RESEARCH

Complete chloroplast genomes of five *Cuscuta* species and their evolutionary significance in the *Cuscuta* genus

Hangkai Pan^{1,2}, Lyuben Zagorchev^{1,3}, Luxi Chen¹, Yutian Tao^{1,4}, Chaonan Cai^{1,5}, Ming Jiang¹, Zhongshuai Sun^{1,5} and Junmin Li^{1,5*}

Abstract

Background *Cuscuta*, a parasitic plant species in the Convolvulaceae family, grows in many countries and regions. However, the relationship between some species is still unclear. Therefore, more studies are needed to assess the variation of the chloroplast (cp) genome in *Cuscuta* species and their relationship with subgenera or sections, thus, providing important information on the evolution of *Cuscuta* species.

Results In the present study, we identified the whole cp genomes of *C. epithymum*, *C. europaea*, *C. gronovii*, *C. chinensis* and *C. japonica*, and then constructed a phylogenetic tree of 23 *Cuscuta* species based on the complete genome sequences and protein-coding genes. The complete cp genome sequences of *C. epithymum* and *C. europaea* were 96,292 and 97,661 bp long, respectively, and lacked an inverted repeat region. Most cp genomes of *Cuscuta* spp. have tetragonal and circular structures except for *C. epithymum*, *C. europaea*, *C. pedicellata* and *C. approximata*. Based on the number of genes and the structure of cp genome and the patterns of gene reduction, we found that *C. epithymum* and *C. europaea* belonged to subgenus *Cuscuta*. Most of the cp genomes of the 23 *Cuscuta* species had single nucleotide repeats of A and T. The inverted repeat region boundaries among species were similar in the same subgenera. Several cp genes were lost. In addition, the numbers and types of the lost genes in the same subgenus were similar. Most of the lost genes were related to photosynthesis (*ndh*, *rpo*, *psa*, *psb*, *pet*, and *rbcL*), which could have gradually caused the plants to lose the ability to photosynthesize.

Conclusion Our results enrich the data on cp. genomes of genus *Cuscuta*. This study provides new insights into understanding the phylogenetic relationships and variations in the cp genome of *Cuscuta* species.

Keywords Chloroplast genome, *Cuscuta* spp., Phylogenetic analysis, Subgenus, Gene reduction

*Correspondence: Junmin Li lijm@tzc.edu.cn ¹Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China

²School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
 ³Department of Biochemistry, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tsankov Blvd., Sofia 1164, Bulgaria
 ⁴School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
 ⁵School of Advanced Study, Taizhou University, Taizhou 318000, China

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background

Chloroplasts are essential in photosynthesis and carbon fixation and thus, promote plant growth and development [1]. Chloroplasts are highly conserved based on gene size, gene content, and sequence order. They comprise a single circular molecule with a quadripartite structure that harbors two copies of inverted repeats (IRs) that separate large and small single-copy (LSC and SSC) [2]. The cp genomes encode 110–130 genes that range from 100 to 180 kb in length [3] that are primarily associated with photosynthesis, transcription, and translation [2]. Since complete cp genome sequences are contained in a single plastid genome, they have recently become popular for plant species identification, taxonomy, and phylogenetic analyses [4].

The genus Cuscuta belongs to the Convolvulaceae family and has approximately 200 species that are widely distributed worldwide [5]. Cuscuta is a holoparasite and obtains nutrients, water, and organic compounds from the host via haustoria [6]. Engelmann (1859) divided 77 Cuscuta species into three groups based on the morphology of their stigma [7]. Yuncker (1932) also divided 158 Cuscuta species into the three subgenera Cuscuta (28 species), Grammica (121 species), and Monogyna (nine species) based on dehiscence of the fruits [8]. Revill (2005) indicated that the molecular phylogeny of 15 species of Cuscuta belonged to three subgenera based on three types of plastid DNA (rbcL, rps2, and matK) [9], consistent with the conclusions of Yuncker [8]. Garcia (2014) also divided 131 Cuscuta species into four subgenera (Monogynella, Grammica, Pachystigma, and Cuscuta) using rbcL, nrLSU, fruit cracking, style number, and stigma shape [5]. Garcia indicated that Pachystigma does not belong to the subgenus Cuscuta but is related to the subgenus Grammica, a conclusion that was inconsistent with those of Yuncker [8], Revill [9], and McNeal [10]. Costea et al. (2015) grouped 194 Cuscuta species into four subgenera (Monogynella, Cuscuta, Pachystigma, and Grammica) based on the morphological and biogeographical predictive value [11], which was consistent with the conclusions of Garcia [5]. Banerjee and Stefanović (2020) classified six Cuscuta species into four subgenera using the whole cp genome sequencing method [12], which was consistent with the previous phylogenetic relationship based on morphological [11] and DNA sequences [5]. However, Banerjee and Stefanović used few *Cuscuta* species [12]. Therefore, a precise phylogenetic relationship should be assessed by including more species of Cuscuta. Moreover, the phylogenetic analysis of particular Cuscuta species is necessary to clarify the phylogenetic location of each species. For example, the phylogenic location of C. epilinum has been inconsistent in different studies. Revill (2005) showed that C. epilinum belongs in the subgenus Grammica [9], while McNeal (2007) found that *C. epilinum* belongs in the subgenus *Cuscuta* based on the nuclear ribosomal internal transcribed spacer (*nrITS*) *rps2*, *rbcL*, and *matK* [10].

The cp genome encodes numerous structural proteins that are essential for photosynthesis. It also encodes ribosomal proteins and structural RNAs [13]. Therefore, the loss or mutation of genes in chloroplasts could affect photosynthesis. For example, mutants in the single-copy SPPA1 gene in Arabidopsis thaliana maintain a higher level of the quantum efficiency of Photosystem II [14]. The photosynthetic ability of parasitic plants ranges from reduced levels to a complete lack of the ability to photosynthesize [2]. Most Cuscuta species do not have chlorophyll and thus, cannot photosynthesize [15]. However, some Cuscuta species (C. pentagona and C. reflexa) have chloroplasts with photosystems and some chlorophyll [15–18]. A recent study showed that highly divergent plastid chromosomes exist in non-photosynthetic parasitic plants [19–22]. The size of plastid genome in Cuscuta species is related to their photosynthetic capacity. Photosynthetic species have more plastomes than non-photosynthetic species [23]. In addition, gene loss is significantly correlated with species in different subgenera or Sects. [24, 25]. However, Revill et al. identified the loss of photosynthesis and alterations in the structure of the cp genome of 15 Cuscuta species using the DNA dot analysis method but did not find a correlation with the phylogenetic position [9]. Therefore, more studies are needed to assess the variation of the cp genome in *Cuscuta* species and their relationship with subgenera or sections, thus, providing important information on the evolution of Cuscuta species.

Both C. epithymum and C. europaea had been proposed to belong to subgenus Cuscuta [12], however, no complete cp genome was available until now. Both C. chinensis and C. japonica collected in Korea were identified to belong to subgenus Grammica and Monogynella, respectively, based on the complete cp genome sequences [26]. C. gronovii was identified to belong to subgenera Grammica [26] based on the complete cp genome sequences [27]. In this study, five Cuscuta species, including C. epithymum, C. europaea, C. gronovii, C. chinensis and C. japonica, were sequenced, and their cp genomes were assembled. We then compared the whole cp genome of 23 *Cuscuta* species to determine the following: (1) the novel cp genomes of both C. epithymum and *C. europaea*; (2) the phylogenetic relationship based on the whole cp genomes of the 23 Cuscuta species and the division of four subgenus; (3) the structural variation of the cp genomes among the 23 Cuscuta species, including C. chinensis, C. japonica, and C. gronovii collected in China; and (4) the loss of genes in the cp genome of the 23 Cuscuta species and its correlation with phylogenetic positions and photosynthetic ability. This study

Cuscuta species	Raw reads	Clean reads	Coverage
C. japonica	273,318,504	273,081,185	2256×
C. gronovii	11,769,885	11,646,979	134×
C. chinensis	158,489,958	158,331,468	1821×
C. epithymum	53,143,010	52,404,322	544×
C. europaea	46,230,054	45,467,258	465×

 Table 1
 The data of NGS sequencing of the five Cuscuta species

uncovered the phylogenetic relationships and variations in the cp genomes of *Cuscuta* species.

