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Abstract 

Background Genome-wide association studies (GWASs) have identified many single-nucleotide polymorphisms 
(SNPs) associated with complex phenotypes in the European (EUR) population; however, the extent to which EUR-
associated SNPs can be generalized to other populations such as East Asian (EAS) is not clear.

Results By leveraging summary statistics of 31 phenotypes in the EUR and EAS populations, we first evaluated 
the difference in heritability between the two populations and calculated the trans-ethnic genetic correlation. We 
observed the heritability estimates of some phenotypes varied substantially across populations and 53.3% of trans-
ethnic genetic correlations were significantly smaller than one. Next, we examined whether EUR-associated SNPs of 
these phenotypes could be identified in EAS using the trans-ethnic false discovery rate method while accounting for 
winner’s curse for SNP effect in EUR and difference of sample sizes in EAS. We found on average 54.5% of EUR-associ-
ated SNPs were also significant in EAS. Furthermore, we discovered non-significant SNPs had higher effect heteroge-
neity, and significant SNPs showed more consistent linkage disequilibrium and allele frequency patterns between the 
two populations. We also demonstrated non-significant SNPs were more likely to undergo natural selection.

Conclusions Our study revealed the extent to which EUR-associated SNPs could be significant in the EAS population 
and offered deep insights into the similarity and diversity of genetic architectures underlying phenotypes in distinct 
ancestral groups.
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Background
Over the last few years, large-scale genome-wide associa-
tion studies (GWASs) have successfully identified hun-
dreds of thousands of single-nucleotide polymorphisms 
(SNPs) associated with many complex human diseases 
and quantitative traits [1–4]. These discoveries consid-
erably advance the identification of functional variation 
underlying phenotypes and facilitate the understanding 
of how SNPs affect disease risk. However, the major-
ity of current GWASs are predominantly undertaken in 
homogenous populations of European (EUR) ancestry, 
with relatively little attention paid on other populations 
[5–14]. For instance, approximately 90% of participants 
at the discovery stage of GWASs are of EUR descent, 
while only 7.4% were of Asian ancestry and less than 1% 
are of Africans (AFR) [8]. Until recently, trans-ethnic 
GWASs with non-EUR descents have been increasingly 
conducted [15–18], revealing new novel associations in 
other ancestral groups including AFR [19] and East Asian 
(EAS) ancestries [20–26].

Those multi-ancestry GWASs found that significant 
SNPs identified in EUR could be discovered in other 
populations in the sense that they often exhibited a high 
consistence in effect direction and magnitude [17, 18, 27–
34], indicating the same phenotypes share similar genetic 
component across diverse populations [32, 35–40]. How-
ever, population-specific association patterns also widely 
emerged, implying heterogeneous genetic architectures 
across diverse ancestries [22, 33, 41–51]. Furthermore, 
for some phenotype-associated SNPs, ancestor-relevant 
heterogeneity produced great differences in minor allele 
frequency (MAF) and linkage disequilibrium (LD) pat-
terns; consequently, significant SNPs in one population 
might not be easily detected in other populations [7, 17, 
51–58]. Ancestral heterogeneity was also observed for 
genetic architectures underlying gene expressions across 
diverse populations [59, 60].

Given the widespread genetic differentiation of popula-
tions between different ancestral groups [18, 61–63], the 
extent to which phenotype-associated SNPs identified in 
the European ancestry can be generalized across other 
populations is not completely clear [5, 64, 65]. Assess-
ing the significance of association discoveries across 
diverse ancestral groups is not trivial. First, the number 
of SNPs is large in a typical GWAS, an extremely small 
significance level (e.g., 5.0 ×  10–8) is required to avoid 
false positive. Current GWASs remain weak or moder-
ate in their ability to detect associations between weakly-
related SNPs and phenotypes. Limiting attention only to 
genome-wide significant SNPs would result in selection 
bias in effect estimation — a well-known phenomenon 
referred to as winner’s curse [66, 67]. Therefore, cor-
recting deviation of estimated effect from the true one is 

crucial in trans-ethnic analysis. Second, the sample size 
of EUR GWASs is generally several orders larger than 
that in non-EUR studies, which likely results in the chal-
lenge to distinguish the ancestral heterogeneity from the 
sample size difference. These issues make it hard to con-
duct a comprehensive trans-ethnic assessment of simi-
larity and diversity of genetic components underlying 
phenotypes.

Previous studies investigated the reproducibility of 
GWAS findings at limited phenotypes or at a small group 
of prominent SNPs, demonstrating the similarity and 
diversity of related SNPs in ancestral populations [15, 29, 
38, 62]. However, they often failed to take the sample size 
difference into account and did not correct the winner’s 
curse. In addition, some previous studies focused primar-
ily on trans-ethnic genetic correlation [38, 40, 68], which 
only quantifies the global similarity across the genome 
but cannot describe in detail the association pattern of 
individual SNPs. Overall, due to the polygenic nature of 
many phenotypes, it is unclear whether the previous can 
be generalized to other phenotypes or genome-wide sig-
nificant SNPs.

