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Abstract 

Background Clear cell renal cell carcinoma (ccRCC) is a malignant tumor with heterogeneous morphology and poor 
prognosis. This study aimed to establish a DNA methylation (DNAm)-driven gene-based prognostic model for ccRCC.

Methods Reduced representation bisulfite sequencing (RRBS) was performed on the DNA extracts from ccRCC 
patients. We analyzed the RRBS data from 10 pairs of patient samples to screen the candidate CpG sites, then trained 
and validated an 18-CpG site model, and integrated the clinical characters to establish a Nomogram model for the 
prognosis or risk evaluation of ccRCC.

Results We identified 2261 DMRs in the promoter region. After DMR selection, 578 candidates were screened, and 
was correspondence with 408 CpG dinucleotides in the 450 K array. We collected the DNAm profiles of 478 ccRCC 
samples from TCGA dataset. Using the training set with 319 samples, a prognostic panel of 18 CpGs was determined 
by univariate Cox regression, LASSO regression, and multivariate Cox proportional hazards regression analyses. We 
constructed a prognostic model by combining the clinical signatures. In the test set (159 samples) and whole set (478 
samples), the Kaplan–Meier plot showed significant differences; and the ROC curve and survival analyses showed AUC 
greater than 0.7. The Nomogram integrated with clinicopathological characters and methylation risk score had better 
performance, and the decision curve analyses also showed a beneficial effect.

Conclusions This work provides insight into the role of hypermethylation in ccRCC. The targets identified might 
serve as biomarkers for early ccRCC diagnosis and prognosis biomarkers for ccRCC. We believe our findings have 
implications for better risk stratification and personalized management of this disease.
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Background
Renal cell carcinoma (RCC) is the most prevalent subtype 
of renal cancer with more than 400,000 new cases detected 
every year, and it is the second leading cause of death due 
to urological malignancy [1, 2]. 70–75% of the RCC is clear 
cell RCC (ccRCC), which is the primary histologic type of 
RCC and accounts for most deaths due to renal cancer 
[3, 4]. Although remarkable progress has been made in 
ccRCC treatment in recent years, the overall prognosis of 
ccRCC is poor, particularly for patients with advanced-
stage ccRCC [5, 6]. The clinical course of patients with 
ccRCC is heterogeneous; some live for decades without 
requiring any treatment while other patients experience 
rapid disease progression. The clinicopathological risk 
factors and their integrated systems, such as the Mayo 
Clinic stage, size, grade, and necrosis (SSIGN) score, have 
greatly improved the prognostic accuracy [7, 8]. However, 
due to genetic heterogeneity, clinical parameters based on 
morphology and immunohistochemistry are inadequate 
to predict the prognosis of ccRCC patients [9, 10]. With 
growing insights into the molecular biological mechanism 
of ccRCC, molecular biomarkers which could be able to 
reflect the biological behavior of ccRCC are believed to 
add prognostic value to traditional clinical characteristics 
[11, 12]. Therefore, there is an urgent need to develop 
reliable genetic prognostic models.

Epigenetic modifications do not change the DNA 
sequence and could be attributed to heritable alterations 
[13, 14]. Epigenetic modifications directly impact the 
function of the human genome by controlling DNA 
packaging. DNA methylation (DNAm) is one of the 
major epigenetic modifications, has a crucial role in 
maintaining gene transcription and genome stability. 
DNA methylation is reported in numerous studies 
that has an important effect on carcinogenesis, mainly 
occurs at the cytosine-phosphate-guanine (CpG) 
dinucleotide [15]. Regarding the methylation levels, 
CpG islands are generally hypomethylated, except that 
a small number randomly distributed [15]. Aberrant 
DNAm status, including hypomethylation of oncogenes 
and hypermethylation of tumor suppressor genes, is 
an important carcinogenic event [16, 17]. Aberrant 
promoter methylation may lead to lower gene expression 
or complete silencing of tumor suppressor and caretaker 
genes [18]. It was shown that DNAm could be used for 
developing diagnostic and prognostic biomarkers and 
targeted therapies in The Cancer Genome Atlas (TCGA) 
project and other studies [19]. Hence, studies were foucus 
on identifying DNAm-driven genes and investigating 
their molecular mechanisms, which might be of greatly 
help in understanding the biological characteristics 
of ccRCC. Moreover, due to the relatively stable and 
potentially reversible therapeutic attributes of DNAm 

in multiple types of cancers, aberrant DNAm have a 
promising prospective utility as targets for developing 
robust biomarkers for clinical decision-making [20–22].