Results

Cp genome features of five Cuscuta species

The cp genomes of five *Cuscuta* species were sequenced and the raw data ranged from 11,769,885 (*C. gronovii*) to 273, 318,504 (*C. japonica*), while the clean data ranged from 11,646,979 (*C. gronovii*) to 273,081,185 (*C. japonica*) (Table 1). Assembled by NOVOPlasty (version 3.7.2), the length of the cp genomes of five *Cuscuta* species ranged from 86,745 bp (*C. gronovii*) to 121,031 bp (*C. japonica*) (Table 2). Among them, the cp genomes of *C. chinensis*, *C. japonica* and *C. gronovii* were 99.87%, 100%, and 99.86% similar with those deposited in the NCBI database (Table 2). The cp genomes of *C. epithymum* and *C. europaea* were novel. The cp genome sequences of *C*. epithymum and C. europaea were similar with that of C. approximata with a similarity of 97.96% and 95.45%, respectively. The complete cp genome sequences of C. epithymum and C. europaea were 96,292 and 97,661 bp long, respectively, and lacked an inverted repeat (IR) region (Fig. 1). The LSC regions were 69,214 bp and 77,514 bp long in C. epithymum and C. europaea, respectively, and those of the SSC region were 2,908 bp and 1,624 bp long, respectively. The IR regions (IRa and IRb) were 24,170 bp and 18,523 bp in C. epithymum and C. europaea, respectively. The GC content of C. epithymum and C. europaea was 37.7% and 37.6%, respectively (Table 2). The gene content and gene order differed substantially between the two Cuscuta Cp genomes. The cp genome of *C. epithymum* harbored 99 unique genes, including 66 protein-coding genes, four rRNA genes and 27 tRNA genes, whereas that of C. europaea contained 91 unique genes, including 60 protein-coding genes, four rRNA genes and 27 tRNA genes (Table 2). Genetic map of the cp genomes of C. japonica, C. gronovii and C. chi*nensis* were in the supplement (Figure S1, S2 and S3).

Cuscuta species have genomic sequence lengths that range from 60,905 bp to 125,373 bp. *Cuscuta* cp

 Table 2
 Characteristics of the chloroplast genomes of 23 Cuscuta species and the outgroup

Species	Genbank ac- cession No.	Total length(bp)	LSC length	SSC length	IR length	genes	tRNA	rRNA	CDS	CG%	reference
C. exaltata	EU189132	125,373	83,320	8571	33,482	124	42	8	69	38.1	McNeal et al. (2007)
C. reflexa	AM711640	121,521	79,468	8571	33,482	112	35	8	68	38.2	Funk et al. (2007)
C. japonica	MH780080	121,037	79,517	8412	33,108	107	32	8	67	38.3	Unpublished
C. japonica	OL752640	121,031	79,505	8388	33,138	107	32	8	67	38.3	this study
C. nitida	NC052869	113,762	69,480	8012	36,270	106	30	8	68	37.5	Banerjee and Stefanović (2020)
C.africana	NC052870	105,066	60,830	7580	36,656	104	30	8	62	37.5	Banerjee and Stefanović (2020)
C. approximata	NC052871	98,380	91,011	7369	N/A	96	27	4	64	35.0	Banerjee and Stefanović (2020)
C. pedicellata	MN464181	97,091	89,375	7716	N/A	96	27	4	64	35.4	Banerjee and Stefanović (2020)
C. epithymum	OP620588	96,292	69,214	2908	24,170	97	27	4	66	35.1	This study
C. europaea	OP620589	97,661	77,514	1624	18,523	91	27	4	60	35.2	This study
C. chinensis	MH780079	86,927	50,572	7121	29,234	96	26	8	62	37.6	Unpublished
C. chinensis	OL752638	86,910	50,547	7129	29,234	98	28	8	62	37.6	this study
C. gronovii	AM711639	86,744	50,973	7063	28,708	98	28	8	61	37.7	Funk et al. (2007)
C. gronovii	OL752639	86,745	50,974	7063	28,708	98	28	8	61	37.7	this study
C. campestris	NC052920	86,727	50,956	7063	28,708	96	28	8	60	37.7	Unpublished
C. costaricensis	MK881072	86,691	50,149	7354	29,188	96	28	8	60	37.1	Banerjee and Stefanović (2019)
C. pentagona	MH121054	86,380	50,958	7022	28,400	97	28	8	61	37.9	Park et al. (2018)
C. obtusiflora	EU189133	85,286	50,207	6817	28,262	98	29	8	61	37.8	McNeal et al. (2007)
C. australis	NC045885	85,263	50,384	6727	28,152	97	28	8	61	37.8	Wang et al. (2020)
C. chapalana	MK887214	84,607	50,250	8223	26,134	96	27	8	61	37.6	Banerjee and Stefanović (2019)
C. mexicana	MK887213	83,526	50,154	6894	26,478	92	25	8	57	37.5	Banerjee and Stefanović (2019)
C. bonafortunae	MK887215	82,346	49,128	7920	25,298	95	27	8	59	37.3	Banerjee and Stefanović (2019)
C. carnosa	MK887212	81,577	48,410	8729	24,438	91	23	8	58	37.8	Banerjee and Stefanović (2019)
C. strobilacea	MK867795	63,787	30,720	6863	26,204	74	27	8	33	37.1	Banerjee and Stefanović (2019)
C. boldinghii	MK881074	62,375	30,090	6701	25,584	70	27	8	31	36.8	Banerjee and Stefanović (2019)
C. erosa	MK881073	60,959	29,596	6275	25,088	71	27	8	33	36.9	Banerjee and Stefanović (2019)
l. purpurea	EU118126	162,046	88,172	12,110	61,764	140	45	8	87	37.5	McNeal et al. (2007)

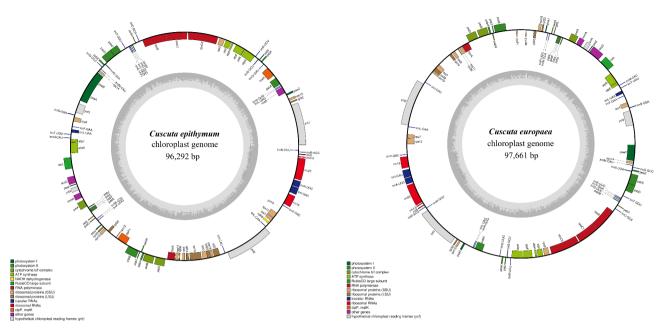


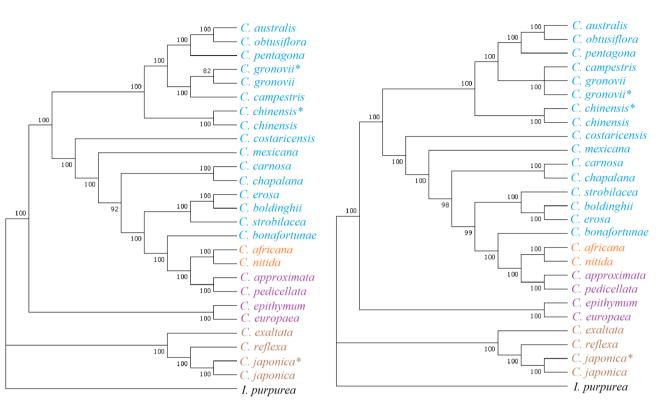
Fig. 1 Genetic map of the chloroplast genomes of *Cuscuta epithymum* and *C. europaea*. The transcriptional direction of genes in the outside circle is counter-clockwise, while those in the inside circle are clockwise. The outer circle shows the genes at each locus. The inner circle also shows the GC content graph of the genome, where the dark and light gray lines indicate the GC and AT contents, respectively, at each locus

genomes have 31-69 protein-coding genes, 23-42 transfer RNAs (tRNAs), and 4-8 ribosomal RNAs (rRNAs) (Table 2). The most diminished cp genome, that of C. erosa (60,959 bp long), has 33 protein-coding genes, 27 tRNAs, and eight rRNAs and was reduced by 62% compared with the chloroplast. The genome of Ipomoea purpurea, a member of the Convolvulaceae family, was used as the reference genome. The cp genome of C. exaltata (125,373 bp long) has 69 protein-coding genes, 42 tRNAs, and eight rRNAs with a reduction in its composition of 22% that demonstrated a significant variation in the genome length and gene composition in the Cuscuta chloroplast. The cp genomes of C. exaltata, C. reflexa, and C. japonica were larger than the genomes of remaining Cuscuta species (24-25% sequence reduction compared with the genome of *I. purpurea*) (Table 2).

Phylogenetic analysis

The GTR+G+I model was selected as the best-fit substitution model using MEGA 7. Herein, phylogenetic trees based on protein-coding sequences and complete cp genome sequences produced similar topologies (Fig. 2). The 23 *Cuscuta* species clustered into four subgenera, *Monogynella*, *Cuscuta*, *Pachystigma*, and *Grammica*. The subgenus *Monogynella* contains *C. exaltata*, *C. reflexa*, and *C. japonica*. The subgenus *Cuscuta* includes *C. epithymum*, *C. europaea*, *C. approximata* and *C. pedicellata*. The subgenus *Pachystigma* includes *C. nitida* and *C. africana*. The remaining species form the subgenus *Grammica*.