To fill in the above knowledge gaps, we here analyzed 
31 phenotypes with GWAS summary statistics avail-
able from the EAS and EUR populations. As large-scale 
GWASs continue to report index SNPs (independent 
variants with the lowest P value in significant genomic 
loci regions) [69, 70] and some important post-GWAS 
integrative analyses (e.g., polygenic score prediction [71]) 
also rely on them, we thus examined whether EUR-asso-
ciated index SNPs could be detected to be significant in 
the EAS population. Note that, although index SNPs are 
not necessarily causal variants, our analysis is still impor-
tant to understand transferability of genetic discoveries 
and to design powerful genomic studies in understudied 
ancestral groups in the future.

Results
Overview of employed statistical methods
We here demonstrate an overview of statistical methods 
applied in our analyses and give more descriptions in 
the Materials and Methods Section. Briefly, we analyzed 
a total of 31 phenotypes (i.e., 6 binary and 25 continu-
ous) between the EAS and EUR populations (Table S1), 
including diseases (e.g., breast cancer (BRC) and type II 
diabetes (T2D)), blood cell traits (e.g., neutrophil (NEUT) 
and monocyte count (MONO)), lipids (e.g., high-density 
lipoprotein cholesterol (HDL), triglyceride (TG) and total 
cholesterol (TC)), and anthropometric traits such as body 
mass index (BMI) and height. More details regarding dis-
ease diagnosis, phenotypic definition and measurement 
can be found in respective original papers.
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We first calculated the trans-ethnic genetic correla-
tion via popcorn [38] to examine genetic similarity and 
diversity of these phenotypes between the EAS and EUR 
populations. Then, to assess whether the genome-wide 
significant index SNPs discovered in the EUR population 
could be also detected in the EAS population, we per-
formed the trans-ethnic false discovery rate (transFDR) 
method while taking winner’s curse and sample size dif-
ference into consideration [72–74]. We finally examined 
the heterogeneity between these significant and non-
significant SNPs, assessed the difference in MAF and LD 
patterns by examining the coefficient of variation of LD 
(LDCV) or MAF (MAFCV) for the two types of SNPs, 
and studied whether genetic differentiation between 
ancestral populations could be explained by natural 
selection. The statistical analysis framework is shown in 
Fig. 1.

Estimated heritability
We found that the estimated SNP-based heritabil-
ity (ĥ2) was highly correlated for these phenotypes 
across the populations (Pearson’s correlation = 0.631, 
P = 1.42 ×  10–4) (Table  1); however, we did observe that 
the heritability estimates of some phenotypes varied sub-
stantially between the two populations. For instance, the 
heritability of TC was much greater in the EUR popula-
tion ( h2 = 18.6%, se = 3.1%) relative to that in the EAS 

population ( ̂h2 = 4.2% , se = 0.6%) (FDR = 3.96 ×  10–8); 
conversely, the heritability of atrial fibrillation (AF) was 
significantly lower in the EUR population ( ̂h2 = 1.8% , 
se = 0.2%) than that in the EAS population ( ̂h2 = 9.2% , 
se = 2.4%) (FDR = 2.46 ×  10–3). More specifically, except 
for rheumatoid arthritis (RA) which had ĥ2=13.9% 
(se = 3.9%) and 12.1% (se = 1.5%) in the EAS and EUR 
populations (FDR = 0.570), respectively, all other pheno-
types showed statistically different heritability estimates 
between the two populations (FDR < 0.05).

Estimated trans‑ethnic genetic correlation
The trans-ethnic genetic correlation estimate ( ̂ρg ) ranged 
from only 0.15 (se = 0.07) for AF to 0.98 (se = 0.17) 
for hemoglobin Alc (HbA1c), with an average of 0.75 
across all analyzed phenotypes (Table  1). Although 
nearly all the trans-ethnic genetic correlations (except 
for BRC and HDL) were larger than zero (H0: ρg = 0) 
(FDR < 0.05), more than half (~ 53.3%) were significantly 
smaller than one (H0: ρg = 1) (FDR < 0.05), indicating 
there existed propound heterogeneity in genetic archi-
tecture underlying these analyzed phenotypes between 
the EAS and EUR populations. To examine the relation 
between the difference in heritability and the trans-
ethnic genetic correlation, we calculated the coefficient 
of variation of heritability for each phenotype between 
the two populations, and found that greater variation of 

Fig. 1 Statistical analysis framework for the theoretical and application. LDSC: LD score regression; transFDR: trans-ethnic false discovery rate; 
MAFCV: coefficient of variation of minor allele frequency; LDCV: coefficient of variation of LD score
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cross-population heritability appeared to lead to smaller 
trans-ethnic genetic correlation (Pearson’s correla-
tion = -0.337, with a marginally significant P of 0.069).

EUR‑associated SNPs also detected by transFDR in the EAS 
population
The proportion of EUR-associated SNPs also detectable 
in the EAS population varied greatly among these phe-
notypes, ranging from 33.7% for HGB to 82.7% for AF. 

