score for disease status. The subset of 
data we used consisted of 18 samples infected with 
COVID-19 and 29 samples that were mock treated, 
all coming from four different cell lines. Due to miss-
ing data, we could only use the weights of the fol-
lowing genes to create a new score for each sample: 
CILP2, HLA-G, LCNL1, MMP17, VMO1, and ILDR1 
(4 missing). A logistic regression with only the cell line 
as predictor produced an AUC of 0.5977, while AUC 
with the cell line and gene score produced had an 
AUC of 0.6571. The AUC with only the score is 0.6034. 
This demonstrates that the score is able to improve 
the discrimination between COVID-19 and non-
COVID-19 status. We believe the accuracy would be 
further improved if the missing genes could have been 
included in our validation.

Discussion
The objective of this manuscript is to use state-of-the-art 
statistical methods to investigate associations between 
multi-omics and COVID-19 outcomes. From our analysis 
we have determined a panel of molecules and molecular 
pathways with strong associations to clinical outcomes. 
These molecules and pathways can be used to assess 
patient risk and develop targeted treatment plans. We 
discuss three main findings we have from the analysis. 
The first point we will discuss is the pathways regarding 
immune function which we found to be significant from 
IPA on molecules selected from BIPnet and SIDA. The 
second main finding we discuss is pathways that are not 
directly related to immune function but were also found 
to be related to COVID-19 status and severity. The final 
discussion point pertains to the panel of molecules which 
we determined to discriminate between those with and 
without COVID-19, and have strong associations with 
disease severity.

Enriched pathways related to immune function
We determined from the BIPnet analysis that many 
pathways surrounding T cells are related to COVID-
19 severity. In particular, the ICOS-ICOSL signaling 
in T helper cells, PKC signaling in T lymphocytes, T 
cell receptor signaling, calcium-induced T lymphocyte 
apoptosis, and CD28 signaling in T helper cells were all 
determined to be related to COVID-19 severity. In rela-
tion to current literature, these findings are noteworthy. 
In particular, one paper [17] specifically investigated the 
T-cell immune response against COVID-19, and found 
that T-cell responses were impaired in severe COVID-
19 cases, suggesting a possible therapeutic mechanism to 
reduce COVID-19 severity.

Fig. 9  Results from validation. (A) The ROC curves for each of the score validation regression models. AUC is indicated in the legend. (B) The 
distribution of the scores by Severity group, (C) The distribution of the scores across the COVID and non-COVID individuals
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From the analysis we observed the PD-1, PD-L1 can-
cer immunotherapy pathway is associated with COVID-
19 severity. Research has been conducted on the possible 
relationship between PD-L1 and COVID-19. PD-1 (pro-
grammed cell death protein 1) and PD-L1 (programmed 
cell death ligand 1) play a role in immune response and 
it has been found that PD-L1 dysregulation is associated 
with COVID-19 [18]. In particular, higher levels of PD-L1 
are associated with more severe cases and even death 
from COVID-19. Sabbatino F. et  al. [18] found associa-
tions with age and lymphocyte levels of the patients. This 
pathway is also responsible for T cell activation, provid-
ing further evidence about the association of T cell func-
tions/processes and COVID-19 severity.

We determined two pathways related to macrophage 
processes were enriched: IL-12 signaling and produc-
tion in macrophages and the production of nitric oxide 
and reactive oxygen species in macrophages. In addition, 
we found the acute phase response signaling pathway sig-
nificant with proteins selected in SIDA and BIPnet. We 
found this pathway to be enriched in our previous work 
[8].