Simple sequence repeats (SSRs) analysis


A total of 471 SSRs were detected in the 23 *Cuscuta* species (Table 3). Among them, more than 80% were mononucleotide SSRs and belonged to the A or T types. Only one SSR in *C. approximata* and one SSR in *C. europaea* were polynucleotide repeats belonging to the c type.

Sequence inversions

Compared with the genome of *I. purpurea*, the structural changes in the sequences among *C. epithymum*, *C. europaea*, *C. approximata*, and *C. pedicellata* belonging to subgenus *Cuscuta* were shown in Fig. 3. Two sequence inversions were detected in the subgenera of *Cuscuta*. One inversion included *trnL-UAA*, *trnT-UGU* and *trnF-GAA* (inversion A), while the other included *ccsA*, *psaC* and *rps15* (inversion B). There were four inversions (black region) that did not contain any genes (Fig. 3).

IR expansion and contraction

Expansion and contraction at the IR region boundaries are common and influence the variation in the sizes of cp genomes. A detailed comparison between the IR-SSC and IR-LSC borders of genomes among the 23 intact four-part structures (IR-SSC-IR-LSC) of the *Cuscuta* chloroplasts is shown in Fig. 4. Similar to the sequence inversions, the IR borders were highly conserved within the *Cuscuta* subgenus. The *ycf2* gene crossed the LSC/ IRb region of species in the subgenus *Monogynella*, including *C. reflexa*, *C. japonica*, and *C. exaltata*. The length of extension of the *ycf2* gene into the LSC region was based on the genome (*C. reflexa*, 3,519 bp; *C.*

Fig. 2 The phylogenetic trees of 23 *Cuscuta* species and *Ipomoea purpurea* as determined from different data based on protein-coding sequences (left) and the complete chloroplast genome sequences (right). The support values are shown for nodes as maximum likelihood bootstrap (approach branches). The species with the same color belong to the same subgenus. Brown, purple, orange and blue represent the subgenera *Monogynella*, *Cuscuta*, *Pachystigma*, and *Grammica*, respectively. * indicates that the chloroplast genomes of these *Cuscuta* species were sequenced in this study

japonica, 4,228 bp; and C. exaltata, 4,227 bp). The IRb/ SSC junction of the subgenus Pachystigma was located in the *ycf1* gene and extended into the IRb regions (1,534 bp in C. africana and 1,062 bp in C. nitida). The IR boundaries varied significantly more in subgenus Grammica (four ycf1 distribution patterns that crossed the IR boundaries) compared with the subgenera *Monogynella* and Pachystigma. The first one was located inside the SSC regions (C. erosa, C. boldinghii, C. strobilacea, C. carnosa, C. bonafortunae, C. mexicana, and C. chapalana). The second extended by ~1,000 bp from the SSC region to the IRa region (C. gronovii, C. campestris, and C. cos*taricensis*); the third one extended by less than 1,000 bp from the SSC region to IRb region (C. obtusiflora and C. australis), and the last one crossed both the SSC/IRa (extended by \sim 1,000 bp to IRa) and the SSC/IRb regions (extended by 258 and 956 bp to the IRb, respectively) (C. chinensis and C. pentagona). In addition, in contrast to the other Cuscuta species, the cp genomes of C. epithymum, C. europaea, C. approximata and C. pedicellata lacked an IR.

Patterns of reduction of the Cuscuta cp. genome

The 23 Cuscuta species had a significantly reduced genome size and gene content (Tables 2 and 4). Notably, the entire NAD(P)H dehydrogenase complex gene (ndh) family related to land adaptation and photosynthesis was lost in all 23 Cuscuta species. The photosystem genes (*ycf15* and *ycf1*) and ribosomal protein-coding genes (rpl23, rps15, and rps16) were lost in the 23 Cuscuta cp genomes. In addition, matK that encodes maturase and the photosynthesis-related gene psal were lost in all the species in subgenus Grammica. The photosystem gene ycf2 was lost in the three subgenera Cuscuta, Pachystigma, and Monogynella. The lost genes were relatively conserved inside subgenus Cuscuta (Fig. 3). However, all the ATP synthase genes (*atp*) were present in all 23 *Cuscuta* species, even in the smallest cp genome *C*. erosa (except for atpF in C. boldinghii). TrnA-UGC, trnG-UCC, trnI-GAU, trnK-UUU, trnL-UAA, trnV-UAC were lost in all 23 species. Two copies of trnR-ACG were only lost in all the species of subgenus Grammica.

	Total	с	р1	Single r	nucleotide	repeats					
				(A)10	(A)11	(A)12	(A)others	(T)10	(T)11	(T)12	(T)others
C. exaltata	31	0	2	9	3	2	0	6	4	3	2
C. reflexa	36	0	4	9	3	3	2	7	3	4	1
C. japonica	21	0	0	4	3	0	0	7	6	1	0
<i>C. japonica</i> (this study)	22	0	0	4	1	1	1	4	4	2	5
C. nitida	46	0	2	13	5	2	6	7	2	1	8
C. africana	37	0	2	12	4	1	2	9	2	2	3
C. approximata	52	1	1	11	6	1	5	10	4	3	10
C. pedicellata	52	0	5	14	6	4	9	7	4	1	2
C. epiyhymum (this study)	43	0	2	10	5	5	0	12	6	3	0
C. europaea (this study)	34	1	1	7	1	2	3	13	3	2	1
C. chinensis	20	0	1	0	3	0	0	2	6	2	6
C. chinensis (this study)	20	0	2	0	3	0	0	1	7	1	6
C. gronovii	22	0	0	3	1	1	1	4	4	2	6
C. gronovii (this study)	22	0	0	3	1	1	1	4	4	2	6
C. campestris	15	0	0	3	1	1	1	4	4	2	6
C. costaricensis	9	0	0	0	2	0	0	3	0	1	3
C. pentagona	22	0	0	4	2	1	1	6	4	3	1
C. obtusiflora	28	0	0	3	3	4	4	7	2	2	3
C. australis	24	0	0	6	1	4	2	5	4	1	1
C. chapalana	27	0	4	1	4	0	2	5	4	2	5
C. mexicana	37	0	1	2	3	2	4	7	4	5	9
C. bonafortunae	40	0	1	4	3	0	11	6	7	2	6
C. carnosa	29	0	0	5	1	0	0	8	6	1	8
C. strobilacea	16	0	0	3	2	1	0	5	3	0	2
C. boldinghii	29	0	2	4	4	0	6	3	4	2	4
C. erosa	21	0	1	1	3	1	5	4	2	1	3

Table 3 Chloroplast SSRs in 23 Cuscuta species

p1: Dinucleotide Repeats; c: indicates Polynucleotide repeat. A: Adenine; T: Thymine

Discussion

Molecular phylogeny of 23 Cuscuta species

Phylogenetic analysis of specific Cuscuta species is necessary to clarify the phylogenetic location of each species. To date, 23 plastomes have been identified [4, 10, 12, 25, 27, 28], including C. europaea and C. epithymum obtained in this study. Here, we found that C. europaea was closely related to C. epithymum based on protein coding genes and whole cp genome. This result was consistent with the findings of Neumann [29]. We also found that C. australis is closely related to C. pentagona, which is consistent with the findings of previous research [4], and not closely related to C. epithymum, which was mentioned by Revill et al. [9]. These comparative genomic analyses provide new insights into understanding the phylogeny of Cuscuta species. However, it is necessary to increase the sample size of *Cuscuta* species and use data based on nuclear genome sequencing to strengthen the understanding of their phylogenetic relationships.

Division of four subgenera

The division of four subgenera (*Monogynella*, *Cuscuta*, *Pachystigma*, and *Grammica*) was always controversial. Banerjee and Stefanović classified six *Cuscuta* species

into four subgenera using the whole cp genome sequencing method and found it was consistent with the morphological and DNA sequences-based phylogenetic method, however, the number of studied species was limited [12]. In this study, we classified 23 *Cuscuta* species into four subgenera based on the complete cp genome sequences and found it was not consistent with the phylogenetic relationship.