Genetically, DNAm is reported to play a significant role 
during the pathogenesis of ccRCC, which involves both 
epigenetic and genetic alterations and is characterized by 
a complex biological disorder [12, 23, 24]. Intriguingly, 
high stage and grade of ccRCC cases were correlated with 
increased promoter hypermethylation frequency, and 
due to hypermethylation of enhancers, the expression 
of numerous tumor suppressor genes were inihibted, in 
turn to lead a growth biological activity of progressive 
tumor cell with respect to ccRCC development [25].

Although numerous studies have focused on the 
relationship between aberrant DNAm status and ccRCC 
outcomes, prognostic models based on DNAm-driven 
genes have rarely been reported with respect to ccRCC. 
In this study, we profiled the methylome of ccRCC 
and adjacent tissues from 10 patients using reduced 
representation bisulfite sequencing (RRBS). We analyzed 
the global and local methylation divergence and its 
functional relevance in tumorigenesis. By integrating the 
DNAm data of 478 patients from the TCGA database, we 
developed and validated a practical and reliable prognostic 
model for ccRCC. Our findings will further improve 
prognosis prediction and individualized treatment for 
patients with ccRCC.

Methods
Patients and study design
As shown in Supplementary Fig. 1, the study procedure 
included the discovery, training, and validation stages. 
Briefly, we analyzed the RRBS data from 10 pairs of 
patient samples (normal vs. tumor) to screen the original 
candidate CpG sites, then trained and validated an 
18-CpG site model, and integrated the clinical characters 
to establish a Nomogram model for the prognosis or risk 
evaluation of ccRCC.

As mentioned above, ten patients with ccRCC were 
recruited for the study. Sample 2 was excluded because 
of its low correlation with the other samples (Table  1). 
The diagnosis of ccRCC was based on pathological find-
ings (Supplementary Table 1). The samples were obtained 
from ccRCC patients who underwent partial nephrec-
tomy to remove cancerous tissue at The People’s Hospi-
tal of Longhua. All samples were analyzed by an expert 
pathologist from the Department of Pathology and kept 
frozen until used for DNA extraction. Written informed 
consent was obtained from all participants, and the 
clinical protocol was reviewed and approved by the Eth-
ics Committee of The People’s Hospital of Longhua, 
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Shenzhen, China. Patients with a follow-up time of less 
than 30 days were excluded from the survival analysis.

A total of 478 patients with ccRCC were obtained 
through the TCGA project (Table  2). Since it is still 

disputed whether hypertension, smoking, and obesity are 
independent risk factors for renal cancer [26, 27], these 
clinical signatures were not included in this study.

RRBS library construction and sequencing
The renal tissue methylation profiles were studied using 
the RRBS method by Shenzhen E-Gene Biotechnology 
Co. Ltd. (Shenzhen, China) with modifications according 
the lab situation [28, 29]. Genomic DNA was extracted 
from fresh frozen tissue. The samples were homogenized 
in lysis buffer consisting of 100 mM Tris–HCl (pH 8.5), 
five mM EDTA, 0.2% SDS, and 200 mM NaCl. Proteinase 
K was added at a final concentration of 300  μg/ml. The 
samples were incubated overnight at 55  °C to ensure 
that the genomic DNA was dissociated entirely from 
any DNA-binding proteins. After digestion, the genomic 
DNA was extracted using a genomic DNA extraction 
kit, according to the manufacturer’s instructions 
(AllPrep DNA/RNA Mini Kit, Qiagen, USA). DNA 
quality and quantity were assessed using a NanoDrop 
spectrophotometer and 0.8% agarose gel electrophoresis.

For each sample [30], 1  μg of genomic DNA was 
digested overnight using 40 units of MspI (New England 
Biolabs). The digested DNA was end-repaired and 
adenylated in a 50 μl reaction consisting of 10 U of exo-
Klenow fragments (Enzymatics) and 2  μl each of dGTP 
(1 mM), dATP (10 mM), and methylated dCTP (1 mM). 
The reaction was incubated for 30 min at 30 °C and then 
for another 30  min at 37  °C. The methylated Illumina 
adapters were ligated to the adenylated DNA fragments 
in a 20  μl reaction containing 2  μl of concentrated T4 
ligase (Enzymatics) at room temperature for 15 min. The 
ligation products were gel-selected for fragments with 
insertion sizes of 40–120  bp and 120–220  bp. Bisulfite 
treatment was conducted using the EZ DNA Methylation 
Kit (Zymo Research) according to the manufacturer’s 
protocol. The final libraries were generated using 
5  μl of bisulfite converted template in a 14-cycle PCR 
amplification system using PfuTurbo Cx Hotstart DNA 
Polymerase (Agilent Technologies) and sequenced using 
an Illumina Xten with a paired-end 150 bp strategy.