Enriched pathways unrelated to immune function
The first pathways we discuss which are not directly 
related to immune function are the LXR/RXR activation, 
FXR/RXR activation, atherosclerosis signaling, maturity-
onset diabetes of young (MODY), and neuroprotective 
role of THOP1 in Alzheimer’s disease pathways. We 
determined these pathways are associated with COVID-
19 in our previous work [8] and were also found to be 
enriched from IPA on proteins we selected from both 
SIDA and BIPnet. The atherosclerosis signaling pathway 
is of particular interest, as many studies have investi-
gated the link between COVID-19 with venous and arte-
rial circulations. One paper, in particular, examined the 
relationship between COVID-19 and atherosclerosis, 
observing the similarities and differences in mechanisms 
of the diseases [19]. Maturity-onset diabetes of the young 
(MODY) is a form of diabetes mellitus usually diagnosed 
in young adulthood [20]. This pathway is interesting as 
there are cases to show that diabetes may be a risk fac-
tor for more severe cases of COVID-19, but may also be a 
consequence of COVID-19 infection [21]. To our knowl-
edge, there has not been a thorough analysis of the rela-
tionship between MODY and COVID-19 but there has 
been some evidence to show that COVID-19 affects glu-
cose metabolism, which is related to diabetes.

The relationship between COVID-19 and glucose 
metabolism is evident in our analysis. IPA on proteins 
selected from SIDA revealed that the gluconeogenesis 
I and glycolysis I pathways are determined to be associ-
ated with COVID-19. As mentioned, research suggests 

that there is a relationship between COVID-19 and blood 
glucose metabolism [22]. Current studies also investi-
gated the effect of glucose metabolism on T cell function 
in COVID-19, and it has been suggested that targeting 
glucose metabolism may be a viable treatment to reduce 
the severity of COVID-19 [23]. Other pathways we deter-
mined to be associated with COVID-19 that relate to glu-
cose metabolism are the LXR/RXR activation pathway, 
and the FXR/RXR activation pathway. Another inter-
esting aspect of the FXR/RXR activation pathway is its 
association with liver disease [24]. Current research sug-
gests that individuals with liver disease are more at risk 
of severe COVID-19 [25]. This is of interest as there has 
been what appears to be an increased risk of liver damage 
in patients who have COVID-19, and this pathway could 
be related to this outcome [26]. To our knowledge, the 
relationship between this pathway and liver damage from 
COVID-19 has not been extensively researched.

A surprising pathway we found associated with 
COVID-19 severity is the neuroprotective role of THOP1 
in Alzheimer’s disease, however, recent studies have 
shown that Alzheimer’s-like signaling is occurring in the 
brains of COVID-19 patients [27]. It has been suggested 
that the brain fog patients experience after COVID-19 
may be a form of Alzheimer’s, although more research 
into this is required to come to any definitive conclusions.

Novel panel of molecules associated with COVID‑19
The genes we determined to be most strongly associ-
ated with COVID-19 severity from BIPnet are available 
in Supplementary Table  1. The score we created from 
these molecules is strongly associated with COVID-19 
severity, ensuring us that BIPnet is able to accurately 
select predictors for our response. Of these genes, CCR6, 
CD4, CD40LG, CX3CR1, DYRK2, FCRL3, MAN1C1, 
P2RY10 and TLR7 have been identified as associated 
with COVID-19 in other research [28–35], however the 
other genes appear to be novel. Further investigation 
into these genes may provide insight into the mecha-
nisms of COVID-19. The proteins we determined to be 
most strongly associated with COVID-19 severity by 
BIPnet are available in Supplementary Table 1. CRTAC1, 
APOD, CFD, AGT, S100A8, RNASE1, SAA2, MRC1, 
TNC, DEFA1 , LYZ, B2M, DAG1, FETUB, APOA2, and 
LCN2 have all been identified as associated with COVID-
19 in other research [36–44], but the remaining proteins 
appear to be novel to our research. The score we created 
from these proteins was found to have a high predictive 
power of COVID-19 severity. These findings suggest that 
the molecules we have identified and used to develop a 
score could be used to accurately identify high-risk indi-
viduals. Note that the lipids and metabolites selected 
via BIPnet are unidentified molecules so unfortunately 
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cannot provide us with insight into the disease. In addi-
tion to the molecules we selected from BIPnet, we also 
have a panel of molecules identified by SIDA. The most 
significant proteins we found by SIDA are provided in 
Supplementary Table  5. From these proteins CRTAC1, 
IGLV3-1, HRG, HSPB1, LCP1, ITIH3, and APOA2 have 
all been identified as correlating with COVID-19 in 
other research, but to our knowledge, the rest are novel 
[45–48]. One new molecule we identified that may be of 
particular interest is the LUM protein, which as selected 
in SIDA and BIPnet. This protein is related to the cor-
nea, and metabolism, and further investigation into this 
protein’s association with COVID-19 could be interest-
ing. Referring to Supplementary Fig.  11, it is apparent 
there is a large difference in the expression of this pro-
tein between the COVID-19 and non-COVID-19 groups. 
The score that we created from these proteins substan-
tially increased AUC in the model, which indicates they 
are particularly predictive of COVID-19. The genes we 
selected from SIDA and used to create a score are pro-
vided in Supplementary Table  5. Of these genes, there 
is research to identify HLA-G as being associated with 
COVID-19, however, the rest of these molecules appear 
to be novel [49]. One molecule that is of interest here is 
the MMP17 gene, as this is a matrix metalloproteinase 
gene, and there is evidence to show that other matrix 
metalloproteinase molecules are related to neurological 
complications resulting from COVID-19 [50]. Further 
research into the novel molecules discovered in this anal-
ysis can help us understand the underlying signature of 
the disease and identify treatments to reduce the sever-
ity. We were able to validate some of our results by calcu-
lating the protein and gene scores for severity and status 
on independent datasets. Not all of the molecules in our 
scores could be validated due to missing data in the inde-
pendent datasets.