On average, 54.5% of phenotype-associated SNPs in the 
EUR population were identified also to be significant in 
the EAS population (FDR < 0.05). Particularly, more than 
half of phenotypes (~ 58.0%) showed a detection propor-
tion larger than 50%, and the detection proportion was 
at least 70% for several phenotypes such as BRC, AF, RA, 
height, estimated glomerular filtration rate (eGFR), and 
age at natural non-surgical menopause (ANM). How-
ever, we did not find a significant relation between the 

Table 1 Estimated SNP-based heritability and trans-ethnic genetic correlation of 31 complex phenotypes analyzed in this study

ĥ2
1
 and ĥ2

2
 are the estimated SNP-based heritability of phenotypes in the EAS and EUR populations via LDSC; se1 and se2 are the corresponding standard errors. ρ̂g is 

the trans-ethnic genetic correlation. P
�h2

 denotes the P value available from an approximate normal test for examining the difference between ĥ2
1
 and ĥ2

2
.

FDR is the FDR adjusted P value to take the multiple-comparison issue into account. RA rheumatoid arthritis, AF atrial fibrillation, T2D type II diabetes, COA childhood-
onset asthma, AOA adult-onset asthma, BRC breast cancer, BMI body mass index, DBP diastolic blood pressure, SBP systolic blood pressure, PP pulse pressure, HDL 
high-density lipoprotein cholesterol, LDL low-density lipoprotein cholesterol, TC total cholesterol, TG triglyceride, HbA1c hemoglobin A1c, eGFR estimated glomerular 
filtration rate, ANM age at natural non-surgical menopause, PLT platelet count, RBC red blood cell count, MCV mean corpuscular volume, HCT hematocrit, MCH mean 
corpuscular hemoglobin, MCHC mean corpuscular hemoglobin concentration, HGB hemoglobin concentration, MONO monocyte count, NEUT neutrophil count, 
EO eosinophil count, BASO basophil count, LYMPH lymphocyte count, WBC white blood cell count. Here, TG was excluded from our trans-ethnic genetic correlation 
analysis because it had an estimate larger than one