RRBS data analysis
All the computational R scripts used for data processing 
and analysis available as Supplementary file 3. Briefly, 
we removed low-quality reads by TrimGalore. Adapter 
contamination was removed by Cutadapt (version 1.9) 
[31]. The reference genome (hg38) and the corresponding 
annotation files were obtained from the University of 
California Santa Cruz (UCSC) database. Clean reads 
were aligned to the reference genome and called the 
single base resolution methylation level using BSMAP 

Table 1 Detailed information of the recruited ccRCC patients

No Gender Age Location Size

S1 Male 39 Left 2.0*2.0 cm

S2 Male 45 Right 1.5*2.0 cm

S3 Male 36 Left 1.2*1.5 cm

S4 Male 30 Left 1.5*2.0 cm

S5 Male 33 Right 5.0*6.0 cm

S6 Male 57 Right 3.0*3.0 cm

S7 Male 48 Right 2.0*3.0 cm

S8 Male 53 Right 2.0*3.0 cm

S9 Male 25 Left 2.0*2.0 cm

S10 Male 45 Left 5.0*6.0 cm

Table 2 Clinical and pathological features of the 478 patients 
from TCGA-KIRC

Features TCGA-KIRC 
dataset 
(N = 478)

Gender
 Female 164 (34.3%)

 Male 314 (65.7%)

Age
 Mean (SD) 62.2 (11.6)

 Median [Min, Max] 61.9 [26.6, 88.8]

Neoplasm histologic grade
 G1 8 (1.7%)

 G2 193 (40.4%)

 G3 189 (39.5%)

 G4 83 (17.4%)

 GX 5 (1.0%)

TNM stage
 Not reported 2 (0.4%)

 Stage I 209 (43.7%)

 Stage II 47 (9.8%)

 Stage III 124 (25.9%)

 Stage IV 96 (20.1%)

pT stage
 T1 216 (45.2%)

 T2 65 (13.6%)

 T3 182 (38.1%)

 T4 15 (3.1%)

Overall Survival time (days)
 Mean (SD) 1261 (996)

 Median [Min, Max] 1091.5 [3, 4537]
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(version 2.73) [32]. The commonly covered CpG sites 
with sequencing depths ≥ 5 × in all the nine samples were 
screened for global correlation and cluster analysis among 
the samples. To identify differentially methylated regions 
(DMRs) between the two groups, we used metilene 
(version 0.2–6) [33] with the following criteria: distance 
between two neighboring candidate CpG sites ≤ 300  bp, 
CpG sites ≥ 5, methylation level difference > 0.1, and 
q-value < 0.05 using the Benjamini Hochberg method 
[34]. For DMRs annotation, the promoter region was 
defined as the 2-kb upstream sequence and the 0.5-
kb downstream sequence of the transcription start 
site. The gene body region was defined as the 0.5-kb 
downstream sequence from the transcription start site to 
the transcriptional termination site. If the gene harbored 
one or more DMR, of which > 50% bases overlapped with 
the gene’s promoter or gene body, it was identified as a 
differentially methylated gene (DMG) [35].

Construction and validation of the DMR-based prognostic 
model
Stepwise screening of CpG sites
DMRs with a false discovery rate (FDR) q-value < 0.01 and 
a methylation difference > 0.25 located in the promoter 
region were selected for further integrative analysis with 
the TCGA data. The CpG sites in these DMRs from the 
450  k microarray were considered candidate CpGs for 
constructing the prognostic model.

Prognostic model
A total of 478 clinical samples and 450  K microarray 
data of the The Cancer Genome Atlas Kidney Renal 
Clear Cell Carcinoma (TCGA-KIRC) cohort were 
downloaded from UCSC Xena. To construct a 
methylation-based risk prognostic model, we randomly 
divided these 478 samples into the training set (70%, 
319 samples) and test set (30%, 159 samples). To train 
the model, candidate CpGs significantly associated 
with prognosis were identified using univariate Cox 
regression, least absolute shrinkage and selection 
operator (LASSO) regression (glmnet R package), and 
a stepwise multivariate Cox regression analyses in 
the TCGA training set. The linear combination of the 
regression coefficient derived from the multivariate 
Cox regression model with a tenfold cross validation 
process for 5 times was used to generate the prognostic 
risk score. Based on the risk score, ccRCC patients were 
divided into the high-risk and low-risk groups through 
an appropriate cutoff point determined by the survival 
R package. The log-rank test and Kaplan–Meier (KM) 
survival curves were used to evaluate the survival 
differences between the high-risk and low-risk patients. 
Time-dependent receiver operating characteristic 

(ROC) curves were employed to measure the predictive 
performance using the surviva1 ROC R package [36]. 
The risk score of all validation cohorts was calculated 
using the same formula in the TCGA training cohort. 
The cutoff values of the TCGA validation cohort and 
the whole TCGA cohort were the same as those of the 
TCGA training cohort. Univariate and multivariate 
Cox regression analyses were performed to determine 
whether the prognostic model was independent of 
traditional clinical features of ccRCC (including age, 
gender, histologic grade, and pathologic stage). The 
statistical significance level was set at 0.05. Hazard 
ratios (HRs) with confidence intervals (95% CIs) were 
also calculated.