Some limitations of the study are that we have uniden-
tified lipids and metabolites which are determined to be 
significant. It would be of interest to identify these mol-
ecules as they may provide more insight into COVID-19. 
In addition, we have excluded many clinical covariates 
due to missing data, however, the use of multiple views 
of molecular data allows us to still make accurate analy-
ses and conclusions. We considered comorbidities of 
patients in the analysis by incorporating CCI as a clinical 
covariate, though for future studies more detailed infor-
mation about the comorbidities patients are experiencing 
(for example, if the patient has heart or respiratory condi-
tions) would allow more accurate results in determining 
what is strictly associated with COVID-19. In addition, 
we are missing information regarding patient treatment. 
However, as mentioned in the original study, Azithro-
mycin was used as treatment in many patients before 

enrolment in the study, and hence was found to be falsely 
associated with COVID-19. As such, this molecule was 
excluded from the analysis, as it is not actually associated 
with COVID-19. Future studies that incorporate treat-
ment information may allow more comprehensive analy-
sis of treatment effects on severe disease. Blood samples 
were taken at time of admission to the hospital, so we do 
not expect to see a treatment effect on the omics data. 
The small sample size also limits the generalizability of 
the findings. Despite this limitation, we were able to vali-
date our findings with three independent datasets. Future 
research using a larger sample size would be needed to 
determine if our findings are generalizable. Further, it 
would be interesting to validate our findings with an 
independent dataset that contains all the molecules we 
have determined associations with COVID-19 and to find 
a dataset to validate our COVID-19 status scores from 
proteins. Often having all views of data for patients is 
expensive or not possible. The scores we developed were 
computed for each set of omics data individually, though 
the molecules were selected through integrative analy-
sis methods. We note that BIPNet and SIDA can still be 
used for variable selection if there is one view of data and 
clinical covariates. In such cases, model training can still 
be performed and scores can be computed for that view. 
Further, if multi-omics data are available during training 
but only one type of omics data are available for testing, 
scores for testing data could still be computed based on 
variables selected at the training stage which utilized 
multi-omics data, as we have demonstrated in our vali-
dation with independent datasets. The methods we have 
used handle multi-omic data from the same patients. In 
a situation where data are obtained from different stud-
ies or cohorts, alternative integrative analysis methods 
would have to be used. When the data come from differ-
ent studies, the objective of the analysis becomes differ-
ent than what we explore in this manuscript.