Neumann (2020) divided C. approximate and C. pedicellata into the subgenus Cuscuta [29] and both C. epithymum and C. europaea were identified to belong to subgenus Cuscuta by using sequences of the nuclear ribosomal internal transcribed spacer and plastid rps2, rbcL and matK [10]. The cp genomes of C. europaea, C. epithymun, C. approximate and C. pedicellata had the same pattern of gene inversion and both lacked one IR region (Figs. 3 and 4). Therefore, we agreed that *C. europaea* and C. epithymum belonged to subgenus Cuscuta. However, in this study, C. europaea and C. epithymum grouped together, while C. approximate and C. pedicellata formed another group, however, the two clades were not sister to each other. McNeal et al. found that subgenus Cuscuta is unequivocally paraphyletic with subgenus Grammica and subgenus *Pachystigma* nested within it [10]. Thus, we

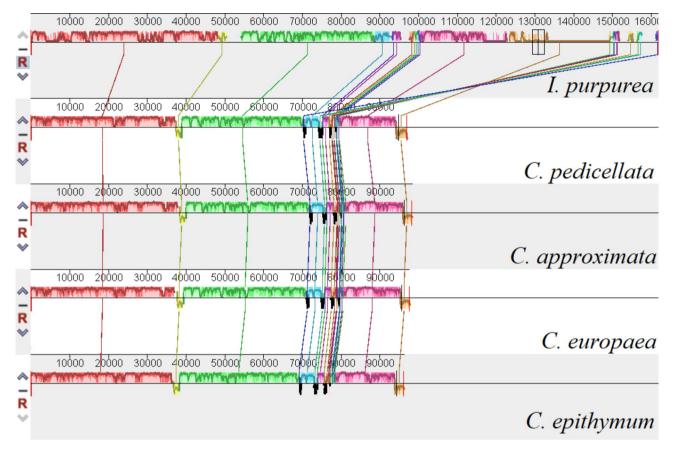


Fig. 3 Structural variation of chloroplast genomes among *C. epithymum, C. europaea, C. approximata*, and *C. pedicellata* belonging to subgenus *Cuscuta* compared with genome of *Ipomoea purpurea*. The yellow region represents inversion A, and the brown region represents inversion B. The four black regions represent the four inversions. The colored regions (red, green, blue and pink) do not contain gene inversions

hypothesized that *C. europaea* and *C. epithymum* might be classified into another subgenus and played special role in the morphological and plastid genome evolution. More studies including more numbers of *Cuscuta* species are needed in the future.

The subgenus *Monogynella*, containing of *C. exaltata*, *C. reflexa*, and *C. japonica*, was monophyletic and was the most basal clade with fewer speciation events. The *ycf2* gene crossed the LSC/IRb region of species in *C. reflexa*, *C. japonica*, and *C. exaltata*. The results were consistent with the findings of McNeal et al. [10] and Park et al. [26].

In this study, the molecular phylogeny showed *C. nitida* and *C. africana* were closed to *C. approximate* and *C. pedicellate* (Fig. 2), however, the cp genome of *C. nitida* and *C. africana* didn't lose one IR region (Fig. 4). Thus, we suggested that *C. nitida* and *C. africana* belonged to subgenus *Pachystigma*, which was consistent with the findings of Banerjee and Stefanovic [12].

Wang et al. [4] and Banerjee and Stefanovic [25] revealed that *C. bonafortuna* was closed to *C. strobilacea* and were belonged to subgenus *Grammica*. In our research, the cp genome of *C. bonafortuna* didn't loss

one IR region which was different from C. approximate and C. pedicellata (Fig. 4). The four subgenus of Cuscuta occurred different gene loss event (Table 4). C. bonafortuna lost ndh, psaI, psbL, rpl23, rpl32, rps15, rps16, ycf1, matK, ycf15, but C. nitida and C. africana both lost rpl23, rps15, rps16, ycf1 and ycf15. The IR borders of C. bonafortuna is similar to C. strobilacea (Fig. 4). These results supported that C. bonafortuna belonged to subgenus Grammica. As mentioned by McNeal et al. [10], subgenera Cuscuta, Grammica and Pachystigma were not monophyletic, indicating that more evolution events related with the gene loss might happened among them, which might drive the changes of morphological and physiological traits of *Cuscuta* species. More studies are needed to elucidate the relationships among Cuscuta species based on taxonomic, morphological, physiological and molecular evidences.

Variation in chloroplast gene structure

The uniparentally inherited SSRs in cp genomes are valuable molecular markers owing to their high degree of variations even within an individual species [30, 31]. Herein, most of the cp genomes of the 23 *Cuscuta* species

912 ho au			
813 bp 74 bp 72 b rpl2 rnl 18b 14,076 bp	5424 bp SSC 6,727 bp IRa 14,076	yc/2 mmH ^{69 bp}	C. australis
<i>ycj2</i>	SSC 6,727 bp IRa 14,076 ycf1 tmN 4959 bp 72 bp	trnl	C. austratis
74 bp 72 bp		5394 bp 69 bp	
LSC 50,207 bp IRb 14,131 bp	SSC 6,817 bp IRa 14,131	bp LSC	C. obtusiflora
5394 bp 813 bp 74 bp 72 bp	vcf1 trnN 5031 bp 72 bp 5031 bp	74 bp 5436 bp <u>75</u> bp	
LSC 50.958 bp IRb 14,200 bp	SSC 7.022 bp IRa 14.200	bp LSC	C. pentagona
yc/2 yc/2 yc/2 yc/2 yc/2 yc/2 yc/2 yc/2	1 trnN	trnI 74 bp	C. peniagona
813 bp 74 bp 72 bp	5022 bp	5415 bp 74 bp	
LSC 50 973 hp IRb 14 354 hp	SSC 7.063 bp IRa 14.354	bp LSC	C. gronovii
100 1100 100 100 100 100 100 100 100 10	bp 72 bp 5022 bp	74 bp 5415 bp 74 bp	
<i>rpl2 trnl trnN</i>	ssc 7,063 bp IRa 14,354		C. gronovii*
ye/2 ye/2 ye/2 ye/2 ye/2 ye/2 ye/2 ye/2	1 trnN	trnI 74 bo	C. gronovn
813 bp 74 bp 72 bp <u>rpl2</u> trnl trnN	5022 bp	5415 bp 68 bp	
LSC 50,956 bp IRb 14,354 bp	SSC 7,063 bp IRa 14,354	- bp LSC	C. campestris
<i>vcf2</i> 5415 bp 813 bp 74 bp 72 bp	72 bp 5043 bp	74 bp 5790 bp 75 bp	
813 bp rpl2 ISC 50,572 bp Rb 14,617 bp 74 bp 72 bp rml IRb 14,617 bp	ycfl IRa 14,617	vcf2 trnH	C. chinensis*
5790 bp 1254	1 trnN	trnl 74 bp	C. Chinensis
813 bp 74 bp 72 bp rp/2 trnl trnN	5043 bp	5790 bp 75 bp	
LSC 50,547 bp IRb 14,617 bp	SSC 7,129 bp IRa 14,617	bp LSC	C. chinensis
813 bp 74 bp 72	1 bp 72 bp 72 bp 5031 bp	74 bp	
<i>rpl2 trnl trnN</i> LSC 50,149 bp IRb 14,594 bp	5031 0p ycf1 SSC 7,354 bp IRa 14,594	vcf2 trnH	C. costaricensis
2.30 30,149 0p	133С 1,334 ор пха 14,39	trnI 74 bp	C. COSIUNCENSIS
816 bp 72 <i>rpl2 trnN</i>	op 4455 bp	5394 bp 75 bp	
ISC 50 154 bp IRb 13 239 bp	SSC 6,894 bp IRa 13,239	bp LSC	C. mexicana
813 bp 72	550 0,057 0p 110 15,255 trnN 72 bp	trnI 74 bp	
rpl2 trnN	vcfl	5367 bp 75 bp vcf2 IrnH	C
LSC 48,410 bp IRb 12,219 bp	SSC 8,729 bp IRa 12,219 mN 72 bp	bp LSC trnl 74 bp	C. carnosa
753 bp 72		5412 bp 75 bp	
LSC 50,250 bp IRb 13,067 bp	SSC 8,223 bp IRa 13,067	bp LSC	C. chapalana
<i>vc/2</i> 5412 bp	trnN 72 bp	trnI 74 bp	
813 bp 72 rpl2 rpl2	bp 4968 bp ycf7 SSC 6,275 bp IRa 12,544	5289 bp 75 bp ycf2 trnH	C
LSC 29,596 bp IRb 12,544 bp	SSC 6,275 bp IRa 12,544 trnN 72 bp	bp LSC trnl 74 bp	C. erosa
813 bp 72	bn 5001 bn		
LSC 30,090 bp IRb 12,792 bp	SSC 6.701 bp IBa 12.792	bp LSC	C. blodinghii
5343 bp	72 bp	74 bp	0
855 bp 72	bp 3540 bp	5370 bp 75 bp ycf2 trnH	a 1.1
LSC 30,702 bp IRb 13,102 bp	SSC 6,863 bp IRa 13,102 mN 72 bp	bp LSC trnl 74 bp	C. strobilacea
vcf2 5370 bp 813 bp 72			
LSC 49 128 bp IRb 12,649 bp	SSC 7.920 bp IRa 12.649	ycf2 trnH	C. bonafortunae
<i>vcf2</i> 5265 bp	72 bp	trnI 74 bp	e. contagor tantae
828 bp 74 bp 72 bp	153 bp rpl32	4725 bp 69 bp	
LSC 60,830 bp IRb 18,328 bp	SSC 7,580 bp IRa 18,328	bp LSC	C. africana
825 bp 74 bp 72 bp	vcf1 trnN 5055 bp 72 bp 162 bp rpl32	74 bp 6552 bp 69 bp	
rpl2 rml rml LSC 69,480 bp IRb 18,135 bp	SSC 8 012 hp IRa 18 135	bp ISC	C. nitida
vcf2 6552 bp	vcfl trnN	trnl 74 bp	С. шийи
810 bp 74 bp 72 bp <i>rpl2 ml pml</i>	71 bp		
LSC 91,011 bp	SSC 7,369 bp	LSC C. approximate	а
822 bp 74 bp 72 bp	5289 bp 80 bp 71 bp		
822 bp 74 bp 72 bp 100 ml ml ml ml	SSC 7,716 bp	LSC C. pedicellata	
ycf2 5886 bp	yefl trnL 5196 bp 80 bp	. peutenulu	
rpl2 trnI trnN	75 bp		
LSC 69,214 bp IR 24,170 bp	SSC 2.908 bp	LSC C. epithymum	
279 bp 74 bp 72 bp	80 Op		
279 bp 74 bp 72 bp rpl19 trnl trnN LSC 77,514 bp IR 18,523 bp	75 bp mmH SSC 1,624 bp	LSC C europaea	
<i>vcf2</i> 6000 bp	size tmL sz89 bp 80 bp	LSC C. europaea	
837 bp 74 bp 72 b rpl2 trnl trnN	p	71 bp 1771 bp	
LSC 83,320 bp IRb 16,741 bp	SSC 8.571 bp IRa 16.741	bp LSC	C. exaltata
6717 bp 72 1	180 bp 4905 bp 72 bp	74 bp	
<i>rpl2 tml</i> LSC 78,468 bp IRb 16,741 bp	SSC 8,571 bp IRa 16,741	bp LSC	C. reflexa
ласто, тоо ор пто то, ттт ор	inta 10,741	LSC LSC	С. Герели
6012 bp	rpl32 vcfl trnN 150 hp 5253 hp 72 bp		
843 bp 74 bp 72 bp	150 bp 5253 bp 72 bp	74 bp	
^{843 bp} 74 bp 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75	150 bp 5253 bp 72 bp p SSC 8,388 bp IRa 16,569	bp LSC	C. japonoca*
843 bp 72 mpl2 mil LSC 79,505 bp IRb 16,569 bp yc/2 6687 bp	150 bp 5253 bp 72 bp p SSC 8,388 bp IRa 16,569 rpl32 vc/1 tmM 150 bp 5163 bp 72 b	bp LSC	C. japonoca*
⁸⁴³ bp 74 bp 72 ppl2 mil LSC 79,505 bp IRb 16,569 bp ycf2 6687 bp	150 bp 5253 bp 72 bp SSC 8,388 bp IRa 16,569 rp/32 vc/I ImiN 150 bp 5163 bp 72 bp p 72 bp 72 bp	p 74 bp	
843 bp 74 bp 72 rp12 rm1 IRb 16,569 bp rm1 LSC 79,505 bp IRb 16,569 bp rm2 6687 bp 843 bp 74 bp 72 1 72 1	150 bp 5253 bp 72 bp p SSC 8,388 bp IRa 16,569 rpl32 vc/1 tmM 150 bp 5163 bp 72 b	bp LSC p 74 bp bp LSC	C. japonoca* C. japonica