Construction and evaluation of the nomogram model
The independent prognostic clinicopathological 
factors selected by the univariate and multivariate Cox 
regression analyses and the 18-CpG panel-based risk 
score were integrated to construct a nomogram through 
the RMS R package [37]. KM survival analysis and 
time-dependent ROC curves were used to measure the 
predictive performance of the Nomogram. In addition, 
the calibration of overall survival (OS) probability at 
different time points (1, 3, 5, and 10 years) was assessed 
using the Hosmer–Lemeshow test.

Protein–protein interaction network analysis
The 18 dmCpG sites were annotated to functional genes 
(DMGs) using the corresponding 450  K annotation file 
downloaded from Illumina official website (https:// webda 
ta. illum ina. com/ downl oads/ produ ctfil es/ methy latio nEPIC/ 
infin ium- methy latio nepic-v- 1-0- b4- manif est- file- csv. zip). 
Protein–protein interaction analysis among these genes was 
conducted by GeneMANIA (http:// genem ania. org/).

Gene set function analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) functional enrichment analyses 
of the DMGs were performed using the AllEnricher 
software with default parameters [38]. GO terms or 
KEGG pathways with a P-value < 0.05 were considered 
significantly enriched functions.

Results
RRBS sequencing quality control
The flowchart of this study is shown in Supplemen-
tary Fig. 1. We analyzed the RRBS data from 10 pairs of 
patient samples (normal vs. tumor) to screen the origi-
nal candidate CpG sites, then trained and validated an 
18-CpG site model, and integrated the clinical charac-
ters to establish a Nomogram model for the prognosis 
or risk evaluation of ccRCC. The summary of the RRBS 

https://webdata.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b4-manifest-file-csv.zip
https://webdata.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b4-manifest-file-csv.zip
https://webdata.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b4-manifest-file-csv.zip
http://genemania.org/
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sequencing is shown in Table  3. The mapping rate rep-
resents the proportion of mapped reads in clean reads. 
The RRBS sequencing data were analyzed pairwise to 
determine differentially hypermethylated and hypometh-
ylated CpG sites. The average genome-wide methyla-
tion levels of total C, CG, CHG, and CHH are shown in 
Table 4. CG methylation was the dominant form of meth-
ylation among the samples. The correlation analysis of 
CpG methylation (Fig.  1A) revealed a good correlation 
of global CpG methylation among the samples. The clus-
ter dendrogram revealed some expected heterogeneity 
among the tumor samples (Fig. 1B).

Identification of DMRs
To identify the local methylation alterations between 
the ccRCC and adjacent normal tissues, we performed 
genome-wide DMR detection. We finally identified 
11,576 DMRs (q-value < 0.05) associated with 7948 anno-
tated genes, among which an equivalent proportion of 
hypermethylated (8528) and hypomethylated (3048) 
regions was uncovered (Fig. 2A & B).

Promoter DNAm regulates gene expression by bind-
ing with transcription factors, particularly those possess-
ing CpG-rich response elements [39]. It was reported that 
methylation in the promoter region can inhibit gene tran-
scription, while methylation in gene body increases tar-
get gene expression. Considering that the transcriptional 
effects of DNAm are highly dependent on the position 

of DMRs, and the methylation status of the promoter is 
always classically negatively associated with mRNA tran-
scription [40, 41], the distribution of DMRs in the genomic 

Table 3 Mapping summary and methylation on C and CpG sites

ID Raw reads num Clean reads num Mapping rate (%) C ≥ 5 × depth C ≥ 5 × coverage% CG ≥ 5 × depth CG ≥ 5 × coverage%