Conclusions
From the integrative analysis performed on these multi-
omics data, we are able to conclude that there is a pre-
dictive molecular signature of COVID-19 severity, and 
a molecular signature that discriminates COVID-19 
status. Particularly, we are able to predict disease sever-
ity and discriminate disease status using both molecular 
and pathway scores we developed from proteomic and 
genomic data. Further we discover through our analysis 
interesting pathways surrounding immune function and 
inflammation related to both disease status and severity 
providing insight to future treatments and therapies for 
the disease. We are also able to understand the symptoms 
and consequences of COVID-19 better though discovery 
of a relationship between non immune function related 
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pathways, some of which are novel discoveries and some 
of which are corroborated in other research.

Methods
Dataset
The data for this multi-omic analysis was collected from 
April 6, 2020, through May 1 2020 by Overmyer et  al., 
2020. A total of 128 patients experiencing respiratory 
issues similar to COVID-19 symptoms were admitted 
to the Albany Medical Center in Albany, NY, and had 
blood taken and clinical data collected. Once the blood 
samples were taken it was determined which patients 
had the SARS-CoV-2 infection which resulted in 102 
patients testing positive for COVID-19, and the remain-
ing 26 patients testing negative. The data from these 
patients were used to explore the possible correlation of 
certain biomarkers with COVID-19 status and severity. 
The blood samples collected were used for multi-omics 
analyses. RNAseq was performed on leukocytes isolated 
from the blood samples. From the blood plasma, mass 
spectrometry (MS) technology was used to identify and 
quantify proteins, lipids, and metabolites. The data were 
filtered in two layers described in more detail in the Fil-
tering section. Any molecules which were not significant 
in either disease status or severity at an alpha of 0.1 were 
removed from the sample. Following this first layer of fil-
tering, low-variance molecules were removed. The main 
goal of our paper is to determine which molecules and 
molecular pathways are key determinants in COVID-19 
severity and status. Two methods were used to measure 
disease severity in the Overmyer et al., 2020 paper. These 
methods were the World Health Organization (WHO) 
0-8 disease-specific scale where 8 denotes death, as well 
as a score out of 45 indicating the number of hospital-
free days (HFD45). An HFD45 value of 0 indicates the 
individual was still admitted to the hospital after 45 days, 
or that the individual died. As mentioned in the Over-
myer et al., 2020 paper, the scores give comparable out-
comes, however, the HFD45 measurement is favoured 
as it is more granular and not specific to COVID-19. 
This makes the measure more applicable to the patients 
who tested negative. For the main analyses in this paper, 
only clinical covariates present in all of the samples were 
used. Specifically, we focus on the Charlson comorbidity 
index (CCI) score, ICU admission status, age, and sex. 
The CCI score is a score to assess the comorbidities of a 
patient based on the number and severity of comorbid 
conditions. Higher scores indicate more comorbidities 
or higher severity. Comorbidities have been shown to 
be strongly related to COVID-19 outcomes, so this is a 
crucial covariate to include in the models [51]. Age has 
also been shown to have a significant effect on the disease 
severity [52] so models are adjusted to incorporate age. 

The initial dataset contains 18,212 genes, 517 proteins, 
111 molecules from metabolomics analysis, and 3,357 
lipids. The filtering of these molecules is described in 
the next section. We also use three independent datasets 
[6, 15, 53] to validate the proteomic and gene scores for 
severity and status.

Filtering
To start the filtration process the omics data were trans-
formed with a log base 2 and normalised for each mol-
ecule to have mean 0 and standard deviation of 1. For 
more information on this process please refer to our 
previous work [8]. We used the data which passed the 
initial quality control: 517 proteins, 111 molecules from 
metabolomics analysis, and 3,357 molecules from lipi-
domics analysis which were read in from the SQLite 
database (https://​www.​sqlite.​org/​index.​html). Patients 
missing observations were excluded from the analy-
sis resulting in a sample of 99 COVID-19 patients and 
24 non-COVID-19 patients. In addition, any covari-
ates which were missing more than 70 % of observations 
were removed from the sample. Any remaining missing 
variables were imputed via K-nearest neighbourhoods 
in the “impute” package in R [54] with K=11. The result-
ing data were then filtered via a univariate regression at 
an alpha of 0.1. Any molecule which was not statistically 
significantly associated with COVID-19 or severity was 
removed from the data. To determine the significance 
with COVID-19, logistic regression models were fit using 
COVID-19 status as the outcome. Linear regression 
models were fit using HFD45 as a continuous response 
to determining significance with severity. Each molecule 
was tested for significance using the likelihood-ratio test 
adjusting for age and sex. This layer of filtering resulted 
in 14499 genes, 80 metabolites, 352 proteins, and 2031 
lipids. The next layer of filtering consisted of removing 
low-variation molecules. The threshold for low varia-
tion was determined separately for each molecule type 
by analyzing a histogram of the variances. The remaining 
molecules to be analyzed consist of 5800 genes, 72 mole-
cules from metabolomics analysis, 264 proteins, and 1015 
lipids.