Fig. 4 The IR borders in chloroplast genomes of 23 *Cuscuta* species. The gray, purple, and light blue blocks represent the LSC region, IR region and SSC region, respectively. Blocks with different colors represent different genes. IR, inverted repeat; LSC, large single-copy; SSC, small single-copy

Table 4 Loss of chloroplast protein coding genes and transfer RNA genes across the Cuscuta spp

Species Subgenera		Lost genes					
		Photosyn- thesis related genes	Transcription and translation related genes	Other genes	tRNA genes		
C. erosa	Grammica	ndh, psal, psaA-C, psbA- F, psbH-L, psbN/T/Z, petA/B/D/G/ L/N, rbcL	rpl23, rps15, rps16, rpo	ycf1, ycf3, ycf4, matK, ccsA, cemA, ycf15**	trnA-UGC****, trnG-UCC**, trnI-CAU, trnI-GAU**, trnI-GAU**, trnK-UUU**, trnL-UAA, trnR-ACG, trnR-ACG, trnV-UAC**		
C. boldinghii		ndh, psal, psaA-C, psbA- F, psbH-L, psbT, psbZ, petA/B/D/G/ L/N, rbcL, atpF	rpl23, rpl36, rpl32, rps14, rps15, rps16, rpo	ycf1, ycf3, ycf4, matK, ccsA, ycf15**	trnA-UGC****, trnG-GCC, trnG-UCC, trnI-CAU, trnI-GAU**, trnI- GAU**, trnK-UUU**, trnL-UAG, trnR-ACG**, trnV-UAC**		
C. strobilacea		ndh, psal, psaA-C, psaJ, psbA-F, psbT, psbZ, psbH/J/K/L, petA/B/D/G/ L/N, rbcL	rpl23, rpl32, rpl36, rps15, rps16, rpo	ycf1, ycf3, ycf4, matK, ccsA, ycf15**	trnA-UGC****, trnG-UCC**, trnI-CAU, trnI-GAU****, trnK- UUU**, trnL-UAA, trnR-ACG**, trnV-UAC**		
C. carnosa		ndh, psal, petN, psbM	rpl23, rpl32, rps15, rps16, rpo	ycf1, matK, ccsA, ycf15**	trnA-UGC****, trnC-GCA, trnD-GUC, trnE-UUC, trnG-UCC**, trnI-CAU, trnI-GAU****, trnK-UUU**, trnL-UAA, trnR-ACG**, trnV-GAC, trnV-UAC, trnY-GUA		
C. bonafortunae		ndh, psal, psbL	rpl23, rpl32, rpl36, rps15, rps16, rpo	ycf1, matK, ycf15**	trnA-UGC****, trnG-UCC**, trnI-CAU, trnI-GAU****, trnK- UUU**, trnL-UAA, trnR-ACG**, trnV-UAC**		
C. mexicana		ndh, psal, rbcL, psbl, psbK	rpl23, rpl32, rps15, rps16, rpo	ycf1, matK, cemA, ycf15**	trnA-UGC****, trnG-UCC**, trnI-CAU, trnI-GAU****, trnK- UUU**, trnL-UAA, trnR-ACG**, trnR-UCU, trnS-GCU, trnV-UAC**		
C. chapalana		ndh, psal	rpl23, rpl32, rps15, rps16, rpo	ycf1, matK, ycf15**	trnA-UGC****, trnG-UCC**, trnI-CAU, trnI-GAU****, trnK- UUU**, trnL-UAA, trnR-ACG**, trnV-UAC**		
C. costaricensis		ndh, psal, atpl	rpl23, rpl32, rps15, rps16, rpo	ycf1, matK, ycf15**	trnA-UGC****, trnG-UCC**, trnI-GAU****, trnK-UUU**, trnL- UAA, trnR-ACG**, trnV-UAC**		
C. australis		ndh, psal	rpl23, rpl32, rps15, rps16, rpo	ycf1, matK, ycf15**	trnA-UGC****, trnG-UCC**, trnI-GAU****, trnK-UUU**, trnL- UAA, trnR-ACG**, trnV-UAC**		
C. obtusiflora		ndh, psal	rpl23, rpl32, rps15, rps16, rpo	ycf1, matK, ycf15**	trnA-UGC****, trnG-UCC**, trnI-GAU****, trnK-UUU**, trnR- ACG**, trnV-UAC**		
C. campestris		ndh, psal	rpl23, rpl32, rps15, rps16, rps12, rpo	ycf1, matK, ycf15**	trnA-UGC****, trnG-UCC**, trnI-GAU****, trnK-UUU**, trnL- UAA, trnR-ACG**, trnV-UAC**		
C. pentagona		ndh, psal, atpE	rpl23, rpl32, rps15, rps16, rpo	matK, ycf15**	trnA-UGC****, trnG-UCC**, trnI-GAU****, trnK-UUU**, trnL- UAA, trnR-ACG**, trnV-UAC**		
C. gronovii		ndh, psal	rpl23, rpl32, rps15, rps16, rpo	ycf1, matK, ycf15**	trnA-UGC****, trnG-UCC**, trnI-GAU****, trnK-UUU**, trnL- UAA, trnR-ACG**, trnV-UAC**		
C. gronovii (this study)		ndh, psal	rpl23, rpl32, rps15, rps16, rpo	ycf1, matK, ycf15**	trnA-UGC****, trnG-UCC**, trnI-GAU****, trnK-UUU**, trnL- UAA, trnR-ACG**, trnV-UAC**		
C. chinensis		ndh, psal	rpl23, rpl32, rps15, rps16, rpo	matK, ycf15**	trnA-UGC****, trnG-UCC**, trnI-GAU****, trnK-UUU**, trnL- UAA**, trnR-ACG**, trnT-GGU, trnV-UAC**		
C. chinensis (this study)		ndh, psal	rpl23, rpl32, rps15, rps16, rpo	matK, ycf15**	trnA-UGC****, trnG-UCC**, trnI-GAU****, trnK-UUU**, trnL- UAA**, trnR-ACG**, trnT-GGU, trnV-UAC**		
<i>C. epithymum</i> (this study)	Cuscuta	ndh	rpl23, rps7, rps12, rps15	ycf1, ycf2, ycf15**	trnA-UGC ^{***} , trnG-UCC ^{**} , trnI-GAU ^{***} , trnK-UUU ^{**} , trnL-CAA, trnL-CAA, trnV-GUU, trnR-ACG, trnV-GAC ^{**}		
C. europaea (this study)		ndh, psaA	rp116, rp12, rp123, rps12, rps15, rps4, rps7	ycf1, ycf2, ycf15**, matK, ccsA	trnA-UGC ^{***} , trnG-UCC ^{**} , trnI-CAU, trnI-GAU ^{**} , trnK-UUU ^{**} , trnL- CAA, trnL-UAA, trnN-GUU, trnR-ACG, trnV-GAC, trnV-UAC		
C. pedicellata		ndh	rpl23, rps15, rps16, rps7, rps12, rpoC2	ycf1, ycf2, ycf15**	trnA-UGC***, trnG-UCC**, trnI-CAU, trnI-GAU***, trnK-UUU**, trnL-CAA, trnL-UAA, trnN-GUU, trnR-ACG, trnV-GAC, trnV-UAC**		
C. approximata		ndh	rpl23, rps15, rps16, rps7, rps12, rpoC2	ycf1, ycf2, ycf15**	trnA-UGC***, trnG-UCC**, trnI-CAU, trnI-GAU**, trnK-UUU**, trnL-CAA, trnL-UAA, trnN-GUU, trnR-ACG, trnV-GAC, trnV-UAC**		