S1 Ca 70610280 69541152 90.53% 18.4549 4.27607 20.4197 12.3206

S1 Control 76774544 75846068 89.03% 19.5327 3.98545 21.4912 11.708

S2 Ca 76406862 75205782 91.56% 19.0952 4.40915 20.8279 12.7017

S2 Control 67661438 66824480 89.38% 17.7763 4.07378 18.9796 11.6961

S3 Ca 82224792 81161958 88.79% 22.1614 4.01877 24.2684 11.6027

S3 Control 55061390 54403478 90.96% 15.5052 3.73298 17.209 10.9062

S4Ca 67110006 66372658 89.84% 18.1324 4.13492 19.5161 11.8676

S4 Control 65713336 65097216 88.51% 18.0754 3.89858 19.6942 11.1201

S5 Ca 67174320 66413802 88.91% 17.8816 3.99566 19.0881 11.5049

S5 Control 59854658 59189972 91.14% 15.9668 3.60568 17.5145 10.6602

S6 Ca 68838368 68250584 87.99% 16.1532 3.91016 17.1773 11.034

S6 Control 67896208 67240612 90.41% 16.5562 4.04057 17.7704 11.6787

S7 Ca 60636066 60021972 88.80% 12.2743 2.70006 14.0251 7.91118

S7 Control 72072566 71210874 92.96% 18.4785 4.55952 20.6071 13.0421

S8 Ca 72406728 71885174 87.35% 20.4828 3.90657 21.2554 11.0308

S8 Control 71739188 71032094 88.84% 17.2208 4.07385 18.8854 11.8001

S9 Ca 73334944 72588248 88.39% 19.6719 4.29837 21.1938 12.1539

S9 Control 65025156 64526486 90.12% 14.7728 3.00057 16.7971 8.49893

S10 Ca 64097306 63440050 88.85% 16.7965 3.60493 18.5089 10.0266

S10 Control 89006670 87925188 91.26% 20.0768 4.50314 23.8406 12.9384

Table 4 CG, CHG, CHH average methylation level (> 1X depth)

ID C CG CHG CHH

S1Ca 0.085313 0.679945 0.01098 0.008996

S1 Control 0.076032 0.679417 0.014491 0.012859

S2 Ca 0.063247 0.564915 0.009541 0.007948

S2 Control 0.073132 0.668604 0.009896 0.008796

S3 Ca 0.063247 0.564915 0.009541 0.007948

S3 Control 0.073132 0.668604 0.009896 0.008796

S4Ca 0.075968 0.645839 0.010519 0.008557

S4 Control 0.081017 0.659898 0.013712 0.012085

S5 Ca 0.074902 0.648588 0.009792 0.007965

S5 Control 0.081529 0.661092 0.014666 0.013155

S6 Ca 0.073316 0.660722 0.010186 0.008449

S6 Control 0.072124 0.675659 0.013316 0.012018

S7 Ca 0.066089 0.689941 0.010362 0.009398

S7 Control 0.068595 0.682751 0.012587 0.011059

S8 Ca 0.058166 0.688835 0.007909 0.007115

S8 Control 0.084331 0.65613 0.01549 0.014059

S9 Ca 0.072952 0.655497 0.010275 0.008498

S9 Control 0.07211 0.673234 0.01269 0.01129

S10Ca 0.07978 0.667015 0.011118 0.009387

S10 Control 0.058454 0.700477 0.010731 0.009895
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locations was investigated. Annotated DMRs were mapped 
onto the CpG island-related regions and the genic location 
(promoter, 5’UTR, gene body, and 3’UTR) (Fig.  2C). We 
performed GO and KEGG pathways analyses to reveal the 
biological functions of DMGs. The GO and KEGG path-
way analyses of DMGs with DMRs in the promoter and 
gene body regions are shown in Supplementary Fig. 2.

Construction of the ccRCC prognostic model
After multiple testing adjustments, 578 out of 2261 
DMRs, which were located in the promoter regions 

(5’-UTR, TSS200, TSS1500, and first exon), survived 
the stringent statistical test (P-value < 0.001, methyla-
tion difference > 0.25). These 578 sites corresponded 
to 408 sites in the 450 K microarray (Infinium Human-
Methylation450 Bead Chip).

A total of 478 patients with complete clinical 
information in the TCGA-KIRC data set were included, 
with 319 samples (70%) in the training set and 159 
samples (30%) in the test set. As illustrated in the Fig. 1, 
univariate Cox regression analysis was conducted to 
investigate the prognostic value of the methylation 

Fig. 1 Genome-wide methylation differences among samples. A Correlation of CpG methylation rates among samples. A larger circle area and 
darker color indicate a higher correlation. B Cluster dendrogram. According to Euclidean distance, samples were clustered using the hclust function 
of R. Ward.d2, the minimum variance method, was selected as the clustering method

Fig. 2 DMR analysis. A Mean methylation difference. The X-axis represents the methylation difference. Negative values indicate low methylation 
levels. Positive values indicate increased methylation levels. The Y-axis represents the number of DMRs within the corresponding abscissa range. B 
DMR methylation distribution density. The X-axis represents the DMR methylation level in the Ca group; the Y-axis represents the DMR methylation 
level in the control group. The DMR density varies from low to high (white to red). C The distribution of DMR on gene elements
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levels of 408 differentially methylated CpG (dmCpG) 
sites using the TCGA training cohort. Seventy four 
survival-associated dmCpG sites were obtained with 
the threshold of P < 0.001 (Supplementary Table 2).