SIDA
Sparse integrative discriminant analysis (SIDA) [11] is 
an integrative analysis method for jointly modeling asso-
ciations between two or more data types and separations 
between classes in each data type. It combines the advan-
tages of linear discriminant analysis (LDA) [55] for maxi-
mizing separation between classes in a data type, and 
canonical correlation analysis (CCA) [56] for maximiz-
ing association between two data types. SIDA maximizes 
the sum of between-class separations (COVID-19 versus 

https://www.sqlite.org/index.html


Page 14 of 17Lipman et al. BMC Genomics          (2023) 24:319 

non-COVID-19) and the sum of squared correlations 
between pairs of molecular data. In addition, the method 
selects important variables that contribute to the associa-
tion and separation of classes. The optimization problem 
can be solved using eigensystems. SIDA is able to incor-
porate prior knowledge of connectivity of molecules (for 
example molecule networks) by using the normalized 
Laplacian of a graph to encourage predictors that are 
connected and behave similarly to be selected. We have 
chosen this method due to its ability to perform inte-
grative analysis with variable selection, can incorporate 
clinical covariates, and allow for the use of prior biologi-
cal information. This way we are likely to determine key 
molecules associated with COVID-19 status with consid-
eration for molecule functionality. Tuning parameters for 
sparsity are chosen for each view of data, thus the level 
of sparsity can be tuned for each view of data separately 
which is relevant in a situation where there are varying 
variable dimensions in each view of data. We fit 61 mod-
els using the SIDA function in R (link to github [57]), 
each with a different subset of 60 samples. The left-out 
sample was used to estimate the test classification error.

SIDA Scores
A logistic regression model is fit using the training data-
set for each molecule selected from SIDA separately, 
adjusting for clinical covariates age, sex, CCI, and ICU 
status with COVID-19 status as the outcome to get each 
molecule’s effect size to create a score. Using the coeffi-
cients from the regressions we are able to create scores 
for the test set individuals by taking the linear combi-
nations of selected molecules with coefficients of the 
molecules as weights. We create a score from each view 
separately. We are then able to build a regression model 
with these scores using the testing dataset adjusting for 
age, sex, and CCI, and using COVID-19 status as the 
response in order to assess the discriminatory perfor-
mance of the scores. In addition, a score for the pathways 
is created. The molecules selected from SIDA with non-
zero coefficients in each of the 61 models undergo Inge-
nuity Pathway Analysis. Scores are created for each of the 
pathways and used in regression models to assess their 
significance in disease status.

BIPnet
BIPnet is a Bayesian integrative method that com-
bines dataset association and clinical outcome predic-
tion problems [10]. A factor analysis approach is used 
to integrate the data types and reduce the dimension of 
datasets to shared components with reduced number 
of features. Latent variables connect the multiple data 
types and model the correlations within each data type 
and between data types, thus inducing a dependency of 