Species	Subgenera	Lost genes							
-		Photosyn- thesis related genes	Transcription and translation related genes	Other genes	tRNA genes				
C. africana	Pachystigma	ndh, psbZ	rpl23, rps15, rps16, rpo	ycf1, ycf15**, clpP	trnA-UGC****, trnG-UCC**, trnI-GAU****, trnK-UUU**, trnL- UAA, trnV-UAC**				
C. nitida		ndh	rpl23, rps15, rps16	ycf1, ycf15**	trnA-UGC****, trnG-UCC**, trnI-GAU****, trnK-UUU**, trnL- UAA, trnV-UAC**				
C. japonica	Monogynella	ndh	rpl23, rps15, rps16	ycf1, ycf2, ycf15**	trnA-UGC**, trnG-UCC**, trnI-CAU, trnI-GAU**, trnK-UUU**, trnL-UAA, trnV-UAC**				
<i>C. japonica</i> (this study)		ndh	rpl23, rps15, rps16	ycf1, ycf2, ycf15**	trnA-UGC**, trnG-UCC**, trnI-CAU, trnI-GAU**, trnK-UUU**, trnL-UAA, trnV-UAC**				
C. reflexa		ndh	rpl23, rps15, rps16	ycf1, ycf2, ycf15**	trnA-UGC**, trnG-UCC, trnI-CAU, trnI-GAU**, trnK-UUU**, trnL- UAA, trnV-GAC**				
C. exaltata		ndh	rpl23, rps15, rps16	ycf1, ycf2, ycf15**	trnA-UGC**, trnG-UCC, trnI-CAU, trnI-GAU**, trnK-UUU**, trnL-UAA, trnV-UAC				

Table 4 (continued)

gene loss two copies. * gene loss three copies. **** gene loss four copies

had single nucleotide repeats of A and T, which are similar to those of other species [32, 33]. The validation of SSRs of cp genomes should be done before it can be used to identify species and in population genetics and evolutionary research of *Cuscuta* and its relatives.

Most cp genomes had a quadripartite structure, which consisted of two IR regions separated by one LSC and one SSC region (Fig. 2). The genomic structure, gene content, gene order, and base composition are highly conserved in the IR regions in most plant chloroplasts [34]. Herein, four *Cuscuta* species (*C. epithymum, C. europaea, C. approximata* and *C. pedicellata*) lacked an IR region (Table 2). The loss of IR could be found in the cp genomes of higher plants [35]. These results further confirmed the structural plasticity of the chloroplast. Owing to unequal recombination and replication slippage, the expansion and contraction of IR regions caused the structural variations in the IR boundaries (IRb) (Fig. 4).

Inversion events could be owing to the activity of tRNA [36] and high GC content [37]. The regions that flank two inversions (inversion A and inversion B) contained tRNA gene sequences (Fig. 3), indicating that tRNA recombination promotes inversions in the plastid genomes [36]. However, the GC content in inversion flanking sequences was not consistently higher than the average GC content in the cp genome. Therefore, the patterns of sequence variations at inversion boundaries are more consistent with tRNA activity and not intragenomic recombination between regions with a high content of GC [36, 37].

Cp genome reduction and gene selection in *Cuscuta* species

Cuscuta is a parasitic angiosperm that exists as a hemiparasite or holoparasite [38]. Herein, the 23 *Cuscuta* species had a significantly reduced genome size and gene content (Tables 2 and 4), which is consistent with the findings of previous studies [10, 25, 39]. The lost genes were conserved in the *Cuscuta* subgenus and correlated with the species classification and phylogenetic relationships. Previous studies showed that *Cuscuta* species is a phenomenon of irreversibly reducing their genes, i.e., genes cannot be regained once they are lost [25, 40]. According to our results, *ndh*, *ycf1*, *ycf15*, *rpl23*, *rps15*, and *rps16* were lost in the species in all four subgenera, while the *matK* and *pasI* genes were lost in the subgenus *Grammica*. Therefore, it can be inferred that the *ndh*, *ycf15*, *ycf1*, *rpl23*, *rps15*, and *rps16* genes were lost before the *pasI*, *rpo*, and *matK* genes, considering that the genes could not be regained once they are lost.

The absence of *ndh* genes in angiosperms is primarily related to the loss of photosynthetic function in parasitic plants [41]. The *ndh* genes encode NDH dehydrogenase complexes, which are closely related to light and action [42]. The loss of NDH complex reduces the dependence of Cuscuta on photosynthesis, which is lower than that of green plants [43]. All the Cuscuta species lost ndh genes, indicating the loss of photosynthetic capacity during their evolution from autotrophy to heterotrophy, which is similar to the results of a previous study [25]. However, the functions of *ycf1* and *ycf15* genes are unclear. The loss of rpl23, rps15, and rps16 genes related to ribosomal protein formation could enable the adaptation of Cuscuta to parasitic life. Herein, the types of gene reduction that were tracked included *psaI*, *rpo* and *matK* in the subgenus Grammica. psal is related to the function of photosystem I (PS I). The rpo gene (rpoA, rpoB, *rpoC1*, and *rpoC2*) is crucial for the production of chloroplasts [44]. The loss of rpo gene can affect protein synthesis in the chloroplast, thus, affecting the development of chloroplasts and photosynthesis [45]. MatK is related to RNA processing [46]. The loss of *psaI*, *rpo*, and *matK* can decrease the ability of chloroplasts to photosynthesize and produce materials, which renders Cuscuta more parasitic. Herein, all the *Cuscuta* species that lost *ndh*,

psaI, rpo, and *matK* (except for *C. erosa, C. boldinghii, C. strobilacea*) could be hemiparasitic. However, *C. erosa, C. boldinghii, C. strobilacea* lost several genes associated with photosynthesis, such as *psa, psb, pet, rbcL*, which indicates the transition from hemiparasitic to holoparasitic. These results indicate that the loss of genes related to photosynthesis is a continuous process [25]. The *ndh* gene was lost first (in all species of *Cuscuta*), followed by the *psaI, rpo* and *matK* genes (*C. africana* and across the subgenera *Grammica* and *Cuscuta*), and the substantial loss of *psa, psb, pet, rbcL*, and other genes (*C. erosa, C. boldinghii, C. strobilacea*). This study supports the model of plastid evolution proposed by Banerjee and Stefanović [25].