Phenotype ĥ2
1
(se1) ĥ2

2
(se2) ρ̂g(se) P

�h2
FDR

RA 0.139 (0.039) 0.121 (0.015) 0.696 (0.137) 5.55 ×  10–1 5.70 ×  10–1

AF 0.092 (0.024) 0.018 (0.002) 0.148 (0.065) 1.86 ×  10–3 2.46 ×  10–3

T2D 0.065 (0.004) 0.037 (0.002) 0.926 (0.039) 8.96 ×  10–35 5.53 ×  10–34

COA 0.015 (0.002) 0.045 (0.005) 0.568 (0.090) 9.14 ×  10–13 2.42 ×  10–12

AOA 0.015 (0.002) 0.028 (0.002) 0.526 (0.108) 2.44 ×  10–11 6.02 ×  10–11

BRC 0.053 (0.030) 0.106 (0.010) 0.569 (1.114) 3.89 ×  10–2 4.36 ×  10–2

BMI 0.120 (0.007) 0.173 (0.006) 0.844 (0.036) 3.68 ×  10–45 4.54 ×  10–44

height 0.321 (0.017) 0.285 (0.014) 0.864 (0.037) 2.77 ×  10–5 4.66 ×  10–5

DBP 0.043 (0.005) 0.101 (0.004) 0.732 (0.060) 2.85 ×  10–64 5.27 ×  10–63

SBP 0.053 (0.005) 0.102 (0.004) 0.709 (0.050) 3.70 ×  10–43 3.42 ×  10–42

PP 0.035 (0.004) 0.086 (0.003) 0.735 (0.068) 1.06 ×  10–78 3.92 ×  10–77

HDL 0.110 (0.018) 0.238 (0.062) 0.478 (0.340) 2.15 ×  10–2 2.57 ×  10–2

LDL 0.045 (0.009) 0.179 (0.036) 0.772 (0.177) 6.05 ×  10–6 1.08 ×  10–5

TC 0.042 (0.006) 0.186 (0.031) 0.921 (0.112) 1.82 ×  10–8 3.96 ×  10–8

TG 0.087 (0.027) 0.209 (0.048) NA NA NA

HbA1c 0.075 (0.013) 0.037 (0.005) 0.984 (0.174) 2.98 ×  10–6 5.80 ×  10–6

eGFR 0.070 (0.007) 0.056 (0.003) 0.830 (0.048) 3.60 ×  10–3 4.59 ×  10–3

ANM 0.077 (0.010) 0.136 (0.013) 0.664 (0.091) 1.86 ×  10–9 4.30 ×  10–9

PLT 0.111 (0.012) 0.186 (0.016) 0.843 (0.070) 9.06 ×  10–18 2.79 ×  10–17

RBC 0.086 (0.010) 0.151 (0.014) 0.916 (0.057) 4.06 ×  10–25 1.88 ×  10–24

MCV 0.127 (0.017) 0.210 (0.033) 0.870 (0.073) 3.46 ×  10–5 5.57 ×  10–5

HCT 0.053 (0.006) 0.104 (0.009) 0.878 (0.082) 2.42 ×  10–27 1.28 ×  10–26

MCH 0.108 (0.016) 0.226 (0.037) 0.865 (0.118) 6.38 ×  10–5 9.84 ×  10–5

MCHC 0.037 (0.006) 0.076 (0.013) 0.837 (0.149) 6.15 ×  10–6 1.08 ×  10–5

HGB 0.051 (0.006) 0.109 (0.012) 0.794 (0.099) 8.22 ×  10–13 2.34 ×  10–12

MONO 0.054 (0.009) 0.162 (0.017) 0.804 (0.090) 2.93 ×  10–22 1.08 ×  10–21

NEUT 0.087 (0.012) 0.115 (0.012) 0.765 (0.064) 6.65 ×  10–4 9.11 ×  10–4

EO 0.056 (0.010) 0.134 (0.012) 0.761 (0.087) 2.51 ×  10–23 1.03 ×  10–22

BASO 0.033 (0.013) 0.058 (0.006) 0.626 (0.121) 1.58 ×  10–2 1.95 ×  10–2

LYMPH 0.060 (0.009) 0.139 (0.011) 0.835 (0.095) 6.67 ×  10–39 4.94 ×  10–38

WBC 0.070 (0.008) 0.135 (0.011) 0.752 (0.060) 3.13 ×  10–19 1.05 ×  10–18
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trans-ethnic genetic correlation and SNP detection pro-
portion across these phenotypes (P = 0.408). This might 
be due to the reason that trans-ethnic genetic correlation 
was an overall quantity which could not completely cap-
ture the genetic heterogeneity pattern of individual asso-
ciated SNPs.

Characteristics of EAS‑associated SNPs between EAS 
and EUR populations
Marginal trans‑ethnic genetic correlations of SNP effect
In terms of the transFDR analysis, for each pheno-
type we could divide these SNPs into two groups: sig-
nificant or non-significant ones in the EAS population 

(Table 2). The significant SNPs could be also viewed as 
population-common variants, whereas the non-signif-
icant SNPs could be referred to as EUR-specific vari-
ants. Overall, as expected, the significant SNPs had a 
much greater positive correlation in effect sizes com-
pared to these non-significant ones ( ̂rm=0.776 vs. 0.407, 
P = 4.52 ×  10–6) (Fig. 2a). For example, r̂m=0.883, 0.873 
and 0.861 for these significant SNPs of mean corpuscu-
lar volume (MCV), mean corpuscular hemoglobin con-
centration (MCHC), and eGFR, respectively; however, 
the corresponding correlation was much lower for non-
significant SNPs of the three phenotypes ( ̂rm=0.238, 
0.520 and 0.233, respectively).

Table 2 Number of EUR-associated SNPs that were also discovered to be significant by transFDR in the EAS population

k is the total number of index SNPs which were related to phenotypes in the EUR population; f11 is the number of significant SNPs identified by transFDR in the EAS 
population; f01 is the number of EUR-associated SNPs that were not detected to be significant in the EAS population

Phenotype k f11 f01 phenotype k f11 f01

RA 201 161 40 eGFR 344 241 103

AF 173 143 30 ANM 97 77 20

T2D 348 261 87 PLT 429 219 210

COA 199 85 114 RBC 299 155 144

AOA 91 59 32 MCV 490 263 227

BRC 251 189 62 HCT 181 71 110

BMI 1294 657 637 MCH 456 248 208

height 932 679 253 MCHC 144 74 70

DBP 1132 500 632 HGB 205 69 136

SBP 1088 523 565 MONO 374 187 187

PP 889 403 486 NEUT 200 108 92

HDL 173 105 68 EO 307 129 178

LDL 145 62 83 BASO 100 42 58

TC 174 69 105 LYMPH 287 126 161

TG 104 50 54 WBC 242 105 137

HbA1c 52 29 23

Fig. 2 a Estimated marginal trans-ethnic genetic correlation across phenotypes in terms of significant and non-significant SNPs; b Proportion of 
SNPs with heterogeneous effects across phenotypes in the significant and non-significant groups
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In addition, we found that on average 19.4% of SNPs 
showed opposite effects on phenotypes in the EAS and 
EUR populations. As projected, the proportion of SNPs 
with directionally discordant effects was totally smaller 
in the significant group compared with that in the non-
significant group (9.1% vs. 31.2%, P = 1.29 ×  10–6).

Heterogeneity in effects for significant and non‑significant 
SNPs
Furthermore, we observed that SNPs showed evidently 
distinct effects even for those significant ones. In terms of 
the heterogeneity test, for most of analyzed phenotypes 
(90.3% = 28/31), we discovered that SNPs in the non-
significant group had a higher degree of effect heteroge-
neity than those in the significant group (P = 2.67 ×  10–4) 
(Fig.  2b). For instance, the average proportion of SNPs 
with heterogeneous impacts in the significant group was 
66.2% across all phenotypes, compared to 79.5% in the 
non-significant group.

For individual SNPs, the majority of them (80.1%) 
showed genetic effects with the same direction (i.e., 
both in positive or negative direction) on the pheno-
types across the EUR and EAS populations; however, 
19.9% displayed genetic effects in different directions 
(Fig.  3). In particular, rs57912571, associated with RA, 
showed the largest difference in effect (-0.892 ± 0.031 
vs. 0.207 ± 0.040, Pdiff < 0.001), followed by rs370433041 
which was related to childhood-onset asthma (COA) 
(0.357 ± 0.051 vs. -0.118 ± 0.032, Pdiff = 1.47 ×  10–29) and 
rs79616997 which was relevant to BRC (-0.050 ± 0.007 vs. 
0.460 ± 0.028, Pdiff = 9.74 ×  10–95).