the data types. BIPnet uses ideas from Bayesian sparse 
group selection to identify active components in each 
dataset and important features within components using 
two nested layers of binary latent indicators. This way 
the method can account for active shared components 
and individual components for each datatype. There are 
three possible scenarios regarding the components: Each 
component is shared across all data types (scenario only 
accounts for joint variation), none of the components are 
shared (scenario only accounts for individual variation), 
or some components are shared capturing joint struc-
ture and individual structure of the data. BIPnet is able 
to incorporate grouping information (for example gene 
networks) through prior distributions for variable selec-
tion indicator variables, enhancing interpretability. Clini-
cal responses are associated with shared components to 
evaluate predictive performance. One of the many ben-
efits of this method is clinical covariates can be included 
without enforcing sparsity. Marginal posterior probabili-
ties (MPPs) are used to determine which components or 
variables are to be included in the model. An MPP is the 
probability of a parameter being non-zero unconditional 
on other parameters. To incorporate grouping informa-
tion, we used ingenuity pathway analysis (IPA) [58] to 
determine gene and protein networks that were used in 
the BIPnet models. This method utilises the MCMC algo-
rithm for posterior inference and a collapsed Gibbs sam-
pling to sample the latent variables and the loadings. We 
use this method with severity (HFD45) as the response 
variable and include the clinical covariates CCI, age, sex, 
and ICU status. We chose this method to analyze mol-
ecules associated with COVID-19 severity because it is 
an integrative analysis method which performs variable 
selection while considering molecular function through 
networking information. This method is also favourable 
to our analysis because it can determine associations 
between omics and clinical outcomes while incorporating 
clinical covariates, which is a key objective of this study. 
BIPnet also accounts for the varying variable dimensions 
in each view of data by incorporating different prior dis-
tributions for variable selection in each view. This means 
that the level of sparsity for each view can be adjusted to 
reflect the number of molecules in the view. This is rele-
vant for the dataset analyzed, where there are much more 
genes and proteins used in analysis than metabolomics 
and lipidomics. For cross-validation 61 models were fit 
using the BIPnet package in R [59], (link to github [60]) 
each with a different subset of 60 samples. The left-out 
sample was used to estimate the test prediction error.

Bipnet Score
To create a model using the selected molecules we build 
univariate regression models using the training data set and 
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each of the molecules selected by BIPnet as a predictor in its 
own model adjusting for age, sex, and CCI. Using the coef-
ficients from the regressions we are able to create scores for 
the test set individuals by taking the linear combinations 
of selected molecules with coefficients of the molecules 
as weights. We create a score from each view separately. 
We are then able to build a regression model with these 
scores adjusting for age, sex, and CCI, and using HFD45 
as the response. For these models, the testing dataset is 
used. In addition to scores for each of the views, we create 
scores for pathways of molecules found to be significant as 
determined by IPA. To incorporate the pathways into our 
regression model we construct a score for each group of 
genes similar to how we did for each molecule type, where 
the weights for the molecules are generated using regres-
sion with the training set, and the scores are calculated on 
the testing dataset. In order to not be underpowered, we fit 
separate regression models using each network score as a 
predictor. These models once again adjusted for age, sex, 
and CCI, and used HFD45 as the response. In order to cre-
ate a score from each view of data, a linear combination of 
the molecules weighted by the coefficients from the regres-
sions is used on the testing data.

N‑Fold cross‑validation
N-fold cross-validation is a popular method for train-
ing and assessing the performance of a model. We used 
leave-one-out cross-validation to determine molecules 
consistently selected by the integrative analysis methods. 
This added statistical rigor, facilitating downstream analy-
ses of molecules that are more likely to be associated with 
disease severity and status. Other resampling techniques 
(e.g. N-fold cross-validation, bootstrap) could have been 
used for this purpose but we chose to use leave-one-out 
cross-validation because we wanted to mitigate against 
potential loss in information due to our small sample 
sized data. In this manuscript, the dataset is split into a 
training dataset of 61 patients and a testing dataset of 
62 patients. The BIPnet and SIDA models were fit using 
n-fold cross-validation on the training dataset. Models 
were fit for each method 61 times, each leaving out one 
of the training samples, and a cross-validated error is cal-
culated for each model. The cross-validated error is calcu-
lated by taking away the true response from the predicted 
response of the left-out sample using the corresponding 
model. The mean cross-validated error gives insight into 
the performance of the method on the dataset.
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