Materials and methods

Plant materials and cp. genome sequences

C. chinensis seeds were purchased in Aohanqisidaowanzi town, Chifeng City, China. C. japonica seeds were collected from a field in Sanmen County, China. C. gronovii seeds were collected from the field of Taizhou University, Taizhou City, China. After germination, the plants were identified by Professor Beifen Yang from Taizhou University based on their morphological traits according to a standard reference. Voucher herbarium specimens from the three species were deposited at Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation in Taizhou University. Cuscuta epithymum from a wild population was collected in the region of Eleshnitsa, Pirin Mt., Bulgaria, while Cuscuta europaea was collected in Zlatni Mostove locality, Vitosha Mt., Bulgaria. Voucher herbarium specimens from the two species were deposited at Department of Biochemistry, Faculty of Biology, Sofia University. All the five Cuscuts species are parasitic weeds without regulations of ecological protection.

The whole cp genome sequences of 21 *Cuscuta* genes, including *C. exaltata* (EU189132), *C. reflexa* (AM711640), *C. japonica* (MH780080), *C. nitida* (NC052869), *C. africana* (NC052870), *C. approximata* (NC052871), *C. pedicellata* (MN464181), *C. chinensis* (MH780079), *C. gronovii* (AM711639), *C. campestris* (NC052920), *C. costaricensis* (MK881072), *C. pentagona* (MH121054), *C. obtusiflora* (EU189133), *C. australis* (NC045885), *C. chapalana* (MK887214), *C. mexicana* (MK887213), *C. strobilacea* (MK887215), *C. carnosa* (MK887212), *C. strobilacea* (MK887075), *C. bolding-hii* (MK881074), *C. erosa* (MK881073), and *I. purpurea* (EU118126) were downloaded from the NCBI database.

Cp genome sequencing, assembly, and annotation

The total DNA was extracted from the stem samples collected from the three species using a modified CTAB method [47]. Pair-end sequencing (insert size: 350 bp) was then performed using an Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, USA). Raw pairedend reads of 150 bp were processed using SOAPnuke (version 1.5.2) to remove adapters and low-quality sequences (the unknown base ratio was higher than 5% and the low-quality base ratio $[Q \le 5]$ was more than 20%) [48]. The raw reads were filtered to obtain highquality clean data. The cp genome was assembled using NOVOPlasty (version 3.7.2) [49]. C. exaltata was used as the reference sequence. The other setting was default (K-mer=39). The genes in the cp genomes of C. epithymun, C. europaea, C. chinensis, C. japonica and C. gronovii were annotated using GeSeq software. The start and stop codons of the gene were identified using automated tools. Circular maps of the cp genomes were obtained using OGDRAW (https://chlorobox.mpimp-golm.mpg. de/OGDraw. html) [50].

Phylogenetic analysis

Molecular phylogenetic trees were constructed using the whole cp genomes and all the protein-coding sequences of the 23 *Cuscuta* species. *Ipomoea purpurea* was used as an outgroup [29]. A total of 27 cp genomes were aligned using MAFFT v.7.450 [51] and manually adjusted using Geneious Prime 2021.1.1 (Biomatters, Ltd., Auckland, New Zealand). The maximum likelihood (ML) analysis was performed using 1,000 bootstrap replicates after selecting the best-fit substitution model via MEGA 7 [52].

Cp genome comparison and SSR searching

GENEIOUS software was used to determine the GC content. MAVUE was used to align the cp genome and identify inversions [53]. MISA software was used to detect the SSRs in the cp genome using the following parameters: minimum SSR motif length of 10 bp and repeat times of mono-10, di-6, tri-5, tetra-5, penta-5, and hexa-5 [54].

Conclusions

In this study, the cp genomes of C. epithymum, C. europaea C. gronovii, C. chinensis and C. japonica were sequenced and assembled. We analyzed the cp genomes of five Cuscuta species and compared them with the previously released cp genomes of 21 Cuscuta species. The complete cp genome sequences of C. epithymum and C. europaea were 96,292 and 97,661 bp long, respectively, and lacked an inverted repeat (IR) region. Based on the cp genome structure and genes loss events, we divided the 23 Cuscuta species into four subgenera (Monogynella, Pachystigma, Cuscuta, and Grammica). We found that C. epithymum and C. europaea belonged to subgenus Cuscuta for the lack of one IR region and the presence of two inversions. Furthermore, the 23 Cuscuta species had substantial variations in the length of their cp genome and its gene composition. Most of the reduced

cp genomes lost several photosynthetic genes (*ndh*, *rpo*, *psa*, *psb*, *pet*, and *rbcL*), thus, gradually decreasing their photosynthetic capacity. This study will guide future comparative genomic investigation into the evolution of *Cuscuta* species.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12864-023-09427-w.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Acknowledgements

Not applicable.

Authors' contributions

Conceptualization, L.Z. and J.L.; methodology, Y.T., C.C., M.J., Z.S. and H.P.; software, L.C., Y.T. and C.C.; validation, C.C., L.Z. and J.L.; formal analysis, H.P.; investigation, H.P.; data curation, H.P.; writing—original draft preparation, H.P; writing—review and editing, J.L. All authors have read and agreed to the published version of the manuscript.

Funding

This work was financially supported by the National Natural Science Foundation of China (32271590), and the Ten Thousand Talent Program of Zhejiang Province (2019R52043).

Data Availability

Cp genome data of five *Cuscuta* species were deposited in the NCBI database (OL752638-OL752640, OP620588, OP620589).

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Statement

Our experimental research and field studies on plants comply with relevant institutional, national, and international guidelines and legislation.

Received: 3 February 2023 / Accepted: 3 June 2023

Published online: 08 June 2023

References

- Neuhaus HE, Emes MJ. Nonphotosynthetic metabolism in plastids. Annu. Rev. Plant Physiol. Plant Mol Biol. 2000;51(1):111–40. https://doi.org/10.1146/ annurev.arplant.51.1.111
- Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 2016;17(1):134. https://doi.org/10.1186/s13059-016-1004-2
- Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 2011;76(3–5):273–97. https://doi.org/10.1007/ s11103-011-9762-4

- Wang FF, Huang DJ, Qin BL, Wang XW, Qian J, Zhang ZH, Wang XH. The complete chloroplast genome of *Cuscuta australis* R. Br. (Convolvulaceae) and its phylogenetic implication. Mitochondrial DNA B. 2020;5(1):766–7. https:// doi.org/10.1080/23802359.2020.1715865
- Garcia MA, Costea M, Kuzmina M, Stefanovic S. Phylogeny, character evolution, and biogeography of *Cuscuta* (dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences. Am J Bot. 2014;101(4):670–90. https:// doi.org/10.3732/ajb.1300449
- Clarke CR, Timko MP, Yoder JI, Axtell MJ, Westwood JH. Molecular Dialog between parasitic plants and their hosts. Annu Rev Phytopathol. 2019;57(1):279–99. https://doi.org/10.1146/annurev-phyto-082718-100043
- Engelmann G. Systematic arrangement of the species of the genus *Cuscuta* with critical remarks on old species and descriptions of new ones. Trans Acad Sci St Louis. 1859;1:453–523.
- 8. Yuncker TG. The genus *Cuscuta*. Mem Torrey Bot Club. 1932;18:113–331.
- Revill MJW, Stanley S, Hibberd JM. Plastid genome structure and loss of photosynthetic ability in the parasitic genus *Cuscuta*. J Exp Bot. 2005;56(419):2477–86. https://doi.org/10.1093/jxb/eri240
- McNeal JR, Arumugunathan K, Kuehl JV, Boore JL, Depamphilis CW. Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus *Cuscuta* (Convolvulaceae). BMC Biol. 2007;5(1):55. https://doi. org/10.1186/1741-7007-5-55
- Costea M, Garcia MA, Stefanovic S. A phylogenetically based infrageneric classification of the parasitic plant genus *Cuscuta* (dodders, Convolvulaceae). Syst Bot. 2015;40(1):269–85. https://doi.org/10.1600/036364415X686567
- Banerjee A, Stefanovic S. Reconstructing plastome evolution across the phylogenetic backbone of the parasitic plant genus *Cuscuta*. (Convolvulaceae) Bot J Linn Soc. 2020;194:423–38. https://doi.org/10.1093/botlinnean/ boaa056
- Wicke S, Schneeweiss GM, DePamphilis CW, Muller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 2011;76(3–5):273–97. https://doi.org/10.1007/ s11103-011-9762-4
- Wetzel CM, Harmacek LD, Yuan LH, Wopereis JLM, Chubb R, Turini P. Loss of chloroplast protease SPPA function alters high light acclimation processes in Arabidopsis thaliana L. (Heynh). J Exp Bot. 2009;60(6):1715–27. https://doi. org/10.1093/ixb/erp051
- Van der Kooij TAW, Krause K, Dorr I, Krupinska K. Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus *Cuscuta*. Planta. 2000;210(5):701–7. https://doi. org/10.1007/s004250050670
- Panda MM, Choudhury NK. Effect of irradiance and nutrients on chlorophyll and carotenoid content and Hill reaction activity in *Cuscuta reflexa*. Int J Dent. 1992;2014:385687.
- Hibberd JM, Bungard RA, Press MC, Jeschke WD, Scholes JD, Quick WP. Localization of photosynthetic metabolism in the parasitic angiosperm *Cuscuta reflexa*. Planta. 1998;205:506–13.
- Sherman TD, Pettigrew WT, Vaughn KC. Structural and immunological characterization of the *Cuscuta pentagona* L. chloroplast. Plant Cell Physiol. 1999;40:592–603.
- Depamphilis CW, Palmer JD. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature. 1990;348(6299):337–9.
- 20. dePamphilis CW, Press MC, Graves JD. ; Parasitic Plants: Chapman and Hall, London, 1995; 176–205.
- Nickrent DL, Ouyang Y, Duff RJ, DePamphilis CW. Do nonasterid holoparasitic flowering plants have plastid genomes? Plant Mol Biol. 1997;34(5):717–29. https://doi.org/10.1023/A:1005860632601
- 22. Krause K. Piecing together the puzzle of parasitic plant plastome evolution. Planta. 2011;234(4):647–56. https://doi.org/10.1007/s00425-011-1494-9
- Berg S, Krupinska K, Krause K. Plastids of three *Cuscuta* species differing in plastid coding capacity have a common parasite-specific RNA composition. Planta. 2003;218(1):135–42. https://doi.org/10.1007/s00425-003-1082-8
- Braukmann T, Kuzmina M, Stefanovic S. Plastid genome evolution across the genus *Cuscuta* (Convolvulaceae): two clades within subgenus *Grammica* exhibit extensive gene loss. J Exp Bot. 2013;64(4):977–89. https://doi. org/10.1093/jxb/ers391
- Banerjee A, Stefanovic S. Caught in action: fine–scale plastome evolution in the parasitic plants of *Cuscuta* section Ceratophorae (Convolvulaceae). Plant Mol Biol. 2019;100:621–34. https://doi.org/10.1007/s11103-019-00884-0
- 26. Park I, Song JH, Yang SY, Kim WJ, Choi G, Moon BC. Cuscuta Species Identification based on the morphology of Reproductive Organs and complete