MAF patterns for significant and non‑significant SNPs
MAFCV of each phenotype also showed an evident dif-
ference between the significant and non-significant SNP 
groups (FDR < 0.05). The average MAFCV of all phe-
notypes was much smaller for these significant SNPs 
than that for the non-significant ones (0.27 ± 0.04 vs. 
0.37 ± 0.04, P = 4.97 ×  10–6) (Fig.  4a). Particularly, except 
for MCHC and basophil count (BASO), the MAFCV of 
significant SNPs in all other phenotypes was smaller than 
that of the significant ones.

For individual SNPs, rs3001362, related to plate-
let count (PLT), displayed the largest MAF differ-
ence (MAF = 0.492 and 0.036 in the EUR and EAS 
populations, respectively), followed by rs7048601 of BMI 
(MAF = 0.485 and 0.069 in the EUR and EAS popula-
tions, respectively) and rs6806529 of systolic blood pres-
sure (SBP) (MAF = 0.434 and 0.024 in the EUR and EAS 
populations, respectively).

LD score patterns for significant and non‑significant SNPs
We further demonstrated that all phenotypes had a dif-
ferent pattern of LD scores between the significant and 
non-significant SNP groups (FDR < 0.05). The average 
LDCV of these significant SNPs was significantly smaller 
than that of the non-significant SNPs (0.19 ± 0.03 vs. 
0.23 ± 0.04, P = 9.94 ×  10–4) (Fig. 4b). Among these SNPs, 
rs7927898 of diastolic blood pressure (DBP) showed 
the greatest LD score difference (LD score = 1586.7 and 
2521.2 in the EUR and EAS populations, respectively), 
followed by rs6990912 of T2D (LD score = 860.6 and 
108.6 in the EUR and EAS populations, respectively) and 

Fig. 3 Proportion for SNPs with different effect direction between the EUR and EAS populations. BETA++ represents the proportion that SNPs had 
positive effects in both populations; BETA+- represents the proportion that SNPs had positive effect in the EAS population while negative effect 
in the EUR population; BETA-+ represents the proportion that SNPs had positive effect in the EUR population while negative effect in the EAS 
population; BETA– represents the proportion that SNPs had negative effects in both populations
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rs1976672 of SBP (LD score = 893.4 and 220.6 in the EUR 
and EAS populations, respectively).

Fst patterns for significant and non‑significant SNPs
Finally, we found that the average Wright’s fixation 
index (Fst) of SNPs in the significant group was smaller 
than that in the non-significant group (0.031 ± 0.009 vs. 
0.040 ± 0.016, P = 0.002) (Fig.  4c). Although all the 31 
analyzed phenotypes were affected by natural selection 
(FDR < 0.05), non-significant SNPs seemed more likely 
to undergo natural selection. Overall, we discovered that 
77.4% (= 24/31) of phenotypes had lower mean Fst for 
SNPs in the significant group.

Discussion
Summary of our results
In this study, we sought to evaluate the extent to which 
the genome-wide significant SNPs discovered in the EUR 
population could be also detected in the EAS population. 
Because the allele frequencies of phenotype-associated 
SNPs often varied between populations and environ-
mental exposures could be altered [75], understanding 
the significance of EUR-associated SNPs in non-EUR 
ancestral groups thus plays a key role in uncovering the 
similarity and diversity of genetic architecture underly-
ing phenotypes across distinct populations. Such knowl-
edge is also important for identifying genetic predictors 
of disease risk for individuals from different ancestries, 
satisfying the requirement for personalized medicine 
and benefiting more populations from current genomics 
research [52].

We analyzed 31 phenotypes and found inconsistencies 
in heritability [60]; we also demonstrated significant but 
incomplete correlation among these phenotypes. These 
findings reflected the diversity of polygenic genetic struc-
tures across phenotypes and populations. Meanwhile, 

our results intuitively implied that larger difference in 
trans-ethnic heritability likely represented greater genetic 
diversity for the same phenotype in various ancestral 
groups. Actually, the trans-ethnic difference in herit-
ability was not uncommon as demonstrated in previous 
studies [76, 77].

Implication of our findings
There were significant genetic similarities between EUR 
and EAS populations, indicating by the observation that 
nearly all the trans-ethnic genetic correlations were larger 
than zero and that significant SNPs in general exhibited 
greater consistence in genetic influence on phenotypes 
than those significant only in a single population. Par-
ticularly, we found greater consistencies for some phe-
notypes such as T2D, which showed a larger trans-ethnic 
genetic correlation and a higher detection rate of EUR-
associated SNPs identified to be significant in the EAS 
population. These high genetic consistencies imply that 
EAS individuals can benefit from the genomic research 
implemented in those of EUR ancestry; for instance, 
gene-based targeted treatment designed for Europeans 
may be also effective for non-Europeans.