Next, thirty key dmCpG sites were identified in the 
LASSO regression analysis with cross-validation, where 
the regularization parameter was chosen based on ten-
fold cross-validation (Fig.  3A). Then eighteen candi-
date dmCpGs sites were screened by the stepwise Cox 
regression analysis for the construction of the prognos-
tic signature (Table  5). The expression profile and the 
DNA methylation profile of promoters of 18-CpG cor-
responding genes were shown in Supplementary Fig.  3, 
and Supplementary Fig. 4, respectively. Figure 3B shows 
the protein–protein interaction networks of the 18 
dmCpG sites related genes created using GeneMANIA. 

DisGeNET disease analysis results showed that most 
genes were significantly enriched in tumor progression of 
ccRCC, including malignant neoplasms, primary malig-
nant neoplasms, renal cell carcinoma, tumor progression, 
as well as other types of cancers, such as liver carcinoma, 
breast carcinoma, and malignant neoplasms of lagre 
intestine and stomach (Fig.  3C). GO analysis revealed 
that these genes were involved in nagtive regulation of 
inflammatory response, positive regulation of transcrip-
tion by RNA polymerase II, and receptor-mediated endo-
cytosis, and the data suggested that these genes play an 
essential role in tumorigenesis of ccRCC (Fig. 3D).

The prognostic model was established using the regres-
sion coefficient from the multivariate Cox proportional 
hazard analysis. The coefficient of the prognostic model 

Fig. 3 The dmCpG site identification. A LASSO regression analysis of CpG sites with tuning parameter selection (lambda). B Protein–protein 
interactions. C DisGeNet disease enrichment analysis of 18 dmCpG sites. D GO enrichment analysis of 18 dmCpG sites
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was shown in Supplementary Table  3. The risk score of 
each sample was calculated as follows:

Training of the prognostic model
We examined the distribution of the survival status 
of all patients. For patients in the TCGA training set, 
we applied the median risk score (2.455) as the cutoff 
value, which was computed according to the normal-
ized methylation levels of the 18 CpG sites, to separate 
the patients into the high-risk and low-risk statuses. 
The survival analysis of the risk score also revealed the 
survival probability divergence between the high-risk 
and low-risk patients (P < 0.0001, Fig.  4A and B). The 
heat map in Fig. 4C shows that the variation direction 
of the methylation levels of the 18 CpG sites was con-
stant with their coefficients in the prognostic signa-
ture. Moreover, 1-, 3-, 5-, and 10-year ROC curves of 
risk scores were plotted in Fig.  4D, with AUC values 
of 0.788, 0.782, 0.854, and 0.854, respectively. These 
results indicated good prognostic prediction efficacy of 
the 18-CpG site model.

The prognostic prediction ability of the 18-CpG site 
model was also validated in patients from the test set, 
and similar results were obtained (Fig.  5). As shown in 
Fig.  5A and B, consistent with the above findings, sur-
vival analysis on the test cohort showed that the high-risk 
patients had a particularly unfavorable prognosis than 

Risk score for patients =
∑N

i=1
(cofficients of each CpGs × β − values of each CpGs)

the low-risk patients. Time-dependent ROC curves in 
Fig. 5D displayed that the 18-site prognostic model had 
reliable predictive accuracy across the test cohort, with 
AUC values of 0.692, 0.696, 0.693, and 0.739 revealed by 
the 1-, 3-, 5-, and 10-year ROC curves, respectively.

Validation of the prognostic model
Specificity of the model for ccRCC was further tested 
for ccRCC patients in the TCGA whole cohort. High-
risk and low-risk groups was classified based on the 
same cutoff value (2.455) in the TCGA training cohort. 
Similar results were shown in supplementary Fig.  5. 
In supplementary Fig.  5D, the AUC values were 0.753, 
0.745, 0.794, and 0.825 for 1-, 3-, 5-, and 10- years, 
respectively. These results demonstrated that the 
prognostic model for OS also had a good predictive 
ability for ccRCC, suggesting that the prognostic 
model was specifically and strongly correlated with the 
development and progression of ccRCC.

We performed univariate and multivariate cox analyses 
to evaluate whether the risk score was an independent 
prognostic index irrespective of the other clinical fea-
tures, and the analyses incluled the clinical information 
of 478 patients in the TCGA data set. As shown in Fig. 6, 
both of the univariate and multivariate analyses results 
suggested that tumor, node, metastasis (TNM) stage, age, 
neoplasm histologic grade, and risk score were independ-
ent prognostic indexes (P < 0.05), but gender was not an 
independent prognostic index.