chloroplast genome sequences. Int J Mol Sci. 2019;20(11):2726. https://doi.org/10.3390/ijms20112726

- Funk HT, Berg S, Krupinska K, Maier UG, Krause K. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, *Cuscuta reflexa* and *Cuscuta gronovii*. BMC Plant Biol. 2007;7(1):45. https://doi. org/10.1186/1471-2229-7-45
- Park I, Yang SY, Kim WJ, Noh P, Lee HO, Moon BC. The complete chloroplast genome of *Cuscuta pentagona* Engelm. Mitochondrial DNA B. 2018;3(2):523– 4. https://doi.org/10.1080/23802359.2018.1467229
- Neumann P, Oliveira L, Cizkova J, Jang TS, Klemme S, Novak P, Stelmach K, Koblizkova A, Dolezel J, Macas J. Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus *Cuscuta*. New Phytol. 2020;4:2365–77. https://doi. org/10.1111/nph.17003
- Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA. Polymorphic simple sequence repeats regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci. 1995;92(17):7759–63. https://doi.org/10.1073/pnas.92.17.7759
- Xue JH, Wang S, Zhou SL. Polymorphic chloroplast microsatellite loci in *Nelumbo* (Nelumbonaceae). Am J Bot. 2012;99(6):e240–4. https://doi. org/10.3732/ajb.1100547
- Kuang DY, Wu H, Wang YL, Gao LM, Zhang SZ, Lu L. Complete chloroplast genome sequence of *Magnolia kwangsiensis* (Magnoliaceae): implication for DNA barcoding and population genetics. Genome. 2011;54(8):663–73. https://doi.org/10.1139/G11-026
- Qian J, Song J, Gao H, Zhu Y, Xu J, Pang X, et al. The complete chloroplast genome sequence of the medicinal plant *Salvia miltiorrhiza*. PLoS ONE. 2013;8(2):e57607. https://doi.org/10.1371/journal.pone.0057607
- Jeon JH, Kim SC. Comparative analysis of the complete chloroplast genome sequences of three closely related East-Asian Wild Roses (Rosa sect. Synstylae; Rosaceae). Genes. 2019;10(1):23. https://doi.org/10.3390/genes10010023
- Lin ZC, Zhou P, Ma XY, et al. Comparative analysis of chloroplast genomes in Vasconcellea pubescens A.DC. And Carica papaya L. Sci Rep. 2020;0(1):15799. https://doi.org/10.1038/s41598-020-72769-y
- Hiratsuka J, Shimada H, Whittier R, et al. The complete sequence of the rice (*Oryza satira*) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989;217:185–94.
- Fullerton SM, Antonio BC, Clark AG. Local rates of recombination are positively correlated with GC content in the Human Genome. Mol Biol Evol. 2001;18(6):1139–42. https://doi.org/10.1093/oxfordjournals.molbev.a003886
- Westwood JH, Yoder JI, Timko MP, DePamphilis CW. The evolution of parasitism in plants. Trends Plant Sci. 2010;15(4):227–35. https://doi.org/10.1016/j. tplants.2010.01.004
- Costea M, Spence I, Stefanović S. Systematics of Cuscuta chinensis species complex (subgenus *Grammica*, Convolvulaceae): evidence for longdistance dispersal and one new species. Organisms Divers Evol volume. 2011;11(5):373–86. https://doi.org/10.1007/s13127-011-0061-3
- Wicke S, Naumann J. Molecular Evolution of Plastid Genomes in parasitic flowering plants. Adv Bot Res. 2017;85:315–47. https://doi.org/10.1007/ s11103-011-9762-4
- 41. Peredo EL, King UM, Les DH. The Plastid Genome of *Najas flexilis*: adaptation to submersed environments is accompanied by the complete loss of

the NDH complex in an aquatic angiosperm. PLoS ONE. 2013;8(7):e68591. https://doi.org/10.1371/journal.pone.0068591

- 42. Peltier G, Aro EM, Shikanai T. NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis. Annu Rev Plant Biol. 2016;67(1):55–80. https://doi.org/10.1146/annurev-arplant-043014-114752
- Yu JJ, Wang CB, Gong X. Degeneration of photosynthetic capacity in mixotrophic plants, *Chimaphila japonica* and *Pyrola decorata* (Ericaceae). Plant Divers. 2017;39(2):80–8. https://doi.org/10.1016/j.pld.2016.11.005
- 44. Tadini L, Jeran N, Peracchio C, Masiero S, Colombo M, Pesaresi P. The plastid transcription machinery and its coordination with the expression of nuclear genome: plastid-encoded polymerase, nuclear-encoded polymerase and the genomes uncoupled 1-mediated retrograde communication. Phil Trans R Soc B. 2020;75(1801):20190399. https://doi.org/10.1098/rstb.2019.0399
- 45. Pfannschmidt T, Blanvillain R, Merendino L, Courtois F, et al. Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. J Exp Bot. 2015;66(2):6957–73. https://doi.org/10.1093/jxb/erv415
- Li DM, Zhao CY, Liu XF. Complete chloroplast genome sequences of Kaempferia Galanga and Kaempferia Elegans: molecular structures and comparative analysis. Moleculars. 2019;24(3):474. https://doi.org/10.3390/ molecules24030474
- Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bull. 1987;19:11–5.
- Chen YX, Chen YS, Shi CM, Huang ZB, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Oxf Open. 2018;7(1). https:// doi.org/10.1093/gigascience/gix120
- Dierckxsens N, Mardulyn P, Amits G. Nucleic Acids Res. 2017;45(4). https:// doi.org/10.1093/nar/gkw955. NOVOPlasty: de novo assembly of organelle genomes from whole genome data.
- Greiner S, Lehwark P, Bock R. Organellar Genome DRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019;47:W59–W64. https://doi.org/10.1093/nar/gkz238
- Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772– 80. https://doi.org/10.1093/molbev/mst010
- Kumar S, Stecher G, Tamura K. Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4. https://doi. org/10.1093/molbev/msw054
- Darling A, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14(7):1394–403. https://doi.org/10.1101/gr.2289704
- MISA—Microsatellite searching tool. Available online: http://pgrc.ipkgatersleben.de/misa/ (accessed on 12 May 2016).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.