Nevertheless, the SNP effects of these phenotypes had 
significant cross-population diversity. Moreover, even 
population-common SNPs showed a degree of high 
heterogeneity in the genetic influence of phenotypes 
between the EAS and EUR populations. Therefore, asso-
ciated SNPs discovered in the EUR population cannot be 
completely and directly transferred to other populations 
(e.g., EAS) [15, 65]. These genetic inconsistencies offered 
an interpretation for the poor portability of polygenic 
score prediction across distinct ancestry groups [78], 
and further confirmed the benefit of increasing ancestry 
diversity in future GWASs for improvement of functional 
fine-mapping [42, 79, 80].

Fig. 4 a MAFCV averaged across all analyzed phenotypes in the significant and non-significant groups of SNPs; b LDCV averaged across all 
analyzed phenotypes in the significant and non-significant SNPs groups; c Fst averaged across all analyzed phenotypes in the significant and 
non-significant groups of SNPs
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In addition, our results demonstrated that significant 
SNPs often displayed great consistence in allele fre-
quency and LD pattern compared to population-specific 
variants, and that EUR-specific SNPs were more vulner-
able to natural selection. These trans-ethnic genetic dif-
ferences may be in part explained by interaction between 
gene–gene and gene-environment [81], which may 
also underlie the well-known inter-ethnic dissimilari-
ties in prevalence or characteristics of many phenotypes 
[82–86].

Strengths in this work
The trans-ethnic significance analysis of EUR-associated 
SNPs was complicated by inflation in effect estimates 
due to winner’s curse in the EUR population and smaller 
sample size in the EAS population. The pivotal advan-
tage of our work was to correct overestimated effects of 
EUR-associated SNPs and to explain difference in sample 
sizes of phenotypes between the EAS and EUR popula-
tions, which rendered us to perform an unbiased analy-
sis for assessing the transportability of EUR-associated 
SNPs to other populations [51]. As a result, we found that 
a large number of SNPs could be discovered to be sig-
nificant in the EAS population (i.e., population-common 
SNPs); however, we did observe at the same time that not 
all EUR-associated SNPs could be significant (i.e., EUR-
specific SNPs).

Potential limitations
Our study was not without limitation. First, we focused 
only on the EAS and EUR populations, which were 
deemed to be actually genetically similar, while the dif-
ference between AFR and non-AFR is even greater [87]; 
thus, generalizing our findings to other populations 
needs caution.

Second, our analysis only considered common SNPs 
(MAF > 0.01) whose origins are usually ancient, but 
ignored rare SNPs that are usually of recent origin. Theo-
retically, rare risk variants may be more likely to be popu-
lation-specific and may carry greater risk effects [15]. The 
absence of rare risk variants likely leads us to underesti-
mate genetic heterogeneity between the EAS and EUR 
populations.

Third, there possibly still existed genetic heterogene-
ity among individuals in diverse sub-groups in the EAS 
population. Consequently, the detection rate and genetic 
similarity analysis were likely affected by the composition 
of distinct individuals in the EAS GWASs.

Fourth, besides difference in sample sizes, other dis-
crepancies in GWAS designs (e.g., phenotypic defini-
tion, statistical methods, and covariate considered) 
as well as in genetic architectures (e.g., polygenicity, 
effect size, MAF and LD) can affect the significance of 

EUR-associated SNPs in the EAS population. However, 
the design discrepancies are difficult to handle with 
only summary statistics, a comprehensive investigation 
regarding these discrepancies needs individual-level data, 
and is thus impeded by privacy concerns when sharing 
data [88]. To handle the potential discrepancy of LD in 
various populations, we previously conducted a gene-
based replicability analysis in the EAS and EUR popu-
lations [89], where we aggregated multiple SNP-level 
association signs into a single gene-level association sign 
while taking LD into account.

Fifth, complex correlations among SNPs can bias the 
transFDR estimates [90]. Therefore, SNPs located within 
LD regions, such as in the major histocompatibility com-
plex (MHC) region, should be excluded before perform-
ing transFDR to avoid false discoveries.

Conclusions
Our study demonstrates the extent to which specific 
EUR-associated variants could be also significant in the 
EAS population, and offers insights into the similarity 
and diversity of genetic architecture underlying pheno-
types in different ancestral groups.

Materials and methods
Summary statistics from large‑scale GWASs
We yielded summary statistics of 31 phenotypes (i.e., 
6 binary and 25 continuous) analyzed on EAS and EUR 
individuals from publicly available data portal of dis-
tinct GWAS consortia (Table S1). For summary statis-
tics of every phenotype, we carried out the following 
quality control in both populations [38, 91]: (i) removed 
duplicated SNPs; (ii) filtered out non-biallelic SNPs; (iii) 
excluded SNPs with no rs labels; (iv) removed SNPs that 
were not genotyped in the 1000 Genomes Project or 
whose alleles did not match those there; (v) kept SNPs 
that had MAF > 0.01. We finally reserved the same set of 
SNPs for each phenotype in the two populations and fur-
ther aligned the effect allele of SNPs across the EUR and 
EAS populations.