Table 5 Annotation of the 18 CpG sites in the prognostic model

No CpG site CHR MAPINFO Ref gene name Ref gene group Relation to 
CpG Island

1 cg17868751 X 3633155 PRKX TSS1500 S_Shore

2 cg06577005 1 26758228 DHDDS TSS1500 N_Shore

3 cg17367832 2 241395288 MIR149;PP14571;GPC1 TSS200;Body Island

4 cg23462514 4 1107585 RNF212 TSS200 Island

5 cg25598840 7 27142618 HOXA2 TSS1500 N_Shore

6 cg03021802 8 21923841 EPB49 (DMTN) 5’UTR Island

7 cg14947429 10 28036151 MKX TSS1500 S_Shore

8 cg23067082 12 7073179 MIR141 TSS200

9 cg18210365 15 65066710 RBPMS2 Body N_Shore

10 cg01286935 16 89778247 C16orf7 (VPS9D1) Body Island

11 cg03933495 16 3493614 NAT15(NAA60);ZNF597 TSS200 S_Shore

12 cg00869668 17 1549012 SCARF1 5’UTR;1stExon S_Shore

13 cg06941557 17 7757543 KDM6B;TMEM88 3’UTR;TSS1500 Island

14 cg13965612 19 10928696 DNM2;MIR199A1 Body;TSS1500 –
15 cg06303238 20 50418959 SALL4 1stExon;5’UTR Island

16 cg24332577 20 50419248 SALL4 TSS1500 S_Shore

17 cg26728517 20 39319540 – – Island

18 cg21655830 21 44899410 C21orf84 (LINC00313) TSS1500 –
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The OS assay of the prognostic model showed a sig-
nificant difference in survival probability (P < 0.0001, 
Fig.  7A). The predicted OS performance was good at 1, 
3, 5, and 10 years (Fig. 7B). As shown in Fig. 7C, D, at 1, 
3 years, the NomoScore explored in our study performed 
better than the combined clinicopathological characters 
(tumor stage, histological grade, and age) and the risk score 
alone. At 5, and 10 years (Fig. 7E, F), the NomoScore and 
risk score were similar, better and the combined clinico-
pathological characters. Additionally, the decision curve 
analyses showed a beneficial effect when integrating the 

clinicopathological characters with the methylation risk 
score (Supplementary Fig. 6).

Discussion
Despite considerable progress has been made in the 
treatment of ccRCC, ccRCC as one of the most common 
urological malignancies, still poses a severe public health 
burden [5, 42]. Similar to the development of other type 
of cancers, the development of ccRCC is primarily driven 
by genetic alterations and epigenetic abnormalities 
[43, 44]. In particular, aberrant methylation is one of 

Fig. 4 Risk scores in the training set. A KM survival curve of patients in the high-risk and low-risk groups. The data are shown as median with 
the interquartile range. Statistical significance was assessed using Log-rank test. The dotted line shows the statistical significance at 50% survival 
probability. B Rank of calculated risk score and survival status of high-risk and low-risk patients. The dotted line shows the cutoff value to distinguish 
ccRCC high-risk and low-risk patients. C Heat map of methylation levels at 18 CpG sites. D The 1-, 3-, 5-, and 10-year ROC curves of risk scores. The 
sensitivity and specificity of this model were determined by the cutoff value
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the most critical carcinogenic biological processes, 
especially in ccRCC [23, 45, 46]. The advances in next-
generation sequencing technologies and methylation 
microarray offer emerging opportunities to analyze 
the genomic profiles and methylome together in an 
integrated manner [47]. Therefore, it is feasible and 
promising to identify specific DNAm-driven genes that 
reflect the biological behavior and predict the prognosis 
of ccRCC. In this study, we focused on identifying 
the importance of DNAm-driven genes in ccRCC 
prognosis. As a result, we constructed and validated an 
18 CpG methylation based prognostic model for ccRCC. 

Furthermore, we established a nomogram by combining 
the prognostic model with clinical characteristics to help 
clinicians better manage patients with ccRCC.

Hypomethylation may directly influence karyotypic 
stability and prompt altered heterochromatic-
euchromatic interactions favoring oncogenesis [48]. 
Moreover, genome-wide DNA hypomethylation is 
associated with genomic instability, conferring a poor 
prognosis [49]. RRBS was a widely used cost-efficient 
method to depict genome-wide DNA methylation 
alterations in clinical research. Based on the RRBS data, 
we identified 2261 DMRs in the promoter region. After 

Fig. 5 Risk scores in the test set. A KM survival curve of patients in the high-risk and low-risk groups. The data are shown as median with the 
interquartile range. Statistical significance was assessed using Log-rank test. The dotted line shows the statistical significance at 50% survival 
probability. B Rank of calculated risk score and survival status of high-risk and low-risk patients. The dotted line shows the cutoff value to distinguish 
ccRCC high-risk and low-risk patients. C Heat map of methylation levels at 18 CpG sites. D The 1-, 3-, 5-, and 10-year ROC curves of risk scores. The 
sensitivity and specificity of this model were determined by the cutoff value
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DMR selection, 578 candidates were screened, and 
there was correspondence with 408 CpGs in the 450  K 
array. Using the training set with 319 samples from 
TCGA, a prognostic panel of 18 CpGs was established. 
Then univariate Cox regression, LASSO regression, 
and multivariate Cox proportional hazards regression 
analyses were performed. By combining the clinical 
signatures, we aimed to build a DNAm-driven gene-
based prognostic model for ccRCC.