Estimation of heritability and trans‑ethnic genetic 
correlation
We first conducted LD score regression (LDSC) to esti-
mate SNP-based heritability (h2) for all analyzed phe-
notypes in each population [92]. The LD score of SNP 
was calculated with genotypes of SNPs with MAF > 0.01 
and the P value of the Hardy Weinberg equilibrium 
test > 1 ×  10–5) with a 10 Mb window on 504 EAS or 503 
EUR individuals from the 1000 Genomes Project [93]. To 
evaluate the difference in heritability, we performed the 
following hypothesis test for every phenotype
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where ĥ2 is the estimated heritability, se(ĥ2 ) is the stand-
ard error, and ρ̂g denotes the trans-ethnic genetic cor-
relation (ρg) [38, 68], which is defined as the correlation 
between SNP effects and quantifies the extent to which 
the SNPs have the same or similar impacts on phenotypes 
across ancestral groups [40]. The P value of u in (1) could 
be easily obtained because u is normally distributed.

We estimated ρg via the popcorn method [38], with 
the trans-ethnic LD score of SNP calculated using 
genotypes of 504 EAS and 503 EUR individuals in the 
1000 Genomes Project between the focal one and all 
the flanking ones within a 10  Mb window. Conceptu-
ally, ρg can be viewed as a trans-ethnic extension of 
genetic correlation of two distinct phenotypes in an 
ancestry-matched population to the same phenotype 
between continental populations. Therefore, ρg pos-
sesses its own importance and can be used to measure 
genetic similarity and diversity for phenotypes across 
various populations [38, 40].

We examined whether an estimated ρg (denoted by 
ρ̂g ) was different from zero or one using an approxi-
mate normal test

It needed to emphasize that, when estimating h2 or 
ρg, we additionally performed another quality control 
for each phenotype in both populations by removing 
SNPs located within the major histocompatibility com-
plex region (chr6: 28.5  Mb ~ 33.5  Mb) because of its 
complicated LD structure.

Selection of phenotype‑associated SNPs in the EUR 
population
To choose SNPs that were independently associated 
with phenotype in the EUR population, we applied 
the clumping procedure of PLINK [74] by setting the 
first and second significance levels of index SNPs to be 
5 ×  10–8, LD and the physical distance to be 0.01 and 
1  Mb, respectively. The LD was estimated with geno-
types of 503 individuals of EUR descent from the 1000 
Genomes project. The number of significant SNPs 
ranged from 52 for HbA1c to 1,294 for BMI, with 
an average of 351 across phenotypes (Table S2). We 
extracted summary statistics of these selected SNPs 
for each phenotype from both populations for our sub-
sequent analyses.

(1)

u =
ĥ2eas − ĥ2eur√

{se(ĥ2eas)}
2
+ {se(ĥ2eur)}

2
− 2ρ̂g × se(ĥ2eas) × se(ĥ2eur)

(2)

u =
ρ̂g

se(ρ̂g )
for H0 : ρg = 0, or =

ρ̂g − 1

se(ρ̂g )
for H0 : ρg = 1

Statistical correction of summary statistics for selected 
SNPs in both populations
Winner’s curse correction in the EUR population
As shown above, we chose phenotype-associated SNPs 
and estimated their effects only from the same data in 
the EUR population; this could cause profound selection 
bias and lead to the so-called issue of winner’s curse [66, 
94, 95], which overestimated effects for SNPs in EUR [66, 
67]. In order to adjust for such inflated genetic influence, 
we employed the maximum likelihood method given in 
[66].

where φ is the probability density function of a standard 
normal variable, Ψ is the cumulative distribution func-
tion, β̂  is the observed marginal SNP effect, β is the true 
effect of that SNP (which is of our interest), s is the stand-
ard error of β and calculated as the average of standard 
error of β̂  across all selected SNPs for a given phenotype, 
and c = Z1-α/2 is the test statistic with α = 5 ×  10–8.

We estimated β via a dense grid-point search strategy 
within the range of 95% confidence intervals for β̂  . Once 
obtaining the estimate of β for each SNP, we re-computed 
its corresponding standard error by assuming the mar-
ginal Z score (and P value) unchanged; that is, se(β) = β/Z.

Sample size difference correction in the EAS population
In order to minimize the influence of sample size dif-
ference, we re-calculated the standard error of SNP for 
these EAS phenotypes using the method proposed in 
[96]. Specifically, for continuous phenotypes, we had

where β̂  indicates the marginal effect of SNP on the EAS 
phenotype, f is the MAF of SNP that would be computed 
with genotypes of 504 EAS individuals from the 1000 
Genomes project if not offered in the original GWAS 
data, and N is the assumed sample size. To achieve our 
aim, we set N in (4) to be the sample size of the EUR phe-
notype. For binary phenotypes we calculated

Again, we set N1 and N0 to be the sample size of cases 
and controls of the EUR phenotype. For each SNP in 
the EAS phenotype which we kept its effect unchanged, 
but re-computed Z score and P value conditional on the 
standard error above.

(3)β̂ = β + s ×
φ(β/s − c)− φ(−β/s − c)

�(β/s − c)+�(−β/s − c)

(4)se(β̂) ≈

√
1

N × f × (1 − f )

(5)se(β̂) ≈

√
N1 + N0

2N1 × N0 × f × (1 − f )
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Trans‑ethnic false discovery rate identifying significant 
associations
From a statistical perspective, under some modeling 
assumptions, we observe that the trans-ethnic genetic 
similarity analysis can be implemented with the simi-
lar principle of pleiotropic analysis for genetically cor-
related phenotypes [97]. In the past decade, many 
pleiotropy methods have been proposed [97–100]; 
among them, conditional FDR is a popular pleiotropy-
informed approach [72, 73] and can be considered a 
novel generalization of the popular FDR from the sin-
gle phenotype case to the same phenotype case in the 
trans-ethnic setting. Therefore, we referred to our used 
method as transFDR to distinguish itself from condi-
tional FDR, with the code freely available at https:// 
github. com/ biost atpze ng/ trans FDR.

In our application framework, the null hypothesis of 
FDR was the absence of an association between a par-
ticular SNP and the phenotype of interest in one pop-
ulation. Based on this definition and the principle of 
FDR, transFDR is expressed as the posterior probability 
that a given SNP is not related to the EAS phenotype 
given that the observed P values of the phenotype in 
both populations are less than a predetermined thresh-
old. Formally, transFDR is calculated as

where peas and peur are the observed P values of the SNP 
for the phenotype in the two populations, respectively. 
Conditioning on the association observed for the EUR 
phenotype, we deemed a SNP to be also related to the 
EAS phenotype if  transFDReas|eur < 0.05. It needed to 
highlight that transFDR was constructed for relatively 
independent SNPs, we thus conducted the LD pruning 
in PLINK to select uncorrelated index SNPs as described 
above. We efficiently estimated transFDR with an empiri-
cal Bayesian algorithm that was originally proposed for 
calculating the local FDR [101].

Characteristics of significant SNPs between EAS and EUR 
populations
Genetic correlation and heterogeneity between the two 
populations
Based on the results of transFDR, for each phenotype 
we could divide all analyzed SNPs into two incompatible 
groups: (i) associated with the phenotype in both popu-
lations (i.e., significant SNPs); (ii) only associated with 
the EUR phenotype but not the EAS one (i.e., non-signif-
icant SNPs). In every group, we first examined the heter-
ogeneity in genetic effect of each SNP on the phenotype

(6)
transFDReas|eur = Pr(H0|Peas ≤ peas, Peur ≤ peur)

where β̂eas is the unadjusted marginal effect on the EAS 
phenotype, while β̂eur is the bias-reduced marginal effect 
on the EUR phenotype, both se(β̂eas ) and se(β̂eur ) are the 
adjusted standard errors for β̂eas and β̂eur , respectively; 
r̂m is the marginal trans-ethnic genetic correlation (rm) 
of effects for a set of independently associated SNPs [40], 
which, compared to the traditional Pearson’s correlation 
(denoted by r), is unbiased because it corrects the cor-
relation attenuation phenomenon by taking the estima-
tion error of effects into account under the framework 
of measurement error model [102, 103]. Like ρg, which 
measures the global trans-ethnic genetic overlap, rm is 
also an important index that can be applied to quantify 
marginal trans-ethnic genetic similarity and diversity 
[40].

Again, the P value of u in [7] was obtained under the nor-
mal approximation, which was further corrected for mul-
tiple comparisons. Afterwards, we were able to obtain the 
number of SNPs with heterogeneity in the significant and 
non-significant SNP groups for all analyzed phenotypes. 
For every phenotype, we conducted a chi-squared test to 
evaluate whether there was a substantial difference in the 
proportion of heterogeneous SNPs in the two groups.

LD, MAF patterns and natural selection for significant 
and non‑significant SNPs
As significant SNPs generally showed higher consistence 
in genetic impact on the phenotype, a natural question 
was that whether these significant SNPs would also dis-
play greater similarity in LD and MAF patterns compared 
to non-significant ones [29]? To this goal, we examined 
LDCV or MAFCV for SNPs in the two groups [62]. We 
first calculated the LD scores for each SNP in both popu-
lations based on genotypes available from EAS (n = 504) 
or EUR (n = 503) individuals in the 1000 Genomes Pro-
ject and then obtained their coefficient of variation across 
populations. In a similar way, we calculated MAFCV for 
every SNP between the two populations. Intuitively, we 
should expect to observe smaller between-population 
difference in LD score or MAF at significant SNPs than at 
non-significant ones.

We further explored whether the observed genetic 
differentiation in LD and MAF between significant 
and non-significant SNPs could be partly explained by 
natural selection. To this aim, we applied Fst to quantify 
the extent to which a particular SNP was under natural 
selection [62, 104, 105]. The Fst of SNPs was calculated 

(7)

u =
β̂eas − β̂eur√

{se(β̂eas)}2 + {se(β̂eur)}2 − 2r̂m × se(β̂eas) × se(β̂eur)

https://github.com/biostatpzeng/transFDR
https://github.com/biostatpzeng/transFDR
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with genotypes of 504 EAS and 503 EUR individuals 
from the 1000 Genomes Project.

Finally, to examine the difference in LDCV, MAFCV, or 
Fst in the two SNP groups, we carried out a two-sample 
Mann–Whitney U test for each phenotype. We also con-
ducted a paired-sample McNemar test to assess the average 
of LDCV, MAFCV, or Fst across all phenotypes by simply 
ignoring uncertainty of the average in each SNP group.
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