Some studies had reported prognostic models for 
ccRCC. Wang et  al. [50] established a three-gene-
based prognostic model, and Pan et al. [51] identified 
a five-gene signature. However, due to lack of inter-
nal and external validations in these models, the AUC 
values of the models are less than 0.7. In our study, 
an 18 dmCpG-based prognostic model was identi-
fied and comprehensively validated. As shown in the 
results, the KM plot showed significant differences 

between the high-risk and low-risk patients both in 
the test set (159 samples) and whole set (478 sam-
ples). Besides this, the ROC curve and survival analy-
ses also revealed good performance, with AUC values 
greater than 0.7. Collectively, all the data suggested 
a promising model for ccRCC prognosis prediction. 
This model is an independent and specific indicator 
of ccRCC prognosis, and it is believed to offer novel 
prognostic biomarkers and potential treatment targets 
for ccRCC.

However, this study has several limitations. First, 
the sequencing was merely carried out in nine male 
patients. The training and validation of the prognostic 
model were based only on the in silico and retrospec-
tive study of publicly available data. The prediction 
validation was performed in only one independent 
cohort. We are planning to perform adequate valida-
tion in a larger population-based prospective cohort 

Fig. 6 Nomogram based on the prognostic model and clinical characteristics. A Univariate and B multivariate regression analyses of the prognostic 
model and clinical characteristics. C Nomogram for predicting the probability of 1-, 3-, 5-, and 10-year survival times for ccRCC patients
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Fig. 7 Model calibration and ROC evaluation. A KM survival curve of patients in the high-risk and low-risk groups. B Nomogram for predicting 
1-, 3-, 5-, and 10-year OS for ccRCC patients. ROC curves of clinicopathological characters (green, integrated with tumor stage diagnoses, age and 
neoplasm histologic grade), RiskScore (red) and NomoScore (black), at 1 (C), 3 (D), 5 (E), and 10 years (F)
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to strengthen the clinical utility of our findings in the 
future. Second, the biological functions of 18 CpG 
site annotated genes should be explored and veri-
fied by further experiments, making the methylation-
based prognostic model more explainable. With the 
rapid development of multi-omics technology, we are 
entering an era of precision medicine. Many biomark-
ers have been identified based on high throughput 
sequencing, but very few of them have been identi-
fied based on CpG dinucleotide sites. The 18-CpG 
signature and nomogram explored in our study could 
guide the clinicians in accurately identifying high-risk 
ccRCC patients, performing early treatment interven-
tions for ccRCC, and predicting the long-term survival 
outcomes of ccRCC patients. Nowadays, the detection 
of CpG sites is more complex and expensive than the 
detection of gene expression, but hundreds of thou-
sands of CpG sites identified have promising diagnos-
tic and prognostic value, and these CpG sites should be 
explored further with the development of the detection 
technology. Moreover, testing of only 18 CpG sites can 
be a cost-effective routine and may be useful for prog-
nosis prediction in clinical practice. The precise biolog-
ical mechanisms of ccRCC progression are still unclear, 
and future functional experiments shoul be emphasized 
on these mechanisms. In addition, further prospective 
studies in more medical centers are required to verify 
the predictive ability and accuracy of this model. Due 
to the the current model AUC not being high enough, 
we may try other robust network-based regularization 
and variable selection for high-dimensional genomic 
data [52, 53] in future research to improve the robust-
ness and accuracy of the model. In general, despite 
these shortcomings, we have provided a reliable prog-
nostic model for the clinicians to use while evaluating 
the individual prognosis of ccRCC patients.

Conclusions
In this study, We analyzed the RRBS data from patient 
samples to screen the original candidate CpG sites, 
then trained and validated an 18-CpG site model using 
TCGA-KIRC data, and integrated the clinical characters 
to establish a Nomogram model for the prognosis or risk 
evaluation of ccRCC.

Based on the result, this novel prognostic model was 
developed and validated as a practical and reliable pre-
dictive tool for patients with ccRCC. In addition, our 
findings support the notion that aberrant DNAm status 
is closely associated with oncogenesis and offers potential 
novel prognostic biomarkers for ccRCC. We believe our 
findings have implications for better risk stratification 
and personalized management of this disease.